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Abstract: Large degree-of-freedom real-time adaptive optics (AO) control 
requires reconstruction algorithms that are computationally efficient and 
readily parallelized for hardware implementation.  In particular, we find the 
wave-front reconstruction for the Hudgin and Fried geometry can be cast 
into a form of the well-known Sylvester equation using the Kronecker 
product properties of matrices. We derive the filters and inverse filtering 
formulas for wave-front reconstruction in two-dimensional (2-D) Discrete 
Cosine Transform (DCT) domain for these two geometries using the 
Hadamard product concept of matrices and the principle of separable 
variables. We introduce a recursive filtering (RF) method for the wave-front 
reconstruction on an annular aperture, in which, an imbedding step is used 
to convert an annular-aperture wave-front reconstruction into a square-
aperture wave-front reconstruction, and then solving the Hudgin geometry 
problem on the square aperture. We apply the Alternating Direction Implicit 
(ADI) method to this imbedding step of the RF algorithm, to efficiently 
solve the annular-aperture wave-front reconstruction problem at cost of 
order of the number of degrees of freedom, O(n). Moreover, the ADI 
method is better suited for parallel implementation and we describe a 
practical real-time implementation for AO systems of order 3,000 actuators.  
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1.  Introduction  

Adaptive optics is an ideal technology developed for compensation of aberrations in optical 
systems or due to atmospheric turbulence to achieve unprecedented quality of astronomical 
observations and measurements. Wave-front reconstructors are an indispensable element of 
most AO systems. Whatever configuration used in these systems, such as extreme AO or 
multi-conjugate AO, fast and efficient algorithms allowing for hardware implementations are 
required to realize real time reconstruction and control for future giant telescope [1].  

The most commonly used geometries for wave-front reconstruction are Hudgin and Fried 
geometries [2-3]. We will consider both geometries and develop a new wave-front 
reconstruction algorithm - the RF algorithm. Freischalad et al [4] have used the 2-D discrete 
Fourier transform (DFT) domain filtering method to perform wave-front estimation for 
various types of wave-front slope sampling geometry on a rectangular aperture, and Poyneer 
et al [5] have demonstrated further this algorithm using a curl-free boundary method to reduce 
the period boundary error, and derived a 2-D inverse filtering formula in the DFT domain for 
the Fried geometry. These algorithms scale as O(nlogn) when implemented with fast Fourier 
transforms, where n is the degree of the freedom for the wave-front sensor. Gilles et al [6] 
have described an O(nlog n) multigrid preconditioned conjugate gradient method, as well as 
an O(n) sparse minimum-variance open-loop wave-front reconstructor based on multigrid 
preconditioning with a symmetrical Gauss-Seidel smoothing function [7]. MacMartin [8] has 
proposed hierarchic iterative wave-front reconstructors which scale linearly using a local 
influence function assumption. Shi et al have validated them experimentally at Palomar 
Observatory [9].    

The fundamental algebraic structure of the wave-front reconstruction problem for the 
Hudgin geometry has been studied using a matrix representation and the least square principle 
by Hunt [10]. However, the reconstructor he developed is slow due to the particular iterative 
methods he adopted. By casting the reconstruction problem into the language of traditional 
image processing, we can create fast algorithms that have been specifically designed for 
astronomical adaptive optics systems, and overcome this limitation. In this theoretical context, 
we write the gradient matrix into a Kronecker product [11] form and use it with the least 
square wave-front reconstructor to derive a novel reconstructor formulated as the Sylvester 
Equation. We then derive the inverse filtering formulas in the 2-D DCT domain for the 
Hudgin and Fried geometries wavefront reconstruction using the spectral theorem for 
symmetrical real matrices [12, 15], the Hadamard product definition of matrices [11], and the 
principle of separation of variables. We have recently developed a RF algorithm [12]. In this 
algorithm, we exploited an imbedding step to change the annular-aperture wave-front 
reconstruction problem for the Fried geometry to a square-aperture wave-front reconstruction 
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problem for the Hudgin geometry, and then the square-aperture wave-front reconstruction 
problem was solved by the method of inverse filtering performed in the 2-D DCT domain and 
the multigrid method performed in the original image domain. The RF algorithm developed 
there scales as O(nlogn) and O(n) respectively when these two methods are used. In this 
investigation, we extend the RF algorithm by combining the square-aperture wave-front 
reconstructor based on the Sylvester equation with the RF algorithm, and then we solve the 
imbedding step in the RF algorithm using both ADI method [13] and exact Bartels-Stewart 
(BS) method [14]. We show that the ADI method is an O(n) method, and compare the 
performance of both the ADI and the BS methods by simulating the wave-front reconstruction 
process for a large adaptive optics system using the Monte Carlo method. We will not 
consider the phase branch-point problem here, but it is a problem that needs to be solved when 
adaptive optics is used in the airborne laser and laser communication systems. 

