Zirconium and Titanium Propylene Polymerization Precatalysts Supported by a Fluxional C_2 -Symmetric *Bis*(anilide)pyridine Ligand

Ian A. Tonks, Daniel Tofan, Edward C. Weintrob, Theodor Agapie, and John E. Bercaw* *Contribution from the Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125. Received xxxxxx xx, 2011. E-mail: bercaw@caltech.edu*

Supporting Information

Contents

Experimental Details for (^{tBu} NNN)H ₂	2
¹ HNMR and Variable Temperature Spectra	4
GPC Data	14
Table S1. Crystal and refinement data for complexes 2-7.	17
Tables of bond lengths, angles, and anisotropic displacement parameters	
Complex 219	

Complex 219
Complex 333
Complex 443
Complex 556
Complex 680
Complex 792
(^{tBu} NNN)H ₂ 105

Additional Experimental Details

Improved synthesis of the ligand precursor : The preparation of the precursor may be accomplished as reported previously, with the following differences: Use of the commercially available, borylated aniline 2-aminobenzeneboronic acid pinacol ester, rather than generating it in situ via 2-bromoaniline, triethylamine, and pinacolborane. All the reagents may be added at once, and the period of heating at 80 °C for 2.5 hours may be omitted. The yield increases to 69%, more than double the previously reported 33%.

Synthesis of (^{##}**NNN**)**H**₂. The bis(aniline) ligand precursor (500 mg, 1.914 mmol), 3,5-di*t*butyl-bromobenzene (1262 mg, 4.688 mmol), $Pd_2(dba)_3$ (87.6 mg, 95.7 µmol), BINAP (128.7 mg, 229.5 µmol) and sodium *t*-butoxide (552 mg, 5.744 mmol) were dissolved in 15 mL of toluene. The mixture was stirred for 48 h at 90 °C before cooling it to room temperature and adding 20 mL of water. After separation with dichloromethane, the volatiles were removed in vacuo from the organic extract. The obtained orange oil was passed through a silica gel column by a 20:1 mixture of dichloromethane and ethyl acetate and then was triturated from cold methanol and collected by filtration. 854 mg of the pale-yellow solid (^{#u}NNN)H₂ were obtained after a single wash (70% yield). ¹H NMR (CDCl₃): δ 1.21 (s, 36H, C(CH₃)₃), 6.91 (t, *J* = 7.4 Hz, 2H), 6.97 (s, 2H), 7.04 (s, 4H), 7.28 (t, *J* = 7.8 Hz, 2H), 7.52 (d, *J* = 8.3 Hz,2H), 7.64 (d, *J* = 7.9 Hz,4H), 7.89 (t, *J* = 7.9 Hz, 1H, Py-H), 9.78 (s, 2H,NH). NMR (CDCl₃): δ 31.5 (CH₃), 34.9 (C(CH₃)₃), 114.5, 115.8, 116.0, 118.9, 120.4, 124.6, 129.9, 130.4, 138.4, 141.4, 143.2, 151.8, 157.2. X-ray quality crystals may be obtained by slow evaporation of hexanes or acetonitrile.

Complex 2 ¹H Variable Temperature (*d*₈-toluene):

Note: VT spectrum of the alkyl region from 25 °C (1) to -80 °C (12), showing coalescence of the *ortho*-methyl groups of the mesitylene. Alkyl multiplets at ~1.4 and 0.9 ppm are pentane from recrystallization.

Complex 3 ¹H Variable Temperature (*d*₈-toluene):

Note: VT spectrum of the alkyl region from 0 °C (1) to -90 °C (10), showing coalescence of the *ortho*-methyl groups of the mesitylene.

Complex 4 ¹H Variable Temperature (*d*₈-toluene):

Note: VT spectrum of the alkyl region from 35 °C (1) to -50 °C (9), showing coalescence of the *ortho*-methyl groups of the mesitylene. The broad peaks at 2.6 and 0.9 ppm in spectrum 9 are the inequivalent methyl groups.

Complex 5 ¹H Variable Temperature (*d*₈-toluene):

Note: VT spectrum of the alkyl region from 25 °C (1) to -90 °C (11), showing coalescence of the *ortho*-methyl groups of the mesitylene. Alkyl multiplets at ~0.9 ppm are pentane from recrystallization.

Complex 7 ¹H (CD₂Cl₂)

Complex 7 ¹H Variable Temperature (CD₂Cl₂):

Note: Closeup of alkyl region of spectrum. The benzylic CH_2 resonance at 1.94 ppm broadens out as the temperature is decreased to -95 °C. Sample contained a free ligand impurity at 1.2 ppm.

GPC Data - entry #'s correlate to the Table 2 in the text

Entry 4

Entry 5

10-906 / JAL1008.0346-01-1 / 25359-66-202 PP / 08/19/2010 19:35

Fillened.

Analyzed as Polypropylene.

Mn = 167,356	Inject Mass (mg) = 0.45
Mw = 821,242	Calc. Mass (mg) = 0.391 (86.8%)
Mz = 1,871,715	Flow Rate (ml/m) = 0.01666
Mw/Mn = 4.91	Column Cal. C0 = 12.795
Mz/Mw = 2.28	Column Cal. C1 = -0.4306
K (sample) = 0.0002288	Column Cal. C2 = 0.00060728
alpha (sample) = 0.705	Column Cal. C3 = 0
(dn/dc) = 0.109	Inject Mark (ml) = 29.233
DRI Const = 4 39856-07	

Entry 6

```
Analyzed as Polypropylene.
```

Mn = 206,247 Mw = 1,151,884 Mz = 2,610,625 Mw/Mn = 5.58 Mz/Mw = 2.27 K (sample) = 0.0002288 alpha (sample) = 0.705 (dn/dc) = 0.109 DRI Const. = 4.3965e-07 Inject Mass (mg) = 0.45 Calc. Mass (mg) = 0.288 (64%) Flow Rate (ml/m) = 0.01666 Column Cal. C0 = 12.795 Column Cal. C1 = -0.4306 Column Cal. C2 = 0.00060728 Column Cal. C3 = 0 Inject Mark (ml) = 29.233

Retention Volume (ml)

	2	3	4
Empirical formula	$C_{39}H_{45}N_5Ti \bullet C_4H_8O$	C ₃₉ H ₄₅ N ₅ Zr	$C_{35}H_{33}N_3Cl_2Ti \bullet C_4H_8O$
Formula weight	703.80	675.02	686.55
T (K)	100(2)	100(2)	100(2)
<i>a</i> , Å	32.3018(14)	16.6663(7)	36.2843(15)
b, Å	14.9286(7)	11.7383(5)	11.6553(5)
<i>c</i> , Å	16.9824(8)	18.2430(7)	16.9710(8)
a, deg			
β, deg	110.525(2)	104.524(2)	109.665(2)
γ, deg			
Volume, Å ³	7669.4(6)	3454.9(2)	6758.5(5)
Z	8	4	8
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C 2/c	P 2 ₁ / <i>c</i>	C2/ <i>c</i>
$d_{\rm calc}$, g/cm ³	1.219	1.298	1.349
θ range, deg	1.83 to 30.50	2.08 to 33.50	1.85 to 33.19
μ , mm ⁻¹	0.263	0.352	0.448
Abs. Correction	None	None	None
GOF	2.491	1.774	1.938
$R_1,^a$ $wR_2^b [I > 2\sigma(I)]$	R1 = 0.0677, wR2 = 0.1063	R1 = 0.0325, wR2 = 0.0505	R1 = 0.0420, wR2 = 0.0523

 Table S1. Crystal and refinement data for complexes 2-7.

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. ^b $wR_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}$.

	5	6	7
Empirical formula	$C_{35}H_{33}N_3Cl_2Zr \bullet 0.75(C_7H_8)$	$C_{39}H_{41}N_3OCl_2Zr$	$C_{59}H_{67}N_3Zr \bullet C_5H_{12}$
Formula weight	726.86	729.87	981.52
T (K)	100(2)	100(2)	100(2)
<i>a</i> , Å	17.1199(7)	11.7169(5)	10.5191(4)
$b, \mathrm{\AA}$	23.1437(10)	12.7754(6)	12.8102(5)
<i>c</i> , Å	34.8624(15)	13.0786(6)	20.6372(8)
a, deg		61.415(2)	96.952(2)
β, deg		85.745(3)	90.511(2)
γ, deg		85.899(3)	98.726(2)
Volume, $Å^3$	13813.1(10)	1712.89(13)	2727.45(18)
Z	16	2	2
Crystal system	Orthorhombic	Triclinic	Triclinic
Space group	$P2_{1}2_{1}2_{1}$	P-1	P-1
$d_{\rm calc}, {\rm g/cm}^3$	1.398	1.415	1.195
θ range, deg	1.48 to 36.20	1.74 to 39.30	1.79 to 27.45
μ , mm ⁻¹	0.506	0.513	0.243
Abs. Correction	None	Empirical, Twinabs, Multi- scan	None
GOF	1.589	1.957	1.925
R_1 , ^{<i>a</i>}	R1 = 0.0345,	R1 = 0.0381,	R1 = 0.0352,
wR_2^{b} [I>2 σ (I)]	wR2 = 0.0543	wR2 = 0.0678	wR2 = 0.0492

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. ^b $wR_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}$.

CALIFORNIA INSTITUTE OF TECHNOLOGY

BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 16 November 2010

Crystal Structure Analysis of:

IAT47

(Complex 2)

For	Investigator: Ian Tonks		ext. 6576
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman e-mail: mikeday	ext. 2734 @caltech.edu

Contents

Table 1. Crystal data Figures Minimum overlap Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles Table 5. Anisotropic displacement parameters Table 6. Observed and calculated structure factors (available upon request)

IAT47

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 800977.

Table 1. Crystal data and structure refinement for IAT47 (CCDC 800979).

Empirical formula	$C_{39}H_{45}N_5Ti \bullet C_4H_8O$			
Formula weight	703.80	703.80		
Crystallization Solvent	THF/pentane			
Crystal Habit	Blade			
Crystal size	0.22 x 0.14 x 0.06 mm ³	THE REAL		
Crystal color	Orange	- Aller		
Dat	a Collection			
Type of diffractometer	Bruker KAPPA APEX II			
Wavelength	0.71073 Å MoKα			
Data Collection Temperature	100(2) K			
θ range for 7821 reflections used in lattice determination	2.40 to 22.40°			
Unit cell dimensions	a = 32.3018(14) Å b = 14.9286(7) Å c = 16.9824(8) Å	$\alpha = 90^{\circ}$ $\beta = 110.525(2)^{\circ}$ $\gamma = 90^{\circ}$		
Volume	7669.4(6) Å ³			
Z	8			
Crystal system	Monoclinic			
Space group	C 2/c			
Density (calculated)	1.219 Mg/m ³			
F(000)	3008			
Data collection program	Bruker APEX2 v2009.7-0			
θ range for data collection	1.83 to 30.50°			
Completeness to $\theta = 30.50^{\circ}$	93.3 %			
Index ranges	$-45 \le h \le 44, -21 \le k \le 20, -24 \le 10^{-2}$	$\leq 1 \leq 23$		
Data collection scan type	ω scans; 8 settings			
Data reduction program	Bruker SAINT-Plus v7.66A			
Reflections collected	63929			
Independent reflections	10914 [$R_{int} = 0.0797$]			
Absorption coefficient	0.263 mm ⁻¹			
Absorption correction	None			
Max. and min. transmission	0.9844 and 0.9445			

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	10914 / 38 / 461
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	2.491
Final R indices [I> 2σ (I), 6025 reflections]	R1 = 0.0677, wR2 = 0.1063
R indices (all data)	R1 = 0.1333, wR2 = 0.1088
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	1.602 and -0.747 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