2.  The Sylvester equation for wave-front reconstruction on a square aperture 

We will solve the following wave-front slope measurement equation for a single-conjugate 
adaptive optics system [10], 

, ηφ += Ps                                                                 (1) 

where s is the wave-front phase difference vector, which is calculated from the centroid 
measurements in the subapertures of a Shack-Hartmann wave-front sensor (and interpreted 
according to the assuming sensor geometry), φ is the incident wave-front phase vector, η is a 
vector representing noise on the slopes measurement. The matrix P is the influence matrix 
representing the gradient operator that transforms phase into phase difference. For 
convenience, the vectors s, φ and η are arranged in a lexicographical order along the row 
direction of the corresponding 2-D images as described in Ref. [10]. The least squares 
estimation of Eq. (1) is equivalent to solving the following equation [10], 

. sPPP TT =φ                                                             (2) 

The matrix P can be expressed with two partitions, 

, 
2

1





=
P
P

P                                                                 (3) 

where P1 and P2 are sparse phase difference matrices along the x and y directions respectively.  
In this study, we concentrate mainly on the algebraic structure of the left-hand side of the Eq. 
(2). The right-hand side can be calculated directly using sparse matrix technique, though we 
will find it convenient to rewrite this as 

, 21 y
T

x
TT sPsPsPr +==                                                   (4) 

where sx and sy are wave-front phase differences along the row and column directions 
respectively. 

We will derive the Sylvester equation for wave-front reconstruction using Eq. (2) with the 
wave-front phase φ defined on a N×N square-aperture sampling grid as defined in Ref. [10], 
for two different sensor geometries, those introduced by Hudgin [2] and Fried [3]. 

2.1 The Hudgin geometry 

Assuming we solve Eq. (1) for the Hudgin geometry, we can write P1 and P2 in Eq. (3) as the 
following form, 

, 
, 

12

11
IDP

DIP
⊗=

⊗=
                                                             (5) 
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in which, ⊗ is the Kronecker product [11]. For a matrix Y of size m×n and a matrix Z of size 
j×k, Y ⊗ Z is defined as   

, 
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22221

11211
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
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







=⊗
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ZyZyZy
ZyZyZy

ZY

mnmm

n

n

�

����

�

�

                                          (6) 

Y ⊗ Z is seen to be a matrix of size mj×nk. In Eq. (5), I is an identity matrix of order N, and 
the matrix D1 is a 1-D phase difference matrix of size (N-1)×N for the Hudgin geometry [10],  

. 
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11

11
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



−
−

−
−

= ��D                                             (7) 

From equations (3) and (5), we obtain  

( ) ( ) ( ) ( ). 1111 IDIDDIDIPP TTT ⊗⊗+⊗⊗=                                (8) 

Using the transpose property of the Kronecker product [11], 

    ( ) , TTT ZYZY ⊗=⊗                                                    (9) 

and its mixed product property [11], 

( )( ) ( ) ( ), ZXYWXWZY ⊗=⊗⊗                                        (10) 

we can rewrite Eq. (8) as, 

, IAAIPPT ⊗+⊗=                                                   (11) 

where 11 DDA T= ,  is a matrix of size N×N having the following form [10], 

. 
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= ���A                                                (12) 

This matrix is a tridiagonal matrix obtained from the 1-D central second differences. From Eq. 
(2) and (4), we immediately find that the least squares solution of the wave-front estimation 
Eq. (1) is equivalent to solution of the following equation in Kronecker product form,  

( ) . rIAAI =⊗+⊗ φ                                                    (13) 

For compactness, we now define the vec operator as [11]  

, 2

1

















=

Na

a
a

vecA
�

                                                           (14) 

which creates a large column vector from matrix A by stacking together all of its column 
vectors. The vec operator therefore reorders an image in a lexicographical order along the 
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column direction. Because we previously defined φ and r to be vectors formed by stacking the 
represented images in a lexicographical order along their row direction, therefore from Eq. 
(13), we obtain the following representation of Eq. (2), 

   ( ) ( ) ( ), TT RvecvecIAAI =⊗+⊗ Φ                                       (15) 

where Φ and R are 2-D matrices of size N×N representing the solution and residue images 
respectively, and with the image matrix row and column index defined as in Ref. [10]. From 
Eq. (15), using the symmetry properties of A and the vec operator property of the Kronecker 
product [11] defined as 

( ) ( ) ,  vec vecYABAYB T ⊗=                                             (16) 

we finally obtain the following Sylvester equation for the wave-front reconstruction problem 
assuming a Hudgin geometry, 

. RAA =+ΦΦ                                                        (17) 

This form of equation is also sometimes referred to as a Lyapunov equation.  

2.2 The Fried geometry 

We use a similar method as above to derive the Sylvester equation for wave-front 
reconstruction on an N×N square-aperture sampling grid for the Fried sensor geometry. 
However, to account for the character of the Fried geometry, we introduce a 1-D interpolation 
matrix F of size (N-1)×N as follows, 

.  

5.05.0
5.05.0

5.05.0
5.05.0





















= ��F                                       (18) 

We use the Kronecker product technique along the row and column directions for the Fried 
geometry, and then we find that P1 and P2 in Eq. (3) have the following forms, 

,
, 

12

11

FDP
DFP

⊗=
⊗=

                                                         (19) 

where matrix D1 is the same (N-1)×N matrix as in Eq. (7) for the Hudgin geometry. The 
matrices P1 and P2 are sparse phase difference matrices along the row and column directions 
respectively for the Fried geometry.  From Eq. (3) and (19), we obtain  

( ) ( ) ( ) ( ). 1111 FDFDDFDFPP TTT ⊗⊗+⊗⊗=                        (20) 

Once again, using the transpose property and mixed product property of Kronecker product as 
in Eq. (9) and (10), we obtain 

,HAAHPPT ⊗+⊗=                                            (21) 

in which, FFH T=  is a matrix of size N × N, having the following form 

, 
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and the matrix A  takes the same form as in Eq. (12).  From Eq. (2) and (4), we immediately 
find the following Kronecker product form of the wave-front estimation equation,  

( ) . rHAAH =⊗+⊗ φ                                                  (23) 

Using the vec operator definition in Eq. (14), and the procedures described in the previous 
subsection, we obtain the generalized Sylvester equation for the Fried-geometry wave-front 
reconstruction as 

, RAHHA =+ ΦΦ                                                      (24) 

in which, Φ and R are the matrices representing solution and residue images as described in 
previous subsection for those in Eq. (17). 

3. Solution of the Sylvester equation for wave-front reconstruction in 2-D DCT domain 

Several computationally efficient techniques for solving Eq. (17) and (24) are available. In 
this section, we derive the Hudgin and Fried Filters formulas and the filtering relationship in 
2-D DCT domain for the wave-front reconstruction on a square aperture. 

3.1 DCT and the Hudgin filter for the Hudgin geometry 

An efficient fast transform method for solving the Sylvester Equation (17), corresponding to 
the Hudgin geometry, can be derived by exploiting the spectral theorem for real symmetrical 
matrices [12, 15], and the fact that matrix A in Eq. (12) is real symmetric. Accordingly, we 
know that A can be diagonalized by an orthonormal real matrix M of size N×N, such that, 

.T
A MMA Λ=                                                          (25) 

Substituting Eq. (25) into (17) and using the definition of an orthonormal real matrix, namely 
that TMM =−1  or IMMMM TT == , we obtain 

. MRMMMMM T
A

TT
A =+ ΛΦΦΛ                                     (26) 

In the real orthonormal matrix M, every column is a real orthonormal eigenvector (basis) of 
matrix A, and matrix ΛA is a real eigenvalue matrix whose every diagonal value is a real 
eigenvalue of matrix A, we call it the spectrum matrix (or spectrum) of matrix A.  

On the right-hand side of Eq. (26), right multiplication of R with a transform matrix M is 
equivalent to transforming it with respect to its rows; left multiplication of R with a transposed 
transform matrix MT is equivalent to transforming it with respect to its columns. According to 
the property of the separable transform [16], the right-hand side is just a 2-D orthonormal 
transform of R, but implemented by applying two 1-D orthonormal transforms to its rows and 
columns sequentially. Applying the same argument to the left-hand side of Eq. (26), we 
know MM TΦ is also equivalent to a 2-D orthonormal transform of the wave-front image Φ 

into a spectral image in this transform domain. The left multiplication of MM TΦ by ΛA is 
equivalent to multiplying every row of the 2-D spectrum with the eigenvalue in the 
corresponding row of matrix ΛA. The right multiplication of MM TΦ by ΛA is equivalent to 
multiplying every column of the 2-D spectrum with the eigenvalue in the corresponding 
column of matrix ΛA, so we can write Eq. (26) as, 

( ) ( ) , u MRMMMu TTTT =+ Φλλ �                                        (27) 

where u = [1, 1, …, 1]T, is a column vector of size N full of ones in it; and ( )AΛdiagλ = , is a 
column vector of size N, obtained from the diagonal of the eigenvalue matrix; and the symbol 
�  represents the Hadamard product [11], which is a entrywise product defined as (Y �  Z)ij = 
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Yij * Zij for matrix Y and Z. We can see from Eq. (27) that its left-hand side is an entrywise 
multiplication of two matrices. We can solve for Φ by first dividing the spectral 
image MRM T  by the filter image TTu λλ u+  entrywisely, and then transform the result 
back into the original domain by an inverse 2-D orthonormal transform. The solution process 
is represented by the following equation, 

. 
u

T
H

T
T

TT

T
M

T

MRM
MM

u

MRM
M 








=









+
=

λλ
Φ                                (28) 