The crystal contains a solvent of crystallization, modeled as THF. Weak distance and angle restraints were applied and the ADP's were restrained toward isotropic behavior.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Ųx 10³) for IAT47 (CCDC 800979). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U _{eq}
Ti(1)	1259(1)	5582(1)	2188(1)	15(1)
N(1)	1346(1)	4209(2)	2120(2)	14(1)
N(2)	1827(1)	5521(2)	1779(2)	14(1)
N(3)	1428(1)	6927(2)	2215(2)	14(1)
N(4)	1260(1)	5641(2)	3299(2)	17(1)
N(5)	690(1)	5578(2)	1373(2)	17(1)
C(1)	1735(1)	3865(2)	2666(2)	14(1)
C(2)	1760(1)	3092(2)	3165(2)	17(1)
C(3)	2148(1)	2810(2)	3761(2)	20(1)
C(4)	2538(1)	3277(3)	3896(2)	23(1)
C(5)	2538(1)	3981(3)	3382(2)	22(1)
C(6)	2146(1)	4282(2)	2752(2)	16(1)
C(7)	2159(1)	4922(2)	2100(2)	15(1)
C(8)	2502(1)	4835(2)	1769(2)	22(1)
C(9)	2480(1)	5347(3)	1079(2)	24(1)
C(10)	2145(1)	5953(2)	750(2)	20(1)
C(11)	1819(1)	6062(2)	1120(2)	16(1)
C(12)	1510(1)	6804(2)	853(2)	15(1)
C(13)	1391(1)	7126(3)	31(2)	22(1)
C(14)	1214(1)	7967(3)	-191(2)	24(1)
C(15)	1171(1)	8520(3)	435(2)	24(1)
C(16)	1266(1)	8208(3)	1244(2)	20(1)
C(17)	1403(1)	7320(3)	1464(2)	16(1)
C(18)	1017(1)	3581(2)	1657(2)	16(1)
C(19)	1065(1)	3166(2)	954(2)	18(1)
C(20)	725(1)	2640(2)	434(2)	25(1)
C(21)	335(1)	2501(3)	587(3)	33(1)
C(22)	308(1)	2876(3)	1313(3)	32(1)
C(23)	644(1)	3406(3)	1863(2)	22(1)
C(24)	1482(1)	3282(2)	763(2)	23(1)
C(25)	-40(1)	1938(3)	2(3)	54(1)
C(26)	608(1)	3755(3)	2671(2)	33(1)
C(27)	1498(1)	7518(2)	2912(2)	18(1)
C(28)	1933(1)	7700(2)	3442(2)	19(1)
C(29)	2006(1)	8240(2)	4149(2)	24(1)
C(30)	1666(1)	8633(3)	4340(2)	27(1)
C(31)	1240(1)	8460(3)	3803(2)	28(1)
C(32)	1143(1)	7909(3)	3093(2)	24(1)
C(33)	2318(1)	7313(2)	3256(2)	26(1)
C(34)	1748(1)	9225(3)	5097(2)	44(1)
C(35)	668(1)	7756(3)	2523(2)	38(1)
C(36)	1690(1)	5559(3)	3932(2)	28(1)
C(37)	926(1)	5762(3)	3667(2)	39(1)
C(38)	674(1)	5316(2)	526(2)	23(1)
C(39)	246(1)	5715(3)	1379(2)	31(1)

C(52)	855(2)	743(4)	2669(3)	80(2)
C(53)	1348(1)	617(3)	2792(3)	57(1)
O(54)	1438(2)	882(4)	1986(3)	189(2)
C(55)	980(2)	446(5)	1413(4)	179(4)
C(56)	607(2)	329(4)	1794(4)	102(2)

Ti(1)-N(5)	1.872(2)	N(5)-Ti(1)-N(4)	113.40(11)
Ti(1)-N(4)	1.887(3)	N(5)-Ti(1)-N(1)	94.16(12)
Ti(1)-N(1)	2.077(3)	N(4)-Ti(1)-N(1)	98.54(12)
Ti(1)-N(3)	2.077(3)	N(5)-Ti(1)-N(3)	101.65(12)
Ti(1)-N(2)	2.181(2)	N(4)-Ti(1)-N(3)	91.39(12)
		N(1)-Ti(1)-N(3)	156.23(9)
		N(5)-Ti(1)-N(2)	118.80(11)
		N(4)-Ti(1)-N(2)	127.81(10)
		N(1)-Ti(1)-N(2)	78.17(10)
		N(3)-Ti(1)-N(2)	78.68(11)

 Table 3. Selected bond lengths [Å] and angles [°] for IAT47 (CCDC 800979).

Ti(1)-N(5)	1.872(2)	C(52)-C(56)	1.547(6)
Ti(1)-N(4)	1.887(3)	C(52)-C(53)	1.541(4)
Ti(1)-N(1)	2.077(3)	C(53)-O(54)	1.548(5)
Ti(1)-N(3)	2.077(3)	O(54)-C(55)	1.597(6)
Ti(1)-N(2)	2.181(2)	C(55)-C(56)	1.566(5)
N(1)-C(1)	1.373(4)		
N(1)-C(18)	1.429(4)	N(5)-Ti(1)-N(4)	113.40(11)
N(2)-C(7)	1.355(4)	N(5)-Ti(1)-N(1)	94.16(12)
N(2)-C(11)	1.374(4)	N(4)-Ti(1)-N(1)	98.54(12)
N(3)-C(17)	1.381(4)	N(5)-Ti(1)-N(3)	101.65(12)
N(3)-C(27)	1.429(4)	N(4)-Ti(1)-N(3)	91.39(12)
N(4)-C(36)	1.432(3)	N(1)-Ti(1)-N(3)	156.23(9)
N(4)-C(37)	1.435(3)	N(5)-Ti(1)-N(2)	118.80(11)
N(5)-C(39)	1.454(3)	N(4)-Ti(1)-N(2)	127.81(10)
N(5)-C(38)	1.472(4)	N(1)-Ti(1)-N(2)	78.17(10)
C(1)-C(2)	1.418(4)	N(3)-Ti(1)-N(2)	78.68(11)
C(1)-C(6)	1.425(4)	C(1)-N(1)-C(18)	117.0(3)
C(2)-C(3)	1.372(4)	C(1)-N(1)-Ti(1)	116.2(2)
C(3)-C(4)	1.389(4)	C(18)-N(1)-Ti(1)	126.1(2)
C(4)-C(5)	1.365(5)	C(7)-N(2)-C(11)	120.2(3)
C(5)-C(6)	1.415(4)	C(7)-N(2)-Ti(1)	122.4(2)
C(6)-C(7)	1.474(4)	C(11)-N(2)-Ti(1)	117.1(2)
C(7)-C(8)	1.413(4)	C(17)-N(3)-C(27)	116.4(3)
C(8)-C(9)	1.379(4)	C(17)-N(3)-Ti(1)	117.4(2)
C(9)-C(10)	1.370(4)	C(27)-N(3)-Ti(1)	1254(2)
C(10)- $C(11)$	1.413(4)	C(36)-N(4)-C(37)	111.3(3)
C(11)- $C(12)$	1 453(4)	C(36)-N(4)-Ti(1)	114.1(2)
C(12)-C(13)	1 397(4)	C(37)-N(4)-Ti(1)	134 6(2)
C(12) - C(17)	1.397(1) 1 427(5)	C(39)-N(5)-C(38)	1103(2)
C(12) - C(14)	1.376(5)	C(39)-N(5)-Ti(1)	135 1(2)
C(14)- $C(15)$	1.370(5)	C(38)-N(5)-Ti(1)	114 36(19)
C(15)- $C(16)$	1.379(4)	N(1)-C(1)-C(2)	1237(3)
C(16)- $C(17)$	1.406(5)	N(1)-C(1)-C(6)	120.3(3)
C(18) - C(23)	1.400(3) 1 391(4)	C(2)-C(1)-C(6)	120.3(3) 116.0(3)
C(18) - C(19)	1.391(4) 1 401(5)	C(3)- $C(2)$ - $C(1)$	122 A(3)
C(10)-C(20)	1.401(3) 1 387(4)	C(2)-C(2)-C(4)	122.4(3) 120 7(4)
C(19) - C(20)	1.507(4)	C(5) C(4) C(3)	120.7(4) 118 0(3)
C(20) C(21)	1.301(4) 1.387(4)	C(4) C(5) C(6)	1218(3)
C(21) C(22)	1.385(5)	C(5) C(6) C(1)	110 6(3)
C(21)- $C(22)$	1.505(5) 1.521(5)	C(5) - C(6) - C(7)	119.0(3) 121 3(3)
C(21)- $C(23)$	1.521(5) 1.403(5)	C(1) C(6) C(7)	121.5(3) 118 5(3)
C(22)- $C(25)$	1.403(3) 1.500(5)	V(2) C(7) C(8)	110.3(3) 121.2(2)
C(23)- $C(20)$	1.309(3) 1.404(4)	N(2) - C(7) - C(8)	121.3(3) 120.1(2)
C(27)- $C(28)$	1.404(4) 1.416(4)	N(2)-C(7)-C(0)	120.1(3)
C(27)-C(32)	1.410(4) 1.206(5)	C(0) - C(7) - C(0)	110.3(3) 110.2(2)
C(20) - C(29)	1.390(3)	C(9) - C(0) - C(1)	110.3(3) 120.7(2)
C(20) - C(33)	1.303(4)	C(10)-C(9)-C(8)	120.7(3)
C(29) - C(30)	1.300(3)	U(9) - U(10) - U(11)	120.0(3)
C(30) - C(31)	1.384(3)	N(2) - C(11) - C(10) N(2) - C(11) - C(12)	119.3(3)
C(30)-C(34)	1.304(3)	N(2)-C(11)-C(12)	121.2(3)
C(31)-C(32)	1.401(5)	C(10)-C(11)-C(12)	119.2(3)
C(32)-C(35)	1.316(4)	C(13)-C(12)-C(17)	119.2(3)

 Table 4. Bond lengths [Å] and angles [°] for IAT47 (CCDC 800979).

C(13)-C(12)-C(11)	119.5(3)
C(17)-C(12)-C(11)	119.9(3)
C(14)-C(13)-C(12)	122.0(3)
C(13)-C(14)-C(15)	118.4(4)
C(16)-C(15)-C(14)	120.9(4)
C(15)-C(16)-C(17)	121.5(4)
N(3)-C(17)-C(16)	123.8(3)
N(3)-C(17)-C(12)	119.5(3)
C(16)-C(17)-C(12)	116.7(3)
C(23)-C(18)-C(19)	119.7(3)
C(23)-C(18)-N(1)	121.8(3)
C(19)-C(18)-N(1)	118.4(3)
C(20)-C(19)-C(18)	119.6(3)
C(20)-C(19)-C(24)	119.9(3)
C(18)-C(19)-C(24)	120.6(3)
C(21)-C(20)-C(19)	122.2(4)
C(22)-C(21)-C(20)	116.9(4)
C(22)-C(21)-C(25)	121.3(4)
C(20)-C(21)-C(25)	121.8(4)
C(21)-C(22)-C(23)	122.9(4)
C(18)-C(23)-C(22)	118.4(4)
C(18)-C(23)-C(26)	120.9(3)
C(22)-C(23)-C(26)	120.7(3)
C(28)-C(27)-C(32)	119.1(3)
C(28)-C(27)-N(3)	119.0(3)
C(32)-C(27)-N(3)	121.9(3)
C(29)-C(28)-C(27)	119.5(3)
C(29)-C(28)-C(33)	120.0(3)
C(27)-C(28)-C(33)	120.5(3)
C(30)-C(29)-C(28)	122.7(4)
C(31)-C(30)-C(29)	117.1(4)
C(31)-C(30)-C(34)	120.6(4)
C(29)-C(30)-C(34)	122.4(4)
C(30)-C(31)-C(32)	123.2(4)
C(31)-C(32)-C(27)	118.4(4)
C(31)-C(32)-C(35)	120.6(3)
C(27)-C(32)-C(35)	121.0(3)
C(56)-C(52)-C(53)	104.2(3)
O(54)-C(53)-C(52)	110.7(4)
C(55)-O(54)-C(53)	90.8(4)
C(56)-C(55)-O(54)	118.4(5)
C(52)-C(56)-C(55)	97.9(3)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for IAT47 (CCDC 800979). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ti(1)	137(3)	187(4)	119(3)	3(3)	47(3)	-7(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)	108(14)	150(20)	156(17)	15(14)	56(13)	11(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)	136(14)	140(20)	151(16)	-30(15)	54(12)	-19(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)	166(15)	160(20)	111(17)	-31(14)	65(14)	1(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(4)	182(15)	200(20)	156(17)	-44(15)	106(13)	-22(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(5)	128(14)	180(20)	185(17)	-9(16)	44(13)	24(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	179(19)	180(30)	100(20)	-62(17)	83(16)	-29(17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)	193(19)	180(30)	170(20)	-3(18)	94(17)	-15(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	240(20)	210(30)	170(20)	38(18)	104(18)	65(18)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)	270(20)	270(30)	120(20)	25(19)	20(18)	84(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	129(19)	270(30)	250(20)	-76(19)	67(17)	18(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	189(18)	150(30)	126(19)	-17(17)	58(16)	3(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	147(18)	160(20)	150(20)	-72(17)	40(16)	-66(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	172(19)	210(30)	290(20)	-22(19)	112(18)	-4(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	270(20)	260(30)	280(20)	-50(19)	219(19)	-70(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	260(20)	240(30)	160(20)	-14(18)	144(18)	-46(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	200(20)	180(30)	110(20)	-28(17)	65(17)	-69(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	148(18)	160(20)	140(20)	39(18)	50(16)	-18(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	240(20)	290(30)	140(20)	-34(19)	96(18)	-58(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	260(20)	300(30)	140(20)	60(20)	49(18)	-26(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	250(20)	160(30)	310(30)	100(20)	110(20)	26(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	200(20)	220(30)	200(20)	-9(19)	88(18)	7(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	114(18)	210(30)	130(20)	-11(18)	9(16)	-22(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	122(18)	130(20)	160(20)	59(17)	-9(16)	19(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	154(19)	130(20)	220(20)	47(18)	29(17)	-14(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	290(20)	200(30)	220(20)	-1(19)	41(19)	-3(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	280(20)	270(30)	350(30)	30(20)	0(20)	-70(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	190(20)	350(30)	410(30)	50(20)	110(20)	-60(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	220(20)	240(30)	240(20)	60(20)	118(19)	6(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	270(20)	260(30)	170(20)	-69(19)	92(18)	-4(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	390(30)	610(40)	480(30)	-50(30)	0(20)	-270(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	260(20)	410(30)	370(30)	90(20)	200(20)	-60(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	280(20)	150(30)	140(20)	45(17)	95(18)	6(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	210(20)	180(30)	180(20)	26(18)	71(18)	-49(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	350(20)	190(30)	160(20)	1(19)	60(19)	-110(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	440(30)	210(30)	200(20)	-25(19)	150(20)	-80(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	480(30)	220(30)	270(30)	50(20)	280(20)	60(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	240(20)	250(30)	270(20)	0(20)	131(19)	2(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	190(20)	290(30)	290(30)	-40(20)	60(19)	-63(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	790(30)	300(30)	300(30)	-180(20)	270(20)	-130(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	320(20)	430(30)	450(30)	-90(20)	190(20)	10(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(36)	340(20)	360(30)	190(20)	-50(20)	138(18)	40(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37)	280(20)	660(40)	220(20)	-100(20)	71(19)	-60(20)
C(39) = 230(20) = 420(30) = 230(20) = -30(20) = 32(18) = 30(20)	C(38)	230(20)	260(30)	180(20)	1(18)	35(17)	8(17)
(3), (3) ,	C(39)	230(20)	420(30)	230(20)	-30(20)	32(18)	30(20)