We refer to (TH)-1
 as the Hudgin filter in a 2-D orthonormal transform domain. In order to 

solve equation (28), we need to know λ and M. From Ref. [16], matrix A in Eq. (12) is the 
inverse of the covariance matrix of the Markov-1 signal when the adjacent correlation 
coefficient ρ approaching to 1. However, from physical interpretation, matrix A is also the 
Laplacian matrix corresponding to the 1-D central second differences, therefore from these 
two perspectives, we know that matrix A can be diagonalized by the 1-D DCT matrix M, 
whose elements are defined as 

( ) ( ) , 1, ... ,1,0,, 
2

12
cos

2
 N-   n m 

N

πnm

N
M mmn =







 += κ                             (29) 

in which, 21=mκ  for m = 0, otherwise 1=mκ . This transform matrix is an orthonormal 
matrix, in which every column vector is an eigenvector of matrix A, the eigenvalues 
correspondingly are defined as 

( ) ,1, ...,1,0, 
2

sin4 2   N-   m  
N

mπ
λm =







=                                       (30) 

for the eigenvalue column vector λ. From the above equation, the filter, TTu λλ u+ , can be 
rewritten as, 

( ) .1, ... ,1,0,,
2

sin
2

sin4 22   N-  nm  
N

nπ

N

mπ

T H
mn =















+






=                       (31) 

The 2-D Hudgin filter (TH)-1
 is obtained using an element-by-element inverse of the filter 

image H
mnT  in the above equation. Because HT00 corresponds to the piston mode, we suppress 

this singular value by assigning a zero value to the corresponding zero frequency component 
of the 2-D Hudgin filter.  

The wave-front reconstruction Eq. (28), describes the following procedure: 

• 2-D DCT the right-hand-side image R to obtain the spectrum image 

• Multiply the spectrum image with the (pre-computed) 2-D Hudgin filter 

• Recover the original wave-front by another inverse 2-D DCT transform. 
 
The 2-D DCT transform and its inverse can be implemented using fast methods described in 
Ref. [16]. According to the principle of separation of variables, we can reduces the 2-D DCT 
transform to two 1-D DCT transforms, which means that the 2-D DCT transform can be 
implemented using  1-D FFT with computation cost scales as O(nlogn) when exploiting the 
relationship between DCT and DFT described in Ref. [16].  

3.2 DCT and the Fried filter for the Fried geometry 
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For the Fried geometry, there is no exact transform filtering relationship as that obtained for 
the Hudgin geometry above. Deriving the filtering relationship for Fried-geometry wave-front 
reconstruction from Eq. (24) is more complex than that for the Hudgin geometry. Because the 
matrices A and H don’t satisfy the commutative relationship AH = HA, they can not be 
diagonalized by the same orthonormal transform matrix. Therefore, we can not find an exact 
2-D filtering relationship for the Fried geometry, but an approximate one from the properties 
of matrix H.  Matrix H can be exactly diagonalized by the following matrix S, whose elements 
are defined as  

( )( ) ( ) , 1,1,0,, 
2

121
sin

2
 N- ...    n m  

N

πnm

N
S mmn =







 ++
= κ                     (32) 

where 21=mκ  for m = N-1, otherwise 1=mκ . This orthonormal transform matrix is the 
1-D Discrete Sine Transform (DST) matrix [16], while the elements of the eigenvalue vector 
σ for matrix H are  

( ) ( ). 1 , ... ,1,0  , 
2

1
cos 2 N-  m 

N

πm
σm =







 +
=                                   (33) 

The above DST matrix and the DCT matrix in Eq. (29) are not commutative, in order to find a 
filtering relationship as in Eq. (28), we need to compromise the requirement of exact 
commutative relationship as above. Fortunately, the matrix H can be approximately 
diagonalized by the 1-D DCT matrix M, which means that we can obtain an approximate 
filtering relationship for the Fried geometry. The elements of the approximate eigenvalue 
vector corresponding to 1-D DCT transform matrix M are, 

( ). 1, ... ,1,0  , 
2

cos2  N-  m 
N

mπ

m =






=τ                                         (34) 

Therefore we can approximately write H as 

.T
H MMH Λ=                                                          (35) 

Substituting Eq. (25) and (35) into (24), using the same procedures as described in the above 
subsection for the Hudgin geometry, we can obtain the filtering relationship in the 2-D DCT 
domain for Fried-geometry wave-front reconstruction, 

. T
TT

T
M

RMM
M 









+
=

τλτλ
Φ                                                 (36) 

In 2-D DCT domain, the denominator of the above equation TT λλ ττ + can be rewritten as  

( ) .1 , ... ,1,0,          
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
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




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

=
                     (37)  

The 2-D Fried filter is obtained using an element by element inverse of the image F
mnT  in the 

above equation. Because FT00 and F
NNT 11 −−  correspond to the piston and waffle modes 

respectively, we suppress these singular values by assigning zero values to the corresponding 
grid points in the 2-D Fried filter.  