C(52) C(53)	960(40) 870(40)	530(40) 480(40)	950(50) 450(30)	-10(30) 70(30)	380(40) 360(30)	250(30) -10(30)
O(54)	2190(50)	2090(60)	1260(40)	190(40)	470(40)	80(50)
C(55)	2840(80)	860(60)	1180(60)	30(50)	100(60)	370(60)
C(56)	1200(50)	540(50)	1090(50)	40(40)	90(40)	100(40)

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 16 November 2010

Crystal Structure Analysis of:

IAT48

(Complex 3)

For	Investigator: Ian Tonks		ext. 6576
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman	ext. 2734
		e-man. mikeuay	@callecil.edu

Contents

Table 1. Crystal data Figures Minimum overlap Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles Table 5. Anisotropic displacement parameters Table 6. Observed and calculated structure factors (available upon request)

IAT48

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 800978.

Table 1. Crystal data and structure refinement for IAT48 (CCDC 800978).

Empirical formula	$C_{39}H_{45}N_5Zr$	
Formula weight	675.02	THE
Crystallization Solvent	Benzene/pentane	1220
Crystal Habit	Block	
Crystal size	0.19 x 0.17 x 0.16 mm ³	(Care
Crystal color	Yellow	
Dat	a Collection	
Type of diffractometer	Bruker KAPPA APEX I	II
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9934 reflections used in lattice determination	2.28 to 33.30°	
Unit cell dimensions	a = 16.6663(7) Å b = 11.7383(5) Å c = 18.2430(7) Å	$\alpha = 90^{\circ}$ $\beta = 104.524(2)^{\circ}$ $\gamma = 90^{\circ}$
Volume	3454.9(2) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P 2 ₁ / <i>c</i>	
Density (calculated)	1.298 Mg/m ³	
F(000)	1416	
Data collection program	Bruker APEX2 v2009.7	-0
θ range for data collection	2.08 to 33.50°	
Completeness to $\theta = 33.50^{\circ}$	99.4 %	
Index ranges	$-23 \le h \le 25, -18 \le k \le 1$	18, $-28 \le 1 \le 27$
Data collection scan type	ω scans; 11 settings	
Data reduction program	Bruker SAINT-Plus v7.	66A
Reflections collected	94053	
Independent reflections	13473 [$R_{int} = 0.0519$]	
Absorption coefficient	0.352 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9458 and 0.9360	

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	13473 / 0 / 416
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.774
Final R indices [I> 2σ (I), 10319 reflections]	R1 = 0.0325, wR2 = 0.0505
R indices (all data)	R1 = 0.0491, wR2 = 0.0515
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.002
Average shift/error	0.000
Largest diff. peak and hole	1.201 and -0.984 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Ųx 10³) for IAT48 (CCDC 800978). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U _{eq}
$\overline{\operatorname{Zr}(1)}$	2624(1)	3896(1)	7977(1)	11(1)
N(1)	2329(1)	5721(1)	7784(1)	12(1)
N(2)	1192(1)	3963(1)	7678(1)	11(1)
N(3)	2250(1)	2116(1)	7844(1)	12(1)
N(4)	3317(1)	3856(1)	9062(1)	15(1)
N(5)	3334(1)	3725(1)	7230(1)	14(1)
C(1)	1850(1)	6084(1)	7092(1)	12(1)
C(2)	2024(1)	7078(1)	6717(1)	15(1)
C(3)	1603(1)	7316(1)	5982(1)	18(1)
C(4)	972(1)	6608(1)	5584(1)	17(1)
C(5)	728(1)	5709(1)	5965(1)	14(1)
C(6)	1132(1)	5455(1)	6717(1)	12(1)
C(7)	727(1)	4654(1)	7137(1)	12(1)
C(8)	-136(1)	4670(1)	6999(1)	16(1)
C(9)	-524(1)	3984(1)	7422(1)	19(1)
C(10)	-51(1)	3286(1)	7971(1)	16(1)
C(11)	808(1)	3278(1)	8088(1)	12(1)
C(12)	1301(1)	2459(1)	8629(1)	12(1)
C(13)	1072(1)	2236(1)	9308(1)	15(1)
C(14)	1380(1)	1316(1)	9752(1)	18(1)
C(15)	1901(1)	554(1)	9506(1)	18(1)
C(16)	2155(1)	761(1)	8852(1)	15(1)
C(17)	1913(1)	1760(1)	8426(1)	13(1)
C(18)	2771(1)	6571(1)	8292(1)	14(1)
C(19)	2401(1)	6972(1)	8855(1)	15(1)
C(20)	2828(1)	7737(1)	9391(1)	19(1)
C(21)	3620(1)	8120(1)	9396(1)	23(1)
C(22)	3965(1)	7734(1)	8825(1)	24(1)
C(23)	3557(1)	6972(1)	8267(1)	19(1)
C(24)	1556(1)	6542(1)	8887(1)	22(1)
C(25)	4079(1)	8907(1)	10012(1)	34(1)
C(26)	3976(1)	6602(1)	7661(1)	26(1)
C(27)	2558(1)	1283(1)	7410(1)	13(1)
C(28)	2035(1)	960(1)	6710(1)	15(1)
C(29)	2341(1)	235(1)	6238(1)	18(1)
C(30)	3144(1)	-194(1)	6446(1)	18(1)
C(31)	3642(1)	120(1)	7145(1)	19(1)
C(32)	3370(1)	860(1)	7635(1)	15(1)
C(33)	1162(1)	1410(1)	6461(1)	21(1)
C(34)	3466(1)	-988(1)	5931(1)	26(1)
C(35)	3960(1)	1178(1)	8375(1)	21(1)
C(36)	3290(1)	3270(1)	9762(1)	22(1)
C(37)	4116(1)	4430(1)	9152(1)	24(1)
C(38)	2816(1)	3729(1)	6461(1)	22(1)
C(39)	4193(1)	3513(1)	7242(1)	25(1)

Zr(1)-N(5)	2.0258(10)	N(5)-Zr(1)-N(4)	111.63(4)
Zr(1)-N(4)	2.0265(10)	N(5)-Zr(1)-N(3)	91.69(4)
Zr(1)-N(3)	2.1761(11)	N(4)- $Zr(1)$ - $N(3)$	99.47(4)
Zr(1)-N(1)	2.2074(11)	N(5)-Zr(1)-N(1)	97.67(4)
Zr(1)-N(2)	2.3127(10)	N(4)- $Zr(1)$ - $N(1)$	103.18(4)
		N(3)- $Zr(1)$ - $N(1)$	150.17(4)
		N(5)-Zr(1)-N(2)	125.94(4)
		N(4)- $Zr(1)$ - $N(2)$	122.20(4)
		N(3)- $Zr(1)$ - $N(2)$	75.87(4)
		N(1)-Zr(1)-N(2)	75.71(4)

 Table 3.
 Selected bond lengths [Å] and angles [°] for IAT48 (CCDC 800978).

Zr(1)-N(5)	2.0258(10)		
$\operatorname{Zr}(1)$ -N(4)	2.0265(10)	N(5)-Zr(1)-N(4)	111.63(4)
$\operatorname{Zr}(1)$ -N(3)	2.1761(11)	N(5)-Zr(1)-N(3)	91.69(4)
Zr(1)-N(1)	2.2074(11)	N(4)-Zr(1)-N(3)	99.47(4)
Zr(1)-N(2)	2.3127(10)	N(5)-Zr(1)-N(1)	97.67(4)
N(1)-C(1)	1.3794(16)	N(4)-Zr(1)-N(1)	103.18(4)
N(1)-C(18)	1.4337(16)	N(3)-Zr(1)-N(1)	150.17(4)
N(2)-C(11)	1.3633(15)	N(5)-Zr(1)-N(2)	125.94(4)
N(2)-C(7)	1.3598(16)	N(4)-Zr(1)-N(2)	122.20(4)
N(3)-C(17)	1.3838(15)	N(3)-Zr(1)-N(2)	75.87(4)
N(3)-C(27)	1.4324(15)	N(1)-Zr(1)-N(2)	75.71(4)
N(4)-C(37)	1.4631(16)	C(1)-N(1)-C(18)	117.53(11)
N(4)-C(36)	1.4624(15)	C(1)-N(1)-Zr(1)	120.03(9)
N(5)-C(39)	1.4473(16)	C(18)-N(1)-Zr(1)	120.94(8)
N(5)-C(38)	1.4518(16)	C(11)-N(2)-C(7)	119.30(10)
C(1)-C(2)	1.4186(17)	C(11)-N(2)-Zr(1)	116.72(8)
C(1)-C(6)	1.4257(17)	C(7)-N(2)-Zr(1)	123.96(8)
C(2)-C(3)	1.3774(18)	C(17)-N(3)-C(27)	119.21(10)
C(3)-C(4)	1.3934(19)	C(17)-N(3)-Zr(1)	111.37(8)
C(4)-C(5)	1.3799(17)	C(27)-N(3)-Zr(1)	125.78(8)
C(5)-C(6)	1.4003(17)	C(37)-N(4)-C(36)	110.20(11)
C(6)-C(7)	1.4792(16)	C(37)-N(4)-Zr(1)	112.26(8)
C(7)-C(8)	1.3958(17)	C(36)-N(4)-Zr(1)	136.81(9)
C(8)-C(9)	1.3833(17)	C(39)-N(5)-C(38)	111.18(10)
C(9)-C(10)	1.3783(18)	C(39)-N(5)-Zr(1)	138.50(9)
C(10)-C(11)	1.3932(17)	C(38)-N(5)-Zr(1)	110.10(8)
C(11)-C(12)	1.4721(17)	N(1)-C(1)-C(2)	123.57(12)
C(12)-C(13)	1.4076(16)	N(1)-C(1)-C(6)	120.20(12)
C(12)-C(17)	1.4289(17)	C(2)-C(1)-C(6)	116.23(12)
C(13)-C(14)	1.3710(18)	C(3)-C(2)-C(1)	121.42(13)
C(14)-C(15)	1.3969(18)	C(2)-C(3)-C(4)	121.32(13)
C(15)-C(16)	1.3835(17)	C(5)-C(4)-C(3)	118.21(12)
C(16)-C(17)	1.4091(17)	C(4)-C(5)-C(6)	121.75(13)
C(18)-C(23)	1.4032(18)	C(5)-C(6)-C(1)	120.01(11)
C(18)-C(19)	1.4071(17)	C(5)-C(6)-C(7)	118.24(12)
C(19)-C(20)	1.3859(18)	C(1)-C(6)-C(7)	121.11(11)
C(19)-C(24)	1.5105(18)	N(2)-C(7)-C(8)	120.85(11)
C(20)-C(21)	1.3923(19)	N(2)-C(7)-C(6)	120.25(11)
C(21)-C(22)	1.3856(19)	C(8)-C(7)-C(6)	118.79(12)
C(21)-C(25)	1.5072(19)	C(9)-C(8)-C(7)	119.80(12)
C(22)-C(23)	1.3973(19)	C(8)-C(9)-C(10)	119.21(12)
C(23)-C(26)	1.5120(18)	C(9)-C(10)-C(11)	119.66(12)
C(27)-C(32)	1.4023(17)	N(2)-C(11)-C(10)	121.16(12)
C(27)-C(28)	1.4053(17)	N(2)-C(11)-C(12)	119.57(11)
C(28)-C(29)	1.3935(17)	C(10)-C(11)-C(12)	119.14(11)
C(28)-C(33)	1.5079(18)	C(13)-C(12)-C(17)	119.38(12)
C(29)-C(30)	1.3915(19)	C(13)-C(12)-C(11)	118.81(11)
C(30)-C(31)	1.3853(19)	C(17)-C(12)-C(11)	121.03(11)
C(30)-C(34)	1.5147(17)	C(14)-C(13)-C(12)	121.52(12)
C(31)-C(32)	1.4012(17)	C(13)-C(14)-C(15)	118.99(12)
C(32)-C(35)	1.5050(17)	C(16)-C(15)-C(14)	120.95(12)

 Table 4. Bond lengths [Å] and angles [°] for IAT48 (CCDC 800978).