The wave-front reconstruction for the Fried geometry can be performed using the same 
procedures described at the end of the last subsection for the Hudgin geometry. The 2-D DCT 
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inverse filtering can also be combined with a regularization scheme to take into account the 
prior covariance information of the atmospheric turbulence and the noise of the wave-front 
slopes measurement. In another work of ours [12], this regularization scheme was discussed 
and the cost of this filtering method was shown scales as O(n log n). We will next develop a 
faster method to solve the Sylvester Equation (17) and (24) for wave-front reconstruction on 
an annular aperture using the RF algorithm found recently by us. 

4.  RF algorithm 

Most telescope entrance pupils take on an annular shape. Thus, we must in general find ways 
to solve the wave-front reconstruction problem on an annular aperture. The strategy we adopt 
here is to embed the desired annular aperture in a square aperture to allow application of 
standard fast methods for solution of the Sylvester Equation (17) and (24).  

The RF algorithm for open-loop wavefront reconstruction is described in the flowchart 
shown in Fig. 1. In this flowchart, x0 and on are the initializing solution and null vectors of size 
n respectively; G is the gradient matrix generated on an annular aperture using the 
corresponding annular versions of  Eq. (3) and (19) for the Fried geometry, or those of Eq. (3) 
and (5) for the Hudgin geometry; A is the matrix shown in Eq. (12) and it is multiplied with 
the solution image Φk on a square aperture for the Hudgin geometry; the matrix W is an 
annular mask image which multiplies entrywisely with the solution image Φk to transform it 
back into the annular aperture; the symbol || || represents the 2�  norm operator; ε  is the 
relative error and kmax is the maximum iteration number, specified for the convergence. In the 
imbedding step, the Sylvester equation from Eq. (17) is used for the Hudgin-geometry wave-
front reconstruction on a square aperture. For convenience of discussions, we repeat it here, 

          . kkk RAA =+ΦΦ                                                          (38) 

This imbedding step in the RF algorithm also serves to accelerate the convergence rate for the 
iterative solution process. In this step, first convert the residue vector rk to a residue image Rk; 
and then using the following ADI method to obtain the solution update image Φk from the 
above equation; and then convert it back to a vector φk. In the iterative solution process, we 
can directly update the solution vector xk using φk-1 or update it with αk and vector pk using the 
conjugate gradient (CG) procedure. However, for the wavefront reconstructor test purpose, we 
update the new residue vector using bk and the current solution estimation xk in this study, 

, kkk Cxbr −=                                                            (39) 

where kk sGb T= , and sk is the current phase slope vector; and GGC T=  is a matrix acting 
on an annular aperture; and xk is the current solution estimation. This residue update step is 
different from the CG method used elsewhere [6-7]. For closed-loop wavefront 
reconstruction, we should use rk = bk instead of Eq. (39) in the RF algorithm, and sk is 
generated using the optical phase output after phase compensation. The new imbedding 
strategy permits the fast methods designed for the Hudgin-geometry wave-front 
reconstruction on a square aperture to be used with the Fried-geometry wave-front 
reconstruction problem on an annular aperture.  

5.  ADI method for the RF algorithm 

5.1 ADI method for the imbedding step 

If matrix A is a nonsingular matrix, the Sylvester Equation (38) can usually be exactly solved 
using the BS method [14], which uses the Householder and QR transformations [15]. The BS 
method requires matrix A in Eq. (38) to be a nonsingular matrix, therefore before using it, we 
need to regularize the singular matrix A using an identity matrix scaled down with a small 
coefficient, taking into account of the signal to noise ratio (SNR) in the slopes measurement. 
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This regularization procedure changes the condition of the matrix A into a nonsingular matrix. 
The computation cost of the BS method scales as O(n3/2). Another efficient method for solving 
the Sylvester Equation (38) is the ADI method [13]. We use this method for wave-front 
method when applied to Eq. (38) is described by the following two iterative equations, 

( ) ( ), 121 IARIA j
j

kk
j

kj ρΦΦρ −−=+ −−                                       (40) 

Fig. 1. Flowchart for the RF in which the preconditioning solution step is solved through 
the Sylvester equation to accelerate the convergence rate of the iterative process. 
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 ( ) ( ) . 21−−−=+ j
kjkj

j
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In these two equations, ρj is an optimal parameter. To accelerate the convergence rate of the 
iterative solution process, it is adjusted to a different value for each iteration step j, where j = 
1, 2, …, J, where J is the total ADI iteration number. Because the iterative ADI method is 
used in the imbedding step of the RF algorithm, which is also an iterative process, therefore 
two iterative loops are involved in the RF algorithm. To solve the above two iterative ADI 
equations, we need to first determine the optimum parameter ρj and the total iteration number 
J, then solve the tridiagonal systems of Eq. (40) and (41) for every iteration step j iteratively 
until the total iteration number J is reached. The parameter ρj and J are determined by solving 
the ADI minimax problem [13], which is discussed in next subsection. The tridiagonal 
equation solver is addressed in Subsection 5.3.  