C(15)-C(16)-C(17)	121.01(12)
N(3)-C(17)-C(16)	124.05(12)
N(3)-C(17)-C(12)	118.65(11)
C(16)-C(17)-C(12)	117.26(11)
C(23)-C(18)-C(19)	119.71(12)
C(23)-C(18)-N(1)	123.09(11)
C(19)-C(18)-N(1)	117.14(11)
C(20)-C(19)-C(18)	119.40(13)
C(20)-C(19)-C(24)	120.55(12)
C(18)-C(19)-C(24)	120.02(12)
C(19)-C(20)-C(21)	122.11(13)
C(22)-C(21)-C(20)	117.50(13)
C(22)-C(21)-C(25)	122.12(14)
C(20)-C(21)-C(25)	120.38(13)
C(21)-C(22)-C(23)	122.66(13)
C(18)-C(23)-C(22)	118.58(13)
C(18)-C(23)-C(26)	122.21(12)
C(22)-C(23)-C(26)	119.21(13)
C(32)-C(27)-C(28)	120.18(11)
C(32)-C(27)-N(3)	122.27(12)
C(28)-C(27)-N(3)	117.37(11)
C(29)-C(28)-C(27)	119.13(12)
C(29)-C(28)-C(33)	120.15(12)
C(27)-C(28)-C(33)	120.71(11)
C(30)-C(29)-C(28)	121.86(13)
C(31)-C(30)-C(29)	117.95(12)
C(31)-C(30)-C(34)	120.69(13)
C(29)-C(30)-C(34)	121.36(13)
C(30)-C(31)-C(32)	122.39(13)
C(31)-C(32)-C(27)	118.47(12)
C(31)-C(32)-C(35)	118.83(12)
C(27)-C(32)-C(35)	122.70(11)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for IAT48 (CCDC 800978). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{\mathrm{Zr}(1)}$	97(1)	118(1)	121(1)	-5(1)	33(1)	-4(1)
N(1)	116(5)	120(5)	144(5)	-9(4)	41(4)	-14(4)
N(2)	115(5)	90(5)	131(5)	-9(4)	42(4)	0(5)
N(3)	130(6)	129(6)	122(5)	-1(4)	48(5)	12(5)
N(4)	151(5)	163(6)	142(5)	-7(5)	27(4)	-11(5)
N(5)	110(5)	170(6)	162(5)	-5(5)	54(4)	8(5)
C(1)	134(6)	114(6)	149(6)	-20(6)	76(5)	13(6)
C(2)	155(7)	129(7)	189(7)	-10(5)	76(6)	-24(5)
C(3)	213(8)	146(7)	202(7)	36(6)	118(6)	9(6)
C(4)	202(7)	190(7)	137(7)	21(6)	80(6)	34(6)
C(5)	150(7)	137(7)	155(6)	-19(5)	59(5)	14(5)
C(6)	123(6)	95(6)	153(6)	2(5)	65(5)	13(5)
C(7)	145(7)	106(6)	126(6)	-17(5)	45(5)	1(5)
C(8)	138(7)	150(7)	187(7)	40(5)	35(6)	20(6)
C(9)	106(6)	207(7)	259(7)	37(6)	61(6)	14(6)
C(10)	137(7)	170(7)	200(7)	38(6)	83(6)	-7(6)
C(11)	139(6)	112(6)	128(6)	-15(5)	48(5)	-9(5)
C(12)	117(6)	110(6)	146(6)	8(5)	31(5)	-18(5)
C(13)	141(7)	171(7)	158(7)	-10(5)	53(6)	-12(6)
C(14)	184(7)	208(8)	133(6)	21(5)	41(5)	-51(6)
C(15)	186(7)	149(7)	179(7)	53(6)	-2(6)	-18(6)
C(16)	148(7)	125(7)	170(7)	4(5)	23(6)	0(5)
C(17)	122(6)	118(6)	135(6)	-16(5)	11(5)	-28(5)
C(18)	152(7)	103(6)	156(6)	16(5)	20(5)	-15(5)
C(19)	178(7)	126(7)	151(7)	20(5)	28(6)	-3(6)
C(20)	281(8)	138(7)	155(7)	9(5)	38(6)	16(6)
C(21)	294(9)	137(7)	195(7)	25(6)	-43(7)	-53(6)
C(22)	194(8)	196(8)	298(8)	27(6)	8(7)	-80(6)
C(23)	164(7)	157(7)	246(8)	15(6)	49(6)	-26(6)
C(24)	236(8)	243(8)	213(7)	-58(6)	105(7)	-13(7)
C(25)	429(10)	249(8)	265(8)	-16(8)	-38(7)	-125(9)
C(26)	192(8)	244(8)	359(9)	-22(7)	128(7)	-70(7)
C(27)	149(6)	96(7)	150(6)	9(5)	62(5)	-3(5)
C(28)	164(7)	119(7)	162(6)	10(5)	42(5)	-12(6)
C(29)	234(8)	148(7)	155(7)	-21(5)	44(6)	-38(6)
C(30)	226(8)	126(7)	207(7)	-24(6)	109(6)	-24(6)
C(31)	154(7)	152(7)	265(8)	2(6)	79(6)	22(6)
C(32)	164(7)	124(7)	170(7)	-7(5)	44(6)	-2(5)
C(33)	190(7)	199(8)	218(7)	-23(6)	7(6)	-1(6)
C(34)	312(9)	219(8)	315(8)	-78(7)	178(7)	-25(7)
C(35)	172(7)	219(8)	232(7)	-12(7)	19(6)	38(7)
C(36)	233(8)	257(8)	158(7)	-11(6)	31(6)	-51(7)
C(37)	196(8)	310(9)	197(7)	-3(6)	38(6)	-44(7)
C(38)	203(7)	266(9)	190(7)	-11(6)	61(6)	23(7)
C(39)	160(7)	337(9)	282(8)	-32(7)	90(7)	15(7)
	100(7)	557(7)	202(0)	52(7)	20(7)	13(7)

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 1 August 2008

Crystal Structure Analysis of:

DYT14

(Complex 4)

For	Investigator: Daniel Tofan		ext. 6576
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman	ext. 2734
		c-man. mikeuay@	scancen.cuu

Contents

Table 1. Crystal data Figures Minimum overlap

Table 2. Atomic Coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Hydrogen atomic coordinates

Table 7. Observed and calculated structure factors (available upon request)

DTY14

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 697201

Table 1. Crystal data and structure refinement for DYT14 (CCDC 697201).

Empirical formula	$C_{35}H_{33}N_3Cl_2Ti \bullet C_4H_8O$	
Formula weight	686.55	-
Crystallization Solvent	THF	
Crystal Habit	Blade	
Crystal size	0.36 x 0.11 x 0.05 mm ³	No. of Concession, Name
Crystal color	Red-brown	
Data Co	llection	
Type of diffractometer	Bruker KAPPA APEX II	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9047 reflections used in lattice determination	2.52 to 33.08°	
Unit cell dimensions	a = 36.2843(15) Å b = 11.6553(5) Å c = 16.9710(8) Å	β= 109.665(2)°
Volume	6758.5(5) Å ³	
Z	8	
Crystal system	Monoclinic	
Space group	C2/c	
Density (calculated)	1.349 Mg/m ³	
F(000)	2880	
Data collection program	Bruker APEX2 v2.1-0	
θ range for data collection	1.85 to 33.19°	
Completeness to $\theta = 33.19^{\circ}$	94.4 %	
Index ranges	$-55 \le h \le 55, -14 \le k \le 17, -26$	$5 \le 1 \le 23$
Data collection scan type	ω scans; 17 settings	
Data reduction program	Bruker SAINT-Plus v7.34A	
Reflections collected	99635	
Independent reflections	12205 [$R_{int} = 0.0527$]	
Absorption coefficient	0.448 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9780 and 0.8555	

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	12205 / 0 / 579
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.938
Final R indices [I>2 σ (I), 8505 reflections]	R1 = 0.0420, wR2 = 0.0523
R indices (all data)	R1 = 0.0703, wR2 = 0.0533
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.003
Average shift/error	0.000
Largest diff. peak and hole	1.441 and -0.740 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Ųx\ 10³) for DYT14 (CCDC 697201). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U _{eq}
 Ti(1)	6225(1)	2198(1)	673(1)	12(1)
Cl(1)	6272(1)	200(1)	460(1)	18(1)
Cl(2)	6504(1)	2438(1)	-369(1)	18(1)
N(1)	5682(1)	2522(1)	298(1)	13(1)
N(2)	6141(1)	1517(1)	1765(1)	12(1)
N(3)	6504(1)	3418(1)	1394(1)	12(1)
C (1)	5370(1)	1953(1)	451(1)	14(1)
C(2)	4992(1)	2046(1)	-140(1)	17(1)
C(3)	4681(1)	1441(1)	-51(1)	21(1)
C(4)	4740(1)	734(1)	631(1)	22(1)
C(5)	5104(1)	663(1)	1228(1)	19(1)
C(6)	5429(1)	1274(1)	1176(1)	14(1)
C(7)	5803(1)	1185(1)	1875(1)	14(1)
C(8)	5820(1)	754(1)	2656(1)	18(1)
C(9)	6173(1)	570(1)	3276(1)	19(1)
C(10)	6515(1)	852(1)	3133(1)	16(1)
C(11)	6490(1)	1356(1)	2377(1)	13(1)
C(12)	6846(1)	1779(1)	2278(1)	13(1)
C(12)	7202(1)	1188(1)	2592(1)	18(1)
C(14)	7551(1)	1645(1)	2592(1) 2605(1)	20(1)
C(15)	7560(1)	2721(1)	2000(1) 2250(1)	20(1) 21(1)
C(16)	7218(1)	3305(1)	1865(1)	17(1)
C(17)	6856(1)	2845(1)	1837(1)	17(1) 12(1)
C(18)	5594(1)	3514(1)	-247(1)	12(1) 13(1)
C(10)	5557(1)	4586(1)	-247(1) 103(1)	15(1)
C(20)	5518(1)	555 0(1)	-398(1)	13(1) 18(1)
C(21)	5505(1)	5486(1)	-1220(1)	21(1)
C(21)	5505(1)	4410(1)	-1220(1)	21(1) 21(1)
C(22)	5555(1)	3413(1)	-1002(1)	$\frac{21(1)}{16(1)}$
C(24)	5533(1)	4696(1)	971(1)	10(1) 19(1)
C(24)	5/12(1)	6571(2)	1721(1)	$\frac{1}{(1)}$
C(25)	5400(1)	2261(1)	-1721(1) -1509(1)	24(1)
C(20)	5347(1) 6476(1)	4617(1)	-1509(1) 1506(1)	$\frac{24(1)}{12(1)}$
C(27)	6460(1)	4017(1)	2387(1)	12(1) 14(1)
C(20)	6416(1)	6039(1)	2575(1)	17(1)
C(29)	6384(1)	6009(1)	2373(1) 1000(1)	17(1) 16(1)
C(31)	6410(1)	6614(1)	1333(1) 1230(1)	10(1) 15(1)
C(31)	6460(1)	5482(1)	1230(1) 1012(1)	13(1) 13(1)
C(32)	6473(1)	3462(1)	1012(1) 2020(1)	13(1) 22(1)
C(33)	6324(1)	3993(1) 9124(1)	3029(1)	22(1) 25(1)
C(34) C(35)	0324(1) 6507(1)	0134(1) 5246(1)	$\frac{221}{(1)}$	23(1) 16(1)
C(33)	0307(1)	3240(1)	164(1)	10(1)
O(41)	7533(1)	5037(1)	10642(1)	24(1)
C(42)	7506(1)	6046(1)	10150(1)	28(1)
C(42)	7697(1)	5743(2)	9517(1)	52(1)
C(43)	(-)			
C(43) C(44)	7571(1)	4503(2)	9330(1)	58(1)

Ti(1)-N(1)	1.8915(10)	N(1)-Ti(1)-N(3)	109.40(4)
Ti(1)-N(3)	1.9263(10)	N(1)-Ti(1)-N(2)	86.02(4)
Ti(1)-N(2)	2.1292(10)	N(3)-Ti(1)-N(2)	85.46(4)
Ti(1)-Cl(2)	2.3323(4)	N(1)-Ti(1)-Cl(2)	112.88(3)
Ti(1)-Cl(1)	2.3717(4)	N(3)-Ti(1)-Cl(2)	97.08(3)
Ti(1)-C(17)	2.5844(12)	N(2)-Ti(1)-Cl(2)	158.47(3)
		N(1)-Ti(1)-Cl(1)	105.39(3)
		N(3)-Ti(1)-Cl(1)	140.50(3)
		N(2)-Ti(1)-Cl(1)	78.80(3)
		Cl(2)-Ti(1)-Cl(1)	85.972(13)
		N(1)-Ti(1)-C(17)	138.95(4)
		N(3)-Ti(1)-C(17)	32.58(4)
		N(2)-Ti(1)-C(17)	78.07(4)
		Cl(2)-Ti(1)-C(17)	92.55(3)
		Cl(1)-Ti(1)-C(17)	108.16(3)

Table 3. Selected bond lengths [Å] and angles $[\circ]$ for DYT14 (CCDC 697201).