5.2 The ADI minimax problem 

We use similar numerical technique exploited in Ref. [13] to determine the optimum 
parameter ρj and the total iteration number J for the ADI method. The procedures are 
described as follows. From Eq. (30), we can see that the spectrum of matrix A is real positive 
when excluding its singular spectrum (m = 0), therefore the α parameter in the definition of 
elliptic function [13] is zero for the case here, and only limited field of the positive real axis 
[ϖa , ϖb] is required to consider for the ADI minimax problem. For the finite number of 
spectrum modes from m =1 to N-1, we define the minimum and maximum spectrum bounds 
ϖa and ϖb as follows, 
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The ADI parameters ρj and J are found using the following procedures. First defining a 
parameter h as, 
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and then because h ≥1, defining  
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The approximation for the total ADI iteration number is given by 
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4
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4
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ε g

J
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=                                                               (45) 

The optimal parameter ρj is given by 

( ),  ..., ,2,1  , ),dn( J j g
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where υj  and q are defined as, 
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5.3 The tridiagonal solver 

To solve Eq. (40), we separate its right-hand side residue matrix and its left-hand side solution 
matrix into N columns respectively. In this way, the problem is changed to solving N 
independent tridiagonal equations of the following form, 

, dQx =                                                                    (49) 

where Q is a tridiagonal matrix of order N, shown as follows, 
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The tridiagonal matrix Q can be decomposed as Q = LU with the LU decomposition method, 
where L is a lower bidiagonal matrix and U is an upper bidiagonal matrix shown as in the 
following two equations, 
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The unknown value for li and ui is computed using the following iteration equations, 
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Let y = Ux, we can solve Ly = d first using the following forward substitution equations, 
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and then solving x using the following backward substitution equations , 
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After solving this tridiagonal equation for multiple right-hand side columns, we obtain the 
intermediate solution image by assembling all the solution columns together. Eq. (41) is 
solved using the same technique after transpose operations on its two sides are performed.  

5.4 Computation complexity of the ADI method for the RF algorithm 

We analyze the computation complexity of solving Φk using the ADI iterative equations (40) 
and (41). We need to solve Eq. (40) first. On the right-hand sides of Eq. (40), because the 
matrix A − ρjI is a tridiagonal sparse matrix, 3n multiplications and n additions are required 

for every iteration j, where 2Nn = , is the total number of the sampling grid for the solution 
image. We decompose the matrix equation (40) into multiple tridiagonal equations. For one of 
right-hand side vectors, and one of the solution vectors, Eq. (40) is reduced to the form of Eq. 
(49). Therefore its computation complexity can be analyzed using Eq. (49). Because the upper 
diagonal and lower diagonal elements of matrix A + ρjI are all value 1, and correspond to the f 
and c elements in Eq. (50) respectively, therefore we save N multiplication in the substitution 
process shown in Eq. (53) and (55). If we precompute the li and ui value, then only 2N 
multiplications and 2N additions are required to solve Eq. (54) and (55) for this reduced 
tridiagonal equations, but we have N independent right hand-side column vectors, so totally 
we need only 2n multiplications and 2n additions to solve Eq. (40).  Next we need to perform 
a transpose operation on two sides of Eq. (41), and then using the same procedure used for Eq. 
(40), we can solve N independent systems of tridiagonal equations. Thus in all, we need 10n 
multiplications and 6n additions and some overhead computation for the matrix transpose for 
every ADI iteration step j. The computation cost to complete the ADI iterations scales as 
10Jn, where J is the total number of the ADI iterations in the imbedding step.  Because it 
takes approximately 15n multiplications to update the solution when using a CG procedure 
and to calculate the residue vector, and about 5n to do that when not using a CG procedure for 
every recursive iteration step k, so the total operation complexity for the recursive algorithm is 
about 10JKn + 16Kn, and 10JKn + 6Kn when also including the masking operation using the 
mask W. This computation complexity estimation neither considers the overhead computation 
resulting from the matrix transpose operation nor the vector to image conversion and vice 
versa. If considering these factors, the computation complexity should be larger than this 
estimation. But for single processor, the transpose and conversion operation are memory 
access processes, the computation time for these operations is determined by the speed of 
memory access processes. The transpose operation permits solving the tridiagonal equation 
along the row direction of the right-hand side image sequentially after solving along its 
column direction. In Eq. (40) and (41), if we separate the right-hand side residue matrix and 
its left-hand side solution matrix into N columns respectively and then solve N independent 
tridiagonal equations for these columns, so the solution speed is can be accelerate N times if 
we use N processors at the same time. If the wavefront reconstruction is conducted in this 
way, we could use a one-dimensional mask for the masking step in the imbedding procedure, 
so the vector to matrix conversion and vice versa is not required, because now Φk is just φk, 
and in the solution and residue update procedure, the vectors are reduced to small vectors 
corresponding to one column of the whole image rather to the whole image, therefore the 
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operation count complexity of the RF algorithm can reduce to O(n1/2) when the ADI method is 
used in its imbedding step. However, the complexity analysis is complicated by the transpose 
operations involved in the ADI iterative solution process, because the time for matrix 
transpose operation is determined by the memory access patterns for a single processor 
computer, and also by the communication speed between the multiprocessors for 
multiprocessors computer. Therefore, the final effective computation complexity should be 
between O(n1/2) and O(n) depending on what kind of computer architectures is used.  