Ti(1)-N(1)	1.8915(10)	C(23)-C(26)	1.5140(19)
Ti(1)-N(3)	1.9263(10)	C(24)-H(24A)	1.013(13)
Ti(1)-N(2)	2.1292(10)	C(24)-H(24B)	0.945(13)
Ti(1)-Cl(2)	2.3323(4)	C(24)-H(24C)	0.966(14)
Ti(1)-Cl(1)	2.3717(4)	C(25)-H(25A)	0.975(14)
Ti(1)-C(17)	2.5844(12)	C(25)-H(25B)	0.937(15)
N(1)-C(1)	1.4101(15)	C(25)-H(25C)	0.972(15)
N(1)-C(18)	1.4470(15)	C(26)-H(26A)	0.909(19)
N(2)-C(11)	1.3542(15)	C(26)-H(26B)	0.870(19)
N(2)-C(7)	1.3573(15)	C(26)-H(26C)	0.88(2)
N(3)-C(17)	1.4141(15)	C(27)-C(32)	1.4010(16)
N(3)-C(27)	1.4505(14)	C(27)-C(28)	1.4021(17)
C(1)-C(2)	1.4036(17)	C(28)-C(29)	1.3938(17)
C(1)-C(6)	1.4165(18)	C(28)-C(33)	1.5007(18)
C(2)-C(3)	1.3818(18)	C(29)-C(30)	1.3862(18)
C(2)-H(2)	0.947(11)	C(29)-H(29)	0.925(11)
C(3)-C(4)	1.379(2)	C(30)-C(31)	1.3838(18)
C(3)-H(3)	0.931(13)	C(30)-C(34)	1.5093(18)
C(4)-C(5)	1.3702(19)	C(31)- $C(32)$	1.3979(16)
C(4)-H(4)	0.897(12)	C(31)-H(31)	0.941(11)
C(5)-C(6)	1.4054(17)	C(32)-C(35)	1.4965(18)
C(5)-H(5)	0.969(12)	C(33)-H(33A)	1.007(13)
C(6)-C(7)	1.4766(17)	C(33)-H(33B)	0.946(13)
C(7)-C(8)	1.3997(18)	C(33)-H(33C)	0.964(14)
C(8)-C(9)	1.3753(19)	C(34)-H(34A)	0.972(14)
C(8)-H(8)	0.949(12)	C(34)-H(34B)	0.935(14)
C(9)- $C(10)$	1.3808(19)	C(34)-H(34C)	0.944(14)
C(9)-H(9)	0.913(12)	C(35)-H(35A)	0.954(13)
C(10)-C(11)	1.3861(18)	C(35)-H(35B)	0.961(13)
C(10)-H(10)	0.920(12)	C(35)-H(35C)	0.994(12)
C(11)-C(12)	1.4805(17)	O(41)- $C(42)$	1.4264(16)
C(12)-C(13)	1.4082(17)	O(41)- $C(45)$	1.4426(17)
C(12)-C(17)	1.4157(16)	C(42)-C(43)	1.505(2)
C(13)-C(14)	1.3696(18)	C(42)-H(42A)	0.994(14)
C(13)-H(13)	0.937(12)	C(42)-H(42B)	1.012(12)
C(14)-C(15)	1.3958(18)	C(43)-C(44)	1.516(3)
C(14)-H(14)	0.951(11)	C(43)-H(43A)	1.010(17)
C(15)-C(16)	1.3731(18)	C(43)-H(43B)	0.975(17)
C(15)-H(15)	0.930(12)	C(44)-C(45)	1.498(3)
C(16)-C(17)	1.4023(17)	C(44)-H(44A)	0.984(19)
C(16)-H(16)	0.955(11)	C(44)-H(44B)	0.943(16)
C(18)-C(23)	1.3978(17)	C(45)-H(45A)	1.033(17)
C(18)-C(19)	1.4093(16)	C(45)-H(45B)	0.997(15)
C(19)-C(20)	1.3869(17)		
C(19)-C(24)	1.4990(19)	N(1)-Ti(1)-N(3)	109.40(4)
C(20)-C(21)	1.3816(19)	N(1)-Ti(1)-N(2)	86.02(4)
C(20)-H(20)	0.933(12)	N(3)-Ti(1)-N(2)	85.46(4)
C(21)-C(22)	1.3896(19)	N(1)-Ti(1)-Cl(2)	112.88(3)
C(21)-C(25)	1.511(2)	N(3)-Ti(1)-Cl(2)	97.08(3)
C(22)-C(23)	1.3919(18)	N(2)-Ti(1)-Cl(2)	158.47(3)
C(22)-H(22)	0.932(12)	N(1)-Ti(1)-Cl(1)	105.39(3)

Table 4. Bond lengths [Å] and angles $[\circ]$ for DYT14 (CCDC 697201).

N(3)-Ti(1)-Cl(1)	140.50(3)	C(14)-C(13)-H(13)	120.6(7)
N(2)-Ti(1)-Cl(1)	78.80(3)	C(12)-C(13)-H(13)	117.8(7)
Cl(2)-Ti(1)-Cl(1)	85.972(13)	C(13)-C(14)-C(15)	119.88(13)
N(1)-Ti(1)-C(17)	138.95(4)	C(13)-C(14)-H(14)	121.0(7)
N(3)-Ti(1)-C(17)	32.58(4)	C(15)-C(14)-H(14)	119.1(7)
N(2)-Ti(1)-C(17)	78.07(4)	C(16)-C(15)-C(14)	120.15(13)
Cl(2)-Ti(1)-C(17)	92.55(3)	C(16)-C(15)-H(15)	120.1(8)
Cl(1)-Ti(1)-C(17)	108.16(3)	C(14)-C(15)-H(15)	119.7(8)
C(1)-N(1)-C(18)	118.37(10)	C(15)-C(16)-C(17)	120.79(13)
C(1)-N(1)-Ti(1)	130.80(8)	C(15)-C(16)-H(16)	121.4(7)
C(18)-N(1)-Ti(1)	110.82(7)	C(17)-C(16)-H(16)	117.7(7)
C(11)-N(2)-C(7)	120.70(11)	C(16)-C(17)-N(3)	120.41(11)
C(11)-N(2)-Ti(1)	110.39(8)	C(16)-C(17)-C(12)	119.47(11)
C(7)-N(2)-Ti(1)	128.75(9)	N(3)-C(17)-C(12)	120.08(11)
C(17)-N(3)-C(27)	116.83(10)	C(16)-C(17)-Ti(1)	135.80(9)
C(17)-N(3)-Ti(1)	100.24(7)	N(3)-C(17)-Ti(1)	47.18(5)
C(27)-N(3)-Ti(1)	142.91(8)	C(12)-C(17)-Ti(1)	86.88(7)
C(2)-C(1)-N(1)	118.91(12)	C(23)-C(18)-C(19)	121.00(12)
C(2)-C(1)-C(6)	119.25(12)	C(23)-C(18)-N(1)	120.86(11)
N(1)-C(1)-C(6)	121.83(11)	C(19)-C(18)-N(1)	118.13(11)
C(3)-C(2)-C(1)	121.34(13)	C(20)-C(19)-C(18)	117.66(13)
C(3)-C(2)-H(2)	119.3(7)	C(20)-C(19)-C(24)	120.29(12)
C(1)-C(2)-H(2)	119.3(7)	C(18)-C(19)-C(24)	122.00(12)
C(4)-C(3)-C(2)	119.73(14)	C(21)-C(20)-C(19)	122.54(13)
C(4)-C(3)-H(3)	120.9(8)	C(21)-C(20)-H(20)	120.8(8)
C(2)-C(3)-H(3)	119.3(8)	C(19)-C(20)-H(20)	116.7(8)
C(5)-C(4)-C(3)	119.63(14)	C(20)-C(21)-C(22)	118.43(13)
C(5)-C(4)-H(4)	121.2(9)	C(20)-C(21)-C(25)	120.14(14)
C(3)-C(4)-H(4)	119.2(9)	C(22)-C(21)-C(25)	121.43(14)
C(4)-C(5)-C(6)	122.94(14)	C(21)-C(22)-C(23)	121.51(14)
C(4)-C(5)-H(5)	118.9(7)	C(21)-C(22)-H(22)	119.1(7)
C(6)-C(5)-H(5)	118.1(7)	C(23)-C(22)-H(22)	119.4(7)
C(5)-C(6)-C(1)	116.97(12)	C(22)-C(23)-C(18)	118.51(12)
C(5)-C(6)-C(7)	118.56(12)	C(22)-C(23)-C(26)	119.24(13)
C(1)-C(6)-C(7)	124.47(11)	C(18)-C(23)-C(26)	122.23(12)
N(2)-C(7)-C(8)	118.68(12)	C(19)-C(24)-H(24A)	111.5(8)
N(2)-C(7)-C(6)	119.91(12)	C(19)-C(24)-H(24B)	113.5(8)
C(8)-C(7)-C(6)	121.41(12)	H(24A)-C(24)-H(24B)	106.1(11)
C(9)-C(8)-C(7)	120.77(13)	C(19)-C(24)-H(24C)	110.0(9)
C(9)-C(8)-H(8)	120.0(8)	H(24A)-C(24)-H(24C)	107.3(10)
C(7)-C(8)-H(8)	119.2(8)	H(24B)-C(24)-H(24C)	108.1(11)
C(8)-C(9)-C(10)	119.38(14)	C(21)-C(25)-H(25A)	110.8(8)
C(8)-C(9)-H(9)	120.3(8)	C(21)-C(25)-H(25B)	109.6(9)
C(10)-C(9)-H(9)	120.3(8)	H(25A)-C(25)-H(25B)	106.3(12)
C(9)-C(10)-C(11)	118.76(13)	C(21)-C(25)-H(25C)	111.6(9)
C(9)-C(10)-H(10)	121.4(8)	H(25A)-C(25)-H(25C)	108.4(12)
C(11)-C(10)-H(10)	119.8(8)	H(25B)-C(25)-H(25C)	110.1(12)
N(2)-C(11)-C(10)	121.39(12)	C(23)-C(26)-H(26A)	114.0(11)
N(2)-C(11)-C(12)	117.90(11)	C(23)-C(26)-H(26B)	113.6(13)
C(10)-C(11)-C(12)	120.66(12)	H(26A)-C(26)-H(26B)	101.3(15)
C(13)-C(12)-C(17)	118.01(12)	C(23)-C(26)-H(26C)	112.5(13)
C(13)-C(12)-C(11)	119.02(11)	H(26A)-C(26)-H(26C)	106.2(16)
C(17)-C(12)-C(11)	122.33(11)	H(26B)-C(26)-H(26C)	108.4(16)
C(14)-C(13)-C(12)	121.58(13)	C(32)-C(27)-C(28)	120.43(11)

C(32)-C(27)-N(3)	121.11(11)	O(41)-C(45)-C(44)	106.72(15)
C(28)-C(27)-N(3)	118.45(11)	O(41)-C(45)-H(45A)	106.3(9)
C(29)-C(28)-C(27)	118.97(12)	C(44)-C(45)-H(45A)	112.7(10)
C(29)-C(28)-C(33)	118.76(12)	O(41)-C(45)-H(45B)	104.7(9)
C(27)-C(28)-C(33)	122.23(11)	C(44)-C(45)-H(45B)	113.6(9)
C(30)-C(29)-C(28)	121.89(13)	H(45A)-C(45)-H(45B)	112.0(13)
C(30)-C(29)-H(29)	119.9(7)		× /
C(28)-C(29)-H(29)	118.1(7)		
C(31)-C(30)-C(29)	117.87(12)		
C(31)-C(30)-C(34)	121.88(12)		
C(29)-C(30)-C(34)	120.25(13)		
C(30)-C(31)-C(32)	122.68(12)		
C(30)-C(31)-H(31)	119 9(7)		
C(32)-C(31)-H(31)	117.5(7)		
C(31)-C(32)-C(27)	117.3(7) 118.09(12)		
C(31) - C(32) - C(35)	110.09(12) 110.14(12)		
C(27)-C(32)-C(35)	117.14(12) 122.74(11)		
C(27)- $C(32)$ - $C(33)$	122.74(11) 110.3(8)		
C(28) - C(33) - H(33R) C(28) - C(33) - H(33R)	110.5(8)		
U(23)-U(33)-H(33B) U(23A) C(23) U(23B)	10.0(8) 105 2(11)		
$\Gamma(33A)$ - $C(33)$ - $\Pi(33B)$	103.2(11) 111.2(8)		
$U(23)-U(33)-\Pi(33C)$	111.2(0) 110.1(11)		
H(35A)-C(35)-H(35C) H(22B)-C(22)-H(22C)	110.1(11) 100.2(12)		
H(33B)-C(33)-H(33C)	109.3(12)		
C(30)- $C(34)$ - $H(34A)$	109.4(8)		
C(30)-C(34)-H(34B)	112.1(9)		
H(34A)-C(34)-H(34B)	107.1(12)		
C(30)-C(34)-H(34C)	111.4(8)		
H(34A)-C(34)-H(34C)	107.9(11)		
H(34B)-C(34)-H(34C)	108.7(12)		
C(32)-C(35)-H(35A)	110.5(8)		
C(32)-C(35)-H(35B)	109.2(8)		
H(35A)-C(35)-H(35B)	106.6(10)		
C(32)-C(35)-H(35C)	113.3(7)		
H(35A)-C(35)-H(35C)	110.3(10)		
H(35B)-C(35)-H(35C)	106.6(10)		
C(42)-O(41)-C(45)	108.71(12)		
O(41)-C(42)-C(43)	105.41(14)		
O(41)-C(42)-H(42A)	106.8(8)		
C(43)-C(42)-H(42A)	114.2(8)		
O(41)-C(42)-H(42B)	110.5(7)		
C(43)-C(42)-H(42B)	110.4(7)		
H(42A)-C(42)-H(42B)	109.3(10)		
C(42)-C(43)-C(44)	101.22(16)		
C(42)-C(43)-H(43A)	110.2(10)		
C(44)-C(43)-H(43A)	112.0(10)		
C(42)-C(43)-H(43B)	113.0(10)		
C(44)-C(43)-H(43B)	111.8(10)		
H(43A)-C(43)-H(43B)	108.5(13)		
C(45)-C(44)-C(43)	104.11(15)		
C(45)-C(44)-H(44A)	107.4(11)		
C(43)-C(44)-H(44A)	109.4(11)		
C(45)-C(44)-H(44B)	111.2(11)		
C(43)-C(44)-H(44B)	112.3(10)		
H(44A)-C(44)-H(44B)	112.0(15)		

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for DYT14 (CCDC 697201). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ti(1)	116(1)	121(1)	106(1)	-3(1)	31(1)	2(1)
Cl(1)	241(2)	140(2)	168(2)	-20(1)	85(1)	7(1)
Cl(2)	218(2)	198(2)	156(2)	-1(1)	99(1)	2(1)
N(1)	124(5)	119(6)	138(6)	-1(5)	44(4)	-4(4)
N(2)	159(6)	81(6)	130(6)	-20(4)	58(5)	2(4)
N(3)	121(5)	109(6)	116(6)	3(4)	39(5)	6(4)
C(1)	142(7)	103(7)	185(7)	-49(5)	68(6)	-1(5)
C(2)	162(7)	142(7)	205(8)	-15(6)	63(6)	11(6)
C(3)	133(7)	206(8)	280(9)	-80(7)	53(7)	-1(6)
C(4)	190(8)	188(8)	325(9)	-68(7)	145(7)	-64(6)
C(5)	244(8)	143(8)	222(8)	-27(6)	138(7)	-18(6)
C(6)	154(7)	104(7)	182(8)	-40(6)	86(6)	8(5)
C(7)	194(7)	71(7)	165(8)	-30(5)	93(6)	1(5)
C(8)	224(8)	144(7)	211(8)	-12(6)	137(7)	-21(6)
C(9)	307(9)	140(8)	156(8)	7(6)	115(7)	-9(6)
C(10)	223(8)	118(7)	141(7)	4(6)	42(6)	16(6)
C(11)	190(7)	70(7)	138(7)	-24(5)	53(6)	12(5)
C(12)	152(7)	138(7)	92(7)	-20(5)	27(5)	10(5)
C(13)	229(8)	165(8)	132(8)	22(6)	44(6)	34(6)
C(14)	152(8)	240(8)	172(8)	8(6)	19(6)	63(6)
C(15)	133(7)	240(8)	240(8)	-5(7)	49(6)	-23(6)
C(16)	172(7)	146(8)	184(8)	12(6)	39(6)	-13(6)
C(17)	136(6)	133(7)	95(6)	-24(5)	32(5)	11(5)
C(18)	88(6)	146(7)	155(7)	20(6)	26(5)	-4(5)
C(19)	67(6)	182(7)	187(8)	-3(6)	34(5)	11(5)
C(20)	138(7)	133(8)	280(9)	0(6)	66(6)	32(6)
C(21)	136(7)	210(8)	267(9)	82(7)	51(6)	45(6)
C(22)	169(7)	286(9)	150(8)	47(7)	37(6)	39(6)
C(23)	109(7)	202(8)	159(7)	-1(6)	16(6)	13(5)
C(24)	151(8)	211(9)	224(8)	-30(7)	65(6)	11(6)
C(25)	350(11)	275(10)	368(12)	133(8)	131(9)	75(8)
C(26)	263(9)	240(9)	184(8)	-52(7)	33(7)	-2(7)
C(27)	97(6)	110(7)	139(7)	-18(5)	27(5)	-3(5)
C(28)	148(7)	136(7)	130(7)	7(5)	36(5)	3(5)
C(29)	214(8)	186(8)	117(7)	-45(6)	64(6)	2(6)
C(30)	153(7)	125(7)	182(8)	-12(6)	31(6)	1(5)
C(31)	156(7)	131(7)	165(8)	35(6)	39(6)	2(5)
C(32)	90(6)	158(7)	117(7)	0(5)	19(5)	-11(5)
C(33)	379(10)	181(9)	140(8)	-16(6)	122(7)	20(7)
C(34)	358(10)	159(9)	218(9)	-11(7)	93(8)	22(7)
C(35)	167(7)	149(8)	155(7)	29(6)	61(6)	3(6)
O(41)	337(6)	182(6)	210(6)	-32(4)	86(5)	-15(4)
C(42)	266(9)	300(10)	260(10)	73(8)	73(8)	-2(7)
C(43)	415(13)	889(18)	336(12)	231(12)	219(10)	173(12)
C(44)	433(13)	952(19)	303(12)	-253(11)	56(10)	247(12)
C(45)	336(11)	350(11)	475(13)	-223(9)	171(10)	9(8)

	X	у	Z	U _{iso}
H(2)	4951(3)	2527(9)	-611(7)	4(3)
H(3)	4436(4)	1498(10)	-465(9)	24(4)
H(4)	4537(4)	329(10)	677(8)	24(4)
H(5)	5140(4)	182(10)	1713(8)	18(4)
H(8)	5583(4)	588(9)	2755(8)	16(4)
H(9)	6182(3)	279(10)	3781(8)	15(4)
H(10)	6756(3)	736(9)	3534(8)	13(3)
H(13)	7193(3)	483(10)	2851(8)	17(4)
H(14)	7790(3)	1240(10)	2852(7)	14(3)
H(15)	7797(4)	3021(10)	2248(8)	17(4)
H(16)	7216(3)	4014(10)	1581(8)	13(3)
H(20)	5510(3)	6257(10)	-148(8)	19(4)
H(22)	5497(3)	4357(10)	-2125(8)	16(4)
H(24A)	5653(4)	5456(11)	1234(8)	29(4)
H(24B)	5686(4)	4123(11)	1342(9)	30(4)
H(24C)	5274(4)	4658(11)	957(9)	38(4)
H(25A)	5273(4)	7064(11)	-1693(9)	38(5)
H(25B)	5429(4)	6386(11)	-2287(10)	36(5)
H(25C)	5729(5)	7002(12)	-1518(10)	48(5)
H(26A)	5339(5)	2164(15)	-1986(12)	83(7)
H(26B)	5518(6)	1684(15)	-1210(13)	82(8)
H(26C)	5758(6)	2140(17)	-1646(13)	102(8)
H(29)	6395(3)	6207(9)	3091(8)	9(3)
H(31)	6396(3)	7188(9)	831(7)	7(3)
H(33A)	6261(4)	3409(11)	2789(9)	29(4)
H(33B)	6418(4)	4321(10)	3488(9)	26(4)
H(33C)	6725(4)	3623(11)	3227(9)	34(4)
H(34A)	6045(4)	8282(11)	2078(9)	34(5)
H(34B)	6418(4)	8661(11)	1916(9)	33(5)
H(34C)	6446(4)	8277(10)	2794(9)	29(4)
H(35A)	6752(4)	4882(10)	260(8)	23(4)
H(35B)	6511(4)	5962(11)	-95(8)	23(4)
H(35C)	6289(4)	4787(9)	-198(8)	16(3)
H(42A)	7640(4)	6669(11)	10542(9)	34(4)
H(42B)	7222(4)	6264(10)	9860(8)	18(4)
H(43A)	7991(5)	5819(14)	9773(11)	67(6)
H(43B)	7608(5)	6219(13)	9016(11)	56(5)
H(44A)	7303(6)	4479(15)	8924(12)	81(7)
H(44B)	7748(5)	4078(13)	9146(11)	62(6)
H(45A)	7307(5)	3571(14)	10074(11)	69(6)
	7798(4)	3644(12)	10484(0)	41(5)

Table 6. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for DYT14 (CCDC 697201).

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 31 July 2008

Crystal Structure Analysis of:

DYT12

(Complex 5)

For	Investigator: Daniel Tofan		ext. 6576
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman e-mail: mikeday@	ext. 2734 caltech.edu

Contents

Table 1. Crystal data Figures Minimum overlap, molecules A, B, C and D Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Observed and calculated structure factors (available upon request)

DYT12

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 697086.

Table 1. Crystal data and structure refinement for DYT12 (CCDC 697086).

Empirical formula $C_{35}H_{33}N_3Cl_2Zr \bullet 0.75(C_7H_8)$ 726.86 Formula weight Crystallization Solvent Toluene Block Crystal Habit Crystal size 0.26 x 0.24 x 0.21 mm³ Crystal color Light yellow **Data Collection** Bruker KAPPA APEX II Type of diffractometer 0.71073 Å MoKα Wavelength Data Collection Temperature 100(2) K θ range for 9976 reflections used in lattice determination 2.42 to 36.16° Unit cell dimensions a = 17.1199(7) Å b = 23.1437(10) Åc = 34.8624(15) Å13813.1(10) Å³ Volume Ζ 16 Orthorhombic Crystal system Space group $P2_{1}2_{1}2_{1}$ 1.398 Mg/m³ Density (calculated) 6008 F(000) Data collection program Bruker APEX2 v2.1-0 θ range for data collection 1.48 to 36.20° Completeness to $\theta = 36.20^{\circ}$ 93.5 % Index ranges $-18 \le h \le 28, -37 \le k \le 36, -53 \le l \le 51$ Data collection scan type ω scans; 14 settings Data reduction program Bruker SAINT-Plus v7.34A Reflections collected 360236 Independent reflections $60649 [R_{int} = 0.0519]$ 0.506 mm⁻¹ Absorption coefficient Absorption correction None Max. and min. transmission 0.9011 and 0.8796

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	60649 / 0 / 1693
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.589
Final R indices [I> 2σ (I), 47805 reflections]	R1 = 0.0345, <i>w</i> R2 = 0.0543
R indices (all data)	R1 = 0.0527, wR2 = 0.0553
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.006
Average shift/error	0.000
Absolute structure determination	Possible racemic twin
Absolute structure parameter	0.487(10)
Largest diff. peak and hole	1.013 and -0.749 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Ųx\ 10³) for DYT12 (CCDC 697086). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U _{eq}
$\overline{\mathrm{Zr}(1)}$	6827(1)	-164(1)	8682(1)	11(1)
Cl(1A)	6575(1)	-1208(1)	8762(1)	16(1)
Cl(2A)	5487(1)	-1(1)	8916(1)	19(1)
N(1A)	7102(1)	-35(1)	8122(1)	14(1)
N(2A)	8059(1)	-517(1)	8663(1)	12(1)
N(3A)	7361(1)	480(1)	8998(1)	12(1)
C(1A)	7614(1)	-266(1)	7852(1)	14(1)
C(2A)	7463(1)	-186(1)	7459(1)	19(1)
C(3A)	7922(1)	-443(1)	7181(1)	24(1)
C(4A)	8541(1)	-790(1)	7289(1)	24(1)
C(5A)	8713(1)	-860(1)	7672(1)	20(1)
C(6A)	8272(1)	-595(1)	7968(1)	14(1)
C(7A)	8534(1)	-669(1)	8368(1)	14(1)
C(8A)	9281(1)	-886(1)	8455(1)	17(1)
C(9A)	9515(1)	-969(1)	8828(1)	18(1)
C(10A)	9014(1)	-824(1)	9123(1)	16(1)
C(11A)	8293(1)	-587(1)	9034(1)	12(1)
C(12A)	7772(1)	-378(1)	9347(1)	13(1)
C(13A)	7730(1)	-712(1)	9686(1)	18(1)
C(14A)	7403(1)	-490(1)	10016(1)	23(1)
C(15A)	7103(1)	73(1)	10018(1)	22(1)
C(16A)	7108(1)	395(1)	9689(1)	18(1)
C(17A)	7429(1)	176(1)	9347(1)	13(1)
C(18A)	6587(1)	432(1)	8022(1)	15(1)
C(19A)	5781(1)	328(1)	7971(1)	18(1)
C(20A)	5280(1)	796(1)	7935(1)	22(1)
C(21A)	5556(1)	1362(1)	7935(1)	23(1)
C(22A)	6363(1)	1452(1)	7955(1)	20(1)
C(23A)	6888(1)	1001(1)	8002(1)	16(1)
C(24A)	5459(1)	-281(1)	7948(1)	26(1)
C(25A)	5003(1)	1866(1)	7923(1)	32(1)
C(26A)	7753(1)	1115(1)	8022(1)	20(1)
C(27A)	7589(1)	1073(1)	8982(1)	13(1)
C(28A)	7037(1)	1516(1)	8933(1)	13(1)
C(29A)	7294(1)	2083(1)	8893(1)	16(1)
C(30A)	8085(1)	2226(1)	8906(1)	16(1)
C(31A)	8622(1)	1782(1)	8958(1)	16(1)
C(32A)	8393(1)	1210(1)	8996(1)	14(1)
C(33A)	6172(1)	1389(1)	8925(1)	19(1)
C(34A)	8354(1)	2842(1)	8867(1)	26(1)
C(35A)	9004(1)	744(1)	9033(1)	19(1)
Zr(2)	1782(1)	2756(1)	8717(1)	11(1)
Cl(1B)	1576(1)	3811(1)	8756(1)	20(1)
Cl(2B)	482(1)	2661(1)	8998(1)	21(1)
N(1B)	1834(1)	2507(1)	8158(1)	16(1)
N(2B)	3000(1)	3080(1)	8570(1)	19(1)