6.  Performance metrics 

We introduce the residue phase error (RPE) and the relative total root mean squared (RMS) 
error as the performance metrics to quantify the performance of various wave-front 
reconstruction algorithms. The definitions are the same as that in Ref. [12] for convenience of 
comparing with the results there. For every iteration step of the RF algorithm, the RPE is 
defined as 

 ( )[ ], 110 vevewe T
r −∗⋅=                                                  (56) 

where w0 is the annular pupil plane masking vector converted from the annular pupil mask, v1 
is the piston mode vector,  e is the phase error vector for the estimation defined as xxe −= �

, 
where x

�

 is the reconstructed wave-front phase for every temporal step and x is the original 
input wave-front phase. The RMS and total RMS error are defined using RPE defined in Eq. 
(56) as shown in the following two equations,  
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where the symbol .* represents the component-wise product of two vectors, and n is the total 
number of sub-apertures on the annular solution aperture. From TRMS, the relative (e.g. 
fractional) TRMS error is defined as 
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As defined in Eq. (56), RPE is a vector, but it is typically converted into an image when used 
as a performance metric. When we study the convergence rate of the RF algorithms, we will 
use rTRMS as the performance metric.    

7.  Simulations and discussions 

Performance of our wavefront reconstruction algorithm, when applied in the single-conjugate 
AO system in an optical telescope, can be modeled using Monte Carlo simulations. The 
original wave-front was generated using the subharmonics method17 and considering the von 
Karman power spectrum of the optical turbulence. The wave-front phase difference vector 
corresponding to the centroid measurements of the Shack-Hartmann wave-front sensor is 
generated using annular-aperture version of Eq. (1), (3) and (19) as described in Section 4 for 
the Fried geometry. The Gaussian noise is added to the simulated wave-front slope to produce 
varying levels of subaperture slope SNR. We will apply the BS method to the regularized 
Sylvester equation, and then the ADI method to the non-regularized Sylvester equation in the 
imbedding step of the RF algorithm, and then will compare their performance using both the 
RPE and the rTRMS performance metrics. For wave-front reconstruction simulations, the 
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vector bk in Eq. (39) for every iteration step of the RF algorithm is only required to be fixed to 
the original constant vector b0, which is equal to 0

T sG . 
Numerical simulations were performed for a telescope having a 17 meters diameter 

annular aperture. The Shack-Hartmann wave-front sensor adopted has subaperture diameter of 
30r , when mapped back onto the telescope entrance pupil, where 0r  is the Fried coherence 

length, and takes 0.2 meter in our simulations. This results in an annular pupil with 48816 
sub-apertures. We embed this annular aperture in the square-aperture sampling grid of 
dimension 255x255 for all the simulations. The typical phase screen generated for these 
simulations is shown in Fig. 2. The piston mode is already removed from this phase screen, so 
it can act as the initial RPE image for the iterative solution process. 

 

 

To use the ADI method in the RF algorithm, the ADI minimax problem needs to be solved 
first. In our simulations, the expected rTRMS error lower bound ε is taken to be 5x10-4 and N 
= 255, using the ADI minimax procedures described in Subsection 5.2, the J parmeter we 
obtained is 11, and the ρj we obtained are shown in table 1. 

Table 1. The jρ  parameter for the ADI method when ε  = 5x10-4 and N = 255 

j 1 2 3 4 5 6 7 8 9 10 11 

jρ  3.50 1.58 
5.74
×10-1 

2.02 
×10-1 

7.05 
×10-2 

2.46 
×10-2 

8.61 
×10-3 

3.01 
×10-3 

1.06 
×10-3 

3.83 
×10-4 

1.73 
×10-4 

 

For the convenience of discussion, we use the notation RFCG and RFD respectively for 
the RF algorithm with a CG procedure and the RF algorithm used directly without a CG 
procedure.  The convergence rate curve of the rTRMS error for RFCG algorithm, using the 
BS and the ADI methods to solve the Sylvester equation in the imbedding step and when SNR 
of the wave-front slope are 2, 8, 32, 128, respectively, are shown together in Fig. 3. From it, 
we can see that the convergence rates of the rTRMS error defined as in Eq. (59) are similar for 
these two methods. After a few iterations the curves converge. The RPE vector define as in 
Eq. (56) for the 50th step are converted to images and shown in Fig. 4, for wave-front 
reconstruction using RFCG algorithm, and with the imbedding precondtioning step done by 
the ADI method, for the case of subaperture slope SNR equal to 2, 8, 32 and 128. The 

Fig. 2. Annular wave-front phase screen embedded in a 255x255 size 
square-aperture sampling grid. The colormap is shown in radians.   
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corresponding results for the RPE and rTRMS error performance when the RFD algorithm is 
used are shown in Fig. 5 and 6 under the same conditions.  