N(3B)	2394(1)	2158(1)	9034(1)	13(1)
C(1B)	2371(1) 2218(1)	2729(1)	7834(1)	22(1)
C(1D)	1004(1)	2729(1) 2604(1)	703+(1) 7470(1)	22(1) 30(1)
C(2D)	1904(1)	2004(1)	7470(1)	30(1)
C(3D)	2224(1)	2034(1)	7142(1)	40(1)
C(4B)	2801(2)	3199(1)	7108(1)	49(1)
C(5B)	3184(1)	3313(1)	/518(1)	39(1)
C(6B)	2895(1)	3070(1)	7864(1)	25(1)
C(7B)	3339(1)	3164(1)	8221(1)	25(1)
C(8B)	4122(1)	3340(1)	8212(1)	39(1)
C(9B)	4523(1)	3448(1)	8541(1)	44(1)
C(10B)	4164(1)	3377(1)	8893(1)	36(1)
C(11B)	3392(1)	3178(1)	8900(1)	23(1)
C(12B)	3002(1)	3047(1)	9269(1)	24(1)
C(13B)	3123(1)	3434(1)	9578(1)	38(1)
C(14B)	2924(1)	3289(1)	9945(1)	46(1)
C(15B)	2579(1)	2756(1)	10018(1)	44(1)
C(16B)	2419(1)	2376(1)	9723(1)	32(1)
C(17B)	2618(1)	2521(1)	9343(1)	20(1)
C(18B)	1402(1)	1977(1)	8115(1)	17(1)
C(10B)	182(1)	1453(1)	8105(1)	17(1)
C(20B)	1024(1) 1407(1)	030(1)	8008(1)	24(1)
C(20B)	502(1)	0.000(1)	8006(1)	24(1) 28(1)
C(21D) C(22B)	106(1)	$\frac{920(1)}{1446(1)}$	8090(1)	28(1)
C(22D) C(22P)	190(1) 581(1)	1440(1) 1076(1)	8082(1)	20(1) 22(1)
C(23D)	301(1)	1970(1) 1445(1)	8007(1) 800 5 (1)	23(1) 20(1)
C(24D)	2/02(1)	1443(1)	8093(1)	20(1)
C(25B)	105(1)	330(1) 252((1)	8114(1)	43(1)
C(26B)	114(1)	2526(1)	8044(1)	32(1)
C(2/B)	2605(1)	1557(1)	9053(1)	13(1)
C(28B)	3404(1)	1404(1)	9038(1)	15(1)
C(29B)	3606(1)	826(1)	9039(1)	18(1)
C(30B)	3054(1)	387(1)	9040(1)	19(1)
C(31B)	2269(1)	547(1)	9053(1)	18(1)
C(32B)	2036(1)	1124(1)	9066(1)	16(1)
C(33B)	4033(1)	1853(1)	9007(1)	24(1)
C(34B)	3297(1)	-241(1)	9041(1)	25(1)
C(35B)	1176(1)	1265(1)	9096(1)	22(1)
Zr(3)	8174(1)	2723(1)	6275(1)	10(1)
Cl(1C)	8412(1)	3770(1)	6199(1)	15(1)
Cl(2C)	9481(1)	2574(1)	6002(1)	18(1)
N(1C)	8004(1)	2587(1)	6844(1)	14(1)
N(2C)	6948(1)	3070(1)	6344(1)	12(1)
N(3C)	7596(1)	2077(1)	5978(1)	11(1)
C(1C)	7515(1)	2805(1)	7134(1)	16(1)
C(2C)	7723(1)	2712(1)	7519(1)	21(1)
C(3C)	7293(1)	2941(1)	7817(1)	27(1)
C(4C)	6640(1)	3271(1)	7737(1)	29(1)
C(5C)	6422(1)	3360(1)	7360(1)	23(1)
C(6C)	6835(1)	3125(1)	7047(1)	16(1)
C(7C)	6521(1)	3221(1)	6659(1)	15(1)
C(8C)	5777(1)	3221(1) 3461(1)	6507(1)	20(1)
C(0C)	5/7/(1) 5/09(1)	3550(1)	6721(1)	20(1) 20(1)
$C(\mathcal{I}(\mathcal{I}))$	5490(1) 5047(1)	3339(1) 3404(1)	5010(1)	20(1) 17(1)
C(10C)	J74/(1) 6660(1)	3404(1) 2152(1)	5095(1)	1/(1) 12(1)
	0009(1)	3133(1)	J70J(1)	13(1)

C(12C)	7140(1)	2946(1)	5654(1)	13(1)
C(13C)	7137(1)	3284(1)	5317(1)	17(1)
C(14C)	7381(1)	3069(1)	4973(1)	21(1)
C(15C)	7636(1)	2494(1)	4951(1)	19(1)
C(16C)	7685(1)	2160(1)	5277(1)	17(1)
C(17C)	7457(1)	2382(1)	5635(1)	12(1)
C(18C)	8519(1)	2112(1)	6931(1)	14(1)
C(19C)	8208(1)	1549(1)	6962(1)	15(1)
C(20C)	8717(1)	1093(1)	7015(1)	21(1)
C(21C)	9523(1)	1174(1)	7041(1)	23(1)
C(22C)	9811(1)	1727(1)	7024(1)	24(1)
C(23C)	9327(1)	2206(1)	6974(1)	19(1)
C(24C)	7338(1)	1446(1)	6955(1)	20(1)
C(25C)	10055(1)	659(1)	7089(1)	36(1)
C(26C)	9671(1)	2811(1)	6982(1)	28(1)
C(20C)	7379(1)	1480(1)	6006(1)	11(1)
C(28C)	6579(1)	1343(1)	6040(1)	11(1) 13(1)
C(20C)	6366(1)	775(1)	6101(1)	13(1) 17(1)
C(29C)	6010(1)	775(1)	6135(1)	17(1) 18(1)
C(30C)	7606(1)	334(1)	6080(1)	10(1) 17(1)
C(31C)	7090(1)	4/7(1)	6089(1)	1/(1)
C(32C)	7943(1) 50(5(1)	1042(1)	6022(1)	14(1)
C(33C)	5965(1)	1806(1)	6023(1)	20(1)
C(34C)	6658(1)	-279(1)	6214(1)	27(1)
C(35C)	8804(1)	1163(1)	5964(1)	18(1)
Zr(4)	3217(1)	-178(1)	6323(1)	10(1)
Cl(1D)	3407(1)	-1233(1)	6290(1)	17(1)
Cl(2D)	4467(1)	-86(1)	5989(1)	19(1)
N(1D)	3178(1)	49(1)	6885(1)	15(1)
N(2D)	2002(1)	-503(1)	6468(1)	14(1)
N(3D)	2591(1)	433(1)	6023(1)	11(1)
C(1D)	2790(1)	-172(1)	7206(1)	18(1)
C(2D)	3101(1)	-59(1)	7572(1)	24(1)
C(3D)	2777(1)	-290(1)	7902(1)	30(1)
C(4D)	2128(1)	-645(1)	7869(1)	32(1)
C(5D)	1803(1)	-749(1)	7517(1)	27(1)
C(6D)	2100(1)	-508(1)	7173(1)	19(1)
C(7D)	1662(1)	-606(1)	6815(1)	18(1)
C(8D)	885(1)	-801(1)	6822(1)	26(1)
C(9D)	492(1)	-911(1)	6483(1)	28(1)
C(10D)	858(1)	-820(1)	6135(1)	23(1)
C(11D)	1615(1)	-602(1)	6135(1)	17(1)
C(12D)	2011(1)	-455(1)	5769(1)	16(1)
C(12D)	1930(1)	-834(1)	5453(1)	23(1)
C(13D)	2173(1)	-681(1)	5093(1)	25(1)
C(1+D)	2173(1) 2508(1)	-001(1) 137(1)	5033(1)	20(1) 25(1)
C(15D)	2508(1) 2612(1)	-137(1)	5032(1)	23(1) 20(1)
C(10D)	2012(1)	233(1)	5555(1) 5707(1)	20(1) 12(1)
C(1/D)	2583(1)	03(1) 570(1)	5/0/(1)	13(1)
C(10D)	3020(1)	3/9(1)	6022(1)	10(1)
C(19D)	4441(1)	308(1)	0932(1)	20(1)
C(20D)	483/(1)	1099(1)	0933(1)	26(1)
C(21D)	4443(1)	1620(1)	0941(1)	28(1)
C(22D)	3630(1)	1615(1)	6957(1)	23(1)
C(23D)	3208(1)	1104(1)	6952(1)	16(1)

C(24D)	4895(1)	14(1)	6952(1)	30(1)
C(25D)	4877(1)	2187(1)	6925(1)	43(1)
C(26D)	2331(1)	1118(1)	6981(1)	19(1)
C(27D)	2379(1)	1035(1)	6019(1)	11(1)
C(28D)	2951(1)	1469(1)	5997(1)	12(1)
C(29D)	2711(1)	2043(1)	6017(1)	16(1)
C(30D)	1927(1)	2199(1)	6046(1)	16(1)
C(31D)	1378(1)	1763(1)	6067(1)	16(1)
C(32D)	1586(1)	1183(1)	6058(1)	14(1)
C(33D)	3802(1)	1332(1)	5942(1)	17(1)
C(34D)	1682(1)	2826(1)	6038(1)	23(1)
C(35D)	965(1)	727(1)	6107(1)	19(1)
G (1)	1720(1)	0007(1)	10000 (1)	
C(1)	4729(1)	9837(1)	10000(1)	44(1)
C(2)	4946(1)	9203(1)	9964(1)	30(1)
C(3)	4539(1)	8774(1)	10164(1)	33(1)
C(4)	4750(1)	8200(1)	10137(1)	35(1)
C(5)	5371(1)	8038(1)	9908(1)	34(1)
C(6)	5768(1)	8456(1)	9701(1)	30(1)
C(7)	5560(1)	9031(1)	9732(1)	26(1)
C(11)	-149(2)	3216(1)	-30(1)	79(1)
C(12)	109(1)	2599(1)	65(1)	41(1)
C(13)	681(1)	2504(1)	337(1)	48(1)
C(14)	935(1)	1950(1)	424(1)	42(1)
C(15)	621(1)	1483(1)	242(1)	42(1)
C(16)	49(1)	1573(1)	-36(1)	48(1)
C(17)	-196(1)	2132(1)	-119(1)	48(1)
C(21)	5774(1)	109(1)	501((1)	21(1)
C(21)	5774(1)	-128(1)	5216(1)	31(1)
C(22)	5294(1)	380(1)	5079(1)	20(1)
C(23)	5512(1)	941(1)	5158(1)	30(1)
C(24)	5096(1)	140/(1)	501/(1)	$\frac{3}{(1)}$
C(25)	4441(1)	1313(1)	4/90(1)	40(1)
C(26)	4206(1)	/61(1)	4/12(1)	39(1)
C(27)	4626(1)	292(1)	4853(1)	35(1)