 

 

 
 

 
We can see from Fig. 3 and 5 that the RFCG algorithm converges fast for all SNR cases, 

but the RFD algorithm converges fast only for the cases of SNR less than 30. It starts to slow 
down when SNR is larger than 30 in the simulation conditions that has just been described. 
From Fig. 4 and 6 we can see that the RPE performance after 50 iterations is similar for both 
the RFCG and the RFD algorithms when SNR less than 30. The RPE performance for the 
RFD algorithm becomes inferior to the RFCG method around the boundary region with SNR 
equal to 128, so we infer the slow convergence rate in Fig. 5 as due to the error introduced 
around the boundary of the aperture.  From Fig. 4 and 6, we also can see the minimum and the 
maximum limit values of the RPE images decrease when SNR increases. 

From our experience, J is usually a number smaller than 15 for the case of N≤1024, and 
ε ≥5x10-4, which is the rTRMS range that can be achieved when SNR≤200 for the slopes 
measurements. Thus when we solve the Sylvester equation in the imbedding step using the 
ADI method, the RFCG algorithm has a computation cost of less than 166Kn plus that of both 
the matrix transposition and the vector-image inter-conversion operations. The RFD algorithm 
has a computational cost of less than 156Kn for this situation. Therefore the RFCG algorithm 
should be a competitive algorithm for real time implementations in future extreme AO and 
multi-conjugate AO systems and the RFD algorithm should also perform well when SNR for 
the subaperture slopes is low. 

We have also completed simulations for wavefront reconstruction when applying the 
Hudgin filtering in the 2-D DCT domain, as discussed in Subsection 3.1, to the imbedding 
step of the RF algorithm. The results obtained are similar to those shown in Fig. 3 and 4 when 
the same simulation conditions are used, so are not included here. Additional results using a 
regularization scheme for the wave-front reconstruction are presented in another publication 
[12]. 

Fig. 3. Comparison of the rTRMS performance of the RFCG algorithm for the Fried geometry, 
when the imbedding step is solved using the ADI and BS methods respectively. The subaperture 
slope SNR is equal to 2, 8, 32 and 128, respectively, for both methods from top curves to 
bottom ones.  
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Fig. 4. RPE (in radians) after 50 iterations when solving the wave-front reconstruction for the 
Fried geometry using the RFCG algorithm, and the imbedding step is solved using the ADI 
method. The wave-front reconstruction is done in a 255x255 sized sampling grids and the 
subaperture slope SNR is equal to 2, 8, 32 and 128 for the RPE in image (a), (b), (c) and (d), 
respectively. 

Fig. 5. Comparison of the rTRMS performance of the RFD algorithm for the Fried 
geometry,  when the imbedding step is solved using the ADI and BS methods respectively. 
The subaperture slope SNR is equal to 2, 8, 32 and 128,  respectively, for both methods 
from top curves to bottom ones.  
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6. Conclusion  

Using the property of the Kronecker product of matrices, we have found a novel least square 
wave-front reconstructor based on the Sylvester equations for both the Hudgin and Fried 
geometry. Using the spectrum theorem for symmetrical real matrices and the Hadamard 
product concept, we have obtained the Hudgin and Fried filters and the filtering relationship 
in the 2-D DCT domain for square-aperture wave-front reconstruction problem. Furthermore, 
to accelerate the convergence rate of the RF algorithm when it is used for the Fried-geometry 
wave-front reconstruction on an annular aperture, we have exploited the Sylvester equation 
for the Hudgin-geometry wavefront reconstruction in the imbedding step of the RF algorithm.  
We use both the ADI method and the BS method to solve this Sylvester equation on a square 
aperture in the imbedding step, and then compare their performance when they are used with 
and without a CG procedure in the RF algorithm. We have solved the ADI minimax problem 
to determine the ADI parameter, and implemented a tridiagonal equation solver based on the 
LU decomposition method, and then used this tridiagonal solver to solve the tridiagonal 
systems of equations encountered in the ADI iterative solution process. The tridiagonal 
equation solver allows a parallel and highly efficient implementation using real-time 
computing hardware.  
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Fig. 6. RPE (in radians) after 50 iterations when solving the wave-front reconstruction for the 
Fried geometry using the RFD algorithm,  and the imbedding step is solved using the ADI 
method.  The wave-front reconstruction is done in a 255x255 sized sampling grids and the 
subaperture slope SNR is equal to 2, 8, 32 and 128 for the RPE in image  (a), (b), (c) and (d), 
respectively. 
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