Zr(1)-N(1A)	2.0327(12)	Zr(4)-N(1D)	2.0295(12)
Zr(1)-N(3A)	2.0658(12)	Zr(4)-N(3D)	2.0587(12)
Zr(1)-N(2A)	2.2624(12)	Zr(4)-N(2D)	2.2700(12)
Zr(1)- $Cl(2A)$	2.4638(4)	Zr(4)-Cl(2D)	2.4439(4)
Zr(1)- $Cl(1A)$	2.4692(4)	Zr(4)-Cl(1D)	2.4658(4)
Zr(1)-C(17A)	2.6543(14)	Zr(4)-C(17D)	2.6467(14)
Zr(1)-C(18A)	2.7174(15)	Zr(4)-C(18D)	2.8203(15)
Zr(2)-N(1B)	2.0342(13)	Zr(3)-N(1C)	2.0325(13)
Zr(2)-N(3B)	2.0583(12)	Zr(3)-N(3C)	2.0719(12)
Zr(2)-N(2B)	2.2741(13)	Zr(3)-N(2C)	2.2612(12)
Zr(2)- $Cl(2B)$	2.4414(4)	Zr(3)-Cl(2C)	2.4546(4)
Zr(2)- $Cl(1B)$	2.4698(4)	Zr(3)-Cl(1C)	2.4706(4)
Zr(2)-C(17B)	2.6646(16)	Zr(3)-C(17C)	2.6652(15)
Zr(2)-C(18B)	2.8437(15)	Zr(3)-C(18C)	2.7537(15)
		Zr(3)-C(12C)	2.8450(15)
N(1A)- $Zr(1)$ - $N(3A)$	107.67(5)	N(1D)- $Zr(4)$ - $N(3D)$	107.12(5)
N(1A)- $Zr(1)$ - $N(2A)$	78.96(5)	N(1D)-Zr(4)-N(2D)	80.74(5)
N(3A)- $Zr(1)$ - $N(2A)$	82.22(4)	N(3D)- $Zr(4)$ - $N(2D)$	82.13(5)
N(1A)- $Zr(1)$ - $Cl(2A)$	120.75(4)	N(1D)- $Zr(4)$ - $Cl(2D)$	117.78(4)
N(3A)- $Zr(1)$ - $Cl(2A)$	97.20(3)	N(3D)- $Zr(4)$ - $Cl(2D)$	98.94(4)
N(2A)- $Zr(1)$ - $Cl(2A)$	158.90(3)	N(2D)- $Zr(4)$ - $Cl(2D)$	159.63(3)
N(1A)- $Zr(1)$ - $Cl(1A)$	106.97(4)	N(1D)- $Zr(4)$ - $Cl(1D)$	107.74(3)
N(3A)- $Zr(1)$ - $Cl(1A)$	136.38(4)	N(3D)- $Zr(4)$ - $Cl(1D)$	136.49(4)
N(2A)- $Zr(1)$ - $Cl(1A)$	79.23(3)	N(2D)- $Zr(4)$ - $Cl(1D)$	78.63(3)
Cl(2A)- $Zr(1)$ - $Cl(1A)$	87.099(13)	Cl(2D)- $Zr(4)$ - $Cl(1D)$	87.075(14)
N(1A)-Zr(1)-C(17A)	134.89(5)	N(1D)- $Zr(4)$ - $C(17D)$	134.92(5)
N(3A)-Zr(1)-C(17A)	31.79(5)	N(3D)- $Zr(4)$ - $C(17D)$	31.95(5)
N(2A)-Zr(1)-C(17A)	76.77(4)	N(2D)- $Zr(4)$ - $C(17D)$	76.32(5)
Cl(2A)- $Zr(1)$ - $C(17A)$	91.59(3)	Cl(2D)- $Zr(4)$ - $C(17D)$	93.76(3)
Cl(1A)-Zr(1)-C(17A)	105.06(3)	Cl(1D)-Zr(4)-C(17D)	105.05(3)
N(1A)-Zr(1)-C(18A)	31.26(5)	N(1D)-Zr(4)-C(18D)	29.38(5)
N(3A)-Zr(1)-C(18A)	98.71(5)	N(3D)-Zr(4)-C(18D)	94.51(5)
N(2A)-Zr(1)-C(18A)	107.43(4)	N(2D)-Zr(4)-C(18D)	105.27(5)
Cl(2A)-Zr(1)-C(18A)	93.53(3)	Cl(2D)-Zr(4)-C(18D)	94.95(3)
Cl(1A)-Zr(1)-C(18A)	124.44(3)	Cl(1D)-Zr(4)-C(18D)	128.08(3)
C(17A)-Zr(1)-C(18A)	130.41(5)	C(17D)-Zr(4)-C(18D)	126.45(5)

 Table 3.
 Selected bond lengths [Å] and angles [°] for DYT12 (CCDC 697086).

N(1B)- $Zr(2)$ - $N(3B)$	107.58(5)	N(1C)-Zr(3)-N(3C)	107.93(5)
N(1B)-Zr(2)-N(2B)	80.59(5)	N(1C)-Zr(3)-N(2C)	79.42(5)
N(3B)-Zr(2)-N(2B)	82.85(5)	N(3C)-Zr(3)-N(2C)	82.31(4)
N(1B)-Zr(2)-Cl(2B)	113.48(4)	N(1C)-Zr(3)-Cl(2C)	119.18(4)
N(3B)-Zr(2)-Cl(2B)	100.84(4)	N(3C)-Zr(3)-Cl(2C)	98.08(4)
N(2B)-Zr(2)-Cl(2B)	162.99(4)	N(2C)- $Zr(3)$ - $Cl(2C)$	159.69(3)
N(1B)-Zr(2)-Cl(1B)	109.82(4)	N(1C)- $Zr(3)$ - $Cl(1C)$	106.27(4)
N(3B)-Zr(2)-Cl(1B)	135.02(4)	N(3C)- $Zr(3)$ - $Cl(1C)$	137.16(4)
N(2B)- $Zr(2)$ - $Cl(1B)$	79.53(3)	N(2C)- $Zr(3)$ - $Cl(1C)$	79.39(3)
Cl(2B)-Zr(2)-Cl(1B)	86.398(14)	Cl(2C)- $Zr(3)$ - $Cl(1C)$	86.961(13)
N(1B)-Zr(2)-C(17B)	134.64(5)	N(1C)-Zr(3)-C(17C)	134.84(5)
N(3B)-Zr(2)-C(17B)	31.72(5)	N(3C)-Zr(3)-C(17C)	31.49(5)
N(2B)-Zr(2)-C(17B)	76.10(5)	N(2C)-Zr(3)-C(17C)	76.55(4)
Cl(2B)-Zr(2)-C(17B)	98.22(4)	Cl(2C)-Zr(3)-C(17C)	93.12(3)
Cl(1B)-Zr(2)-C(17B)	103.50(4)	Cl(1C)-Zr(3)-C(17C)	106.10(3)
N(1B)-Zr(2)-C(18B)	28.69(5)	N(1C)-Zr(3)-C(18C)	30.57(5)
N(3B)-Zr(2)-C(18B)	94.99(5)	N(3C)-Zr(3)-C(18C)	98.46(5)
N(2B)-Zr(2)-C(18B)	104.57(5)	N(2C)-Zr(3)-C(18C)	106.97(4)
Cl(2B)-Zr(2)-C(18B)	91.73(3)	Cl(2C)-Zr(3)-C(18C)	93.11(3)
Cl(1B)-Zr(2)-C(18B)	129.41(3)	Cl(1C)-Zr(3)-C(18C)	123.85(3)
C(17B)-Zr(2)-C(18B)	126.70(5)	C(17C)-Zr(3)-C(18C)	129.90(5)
		N(1C)-Zr(3)-C(12C)	133.03(5)
		N(3C)-Zr(3)-C(12C)	56.83(4)
		N(2C)-Zr(3)-C(12C)	55.88(4)
		Cl(2C)-Zr(3)-C(12C)	107.37(3)
		Cl(1C)-Zr(3)-C(12C)	80.96(3)
		C(17C)-Zr(3)-C(12C)	29.58(4)
		C(18C)-Zr(3)-C(12C)	149.21(4)

Zr(1)-N(1A)	2.0327(12)	Zr(2)-N(2B)	2.2741(13)
Zr(1)-N(3A)	2.0658(12)	Zr(2)- $Cl(2B)$	2.4414(4)
Zr(1)-N(2A)	2.2624(12)	Zr(2)- $Cl(1B)$	2.4698(4)
Zr(1)- $Cl(2A)$	2.4638(4)	Zr(2)-C(17B)	2.6646(16)
Zr(1)- $Cl(1A)$	2.4692(4)	Zr(2)-C(18B)	2.8437(15)
Zr(1)-C(17A)	2.6543(14)	N(1B)-C(1B)	1.404(2)
Zr(1)-C(18A)	2.7174(15)	N(1B)-C(18B)	1.4408(19)
N(1A)-C(1A)	1.3912(19)	N(2B)-C(11B)	1.353(2)
N(1A)-C(18A)	1.4396(19)	N(2B)-C(7B)	1.361(2)
N(2A)-C(7A)	1.3575(19)	N(3B)-C(17B)	1.416(2)
N(2A)-C(11A)	1.3642(18)	N(3B)-C(27B)	1.4400(19)
N(3A)-C(17A)	1.4111(18)	C(1B)-C(6B)	1.406(2)
N(3A)-C(27A)	1.4274(18)	C(1B)-C(2B)	1.407(2)
C(1A)-C(2A)	1.407(2)	C(2B)-C(3B)	1.376(2)
C(1A)-C(6A)	1.418(2)	C(3B)-C(4B)	1.382(3)
C(2A)-C(3A)	1.383(2)	C(4B)-C(5B)	1.365(3)
C(3A)-C(4A)	1.382(2)	C(5B)-C(6B)	1.421(2)
C(4A)-C(5A)	1.377(2)	C(6B)-C(7B)	1.475(3)
C(5A)-C(6A)	1.416(2)	C(7B)-C(8B)	1402(2)
C(6A)- $C(7A)$	1.477(2)	C(8B)-C(9B)	1 361(3)
C(7A)-C(8A)	1.406(2)	C(9B)-C(10B)	1 380(3)
C(8A)- $C(9A)$	1.100(2) 1.374(2)	C(10B) - C(11B)	1.300(3) 1.400(2)
C(9A)-C(10A)	1.371(2) 1.383(2)	C(11B)-C(12B)	1.100(2) 1.479(3)
C(10A)-C(11A)	1.385(2)	C(12B) - C(12B)	1.179(3) 1 408(2)
C(11A)-C(12A)	1.303(2) 1 488(2)	C(12B) - C(13B)	1.400(2) 1 417(2)
C(12A)-C(17A)	1.400(2) 1 410(2)	C(12B) - C(14B)	1.417(2) 1 364(3)
C(12A) - C(13A)	1.410(2) 1.414(2)	C(14B)-C(15B)	1 389(3)
C(12A)-C(13A)	1.414(2) 1.377(2)	C(15B)-C(16B)	1.307(3) 1.383(3)
C(14A)- $C(15A)$	1.377(2) 1.401(2)	C(16B)-C(17B)	1.305(3) 1.409(2)
C(15A)-C(16A)	1.401(2) 1.367(2)	C(18B)-C(23B)	1.408(2)
C(15A) - C(10A) C(16A) - C(17A)	1.307(2) 1.400(2)	C(18D)-C(23D) C(18B) C(10B)	1.400(2) 1.413(2)
C(10A)-C(17A) C(18A) C(10A)	1.409(2) 1.411(2)	C(10B) - C(19B)	1.413(2) 1.386(2)
C(18A) - C(19A)	1.411(2) 1.415(2)	C(19B)-C(20B) C(10B)-C(24B)	1.380(2) 1.504(2)
C(10A) - C(20A)	1.413(2) 1.299(2)	C(19D)-C(24D) C(20P) C(21P)	1.304(2) 1.206(2)
C(19A)-C(20A)	1.300(2) 1.516(2)	C(20B)-C(21B) C(21B) C(22B)	1.390(2) 1.378(3)
C(19A)-C(24A)	1.310(2) 1.201(2)	C(21D)-C(22D) C(21D)-C(25D)	1.570(3) 1.512(2)
C(20A)-C(21A)	1.391(2) 1.200(2)	C(21D)-C(23D) C(22D)-C(23D)	1.313(2) 1.202(2)
C(21A)-C(22A)	1.599(2) 1.504(2)	C(22D)-C(25D)	1.595(2) 1.510(2)
C(21A)-C(23A)	1.304(2) 1.297(2)	C(23D)-C(20D) C(27D)-C(22D)	1.310(2) 1.200(2)
C(22A)-C(25A)	1.387(2) 1.507(2)	C(27D)-C(32D)	1.399(2)
C(23A)-C(20A)	1.307(2)	C(27B)-C(28B)	1.414(2) 1.281(2)
C(2/A)-C(28A)	1.404(2)	C(28B)-C(29B)	1.381(2)
C(2/A)-C(32A)	1.414(2)	C(28B)-C(33B)	1.501(2)
C(28A)-C(29A)	1.392(2)	C(29B)-C(30B)	1.387(2)
C(28A)-C(33A)	1.510(2)	C(30B)-C(31B)	1.395(2)
C(29A)-C(30A)	1.395(2)	C(30B)-C(34B)	1.512(2)
C(30A) - C(31A)	1.389(2)	C(31B)-C(32B)	1.395(2)
C(30A)-C(34A)	1.504(2)	C(32B)-C(35B)	1.511(2)
C(31A)-C(32A)	1.386(2)	Zr(3)-N(1C)	2.0325(13)
C(32A)-C(35A)	1.50/(2)	Zr(3)-N(3C)	2.0719(12)
Zr(2)-N(1B)	2.0342(13)	Zr(3)-N(2C)	2.2612(12)
Zr(2)-N(3B)	2.0583(12)	Zr(3)- $Cl(2C)$	2.4546(4)

Table 4.	Bond lengths [Å] and angles [°] for DYT12 (CCDC 697086).	

Zr(3)-Cl(1C)	2.4706(4)	N(1D)-C(18D)	1.4484(19)
Zr(3)-C(17C)	2.6652(15)	N(2D)-C(11D)	1.358(2)
Zr(3)-C(18C)	2.7537(15)	N(2D)-C(7D)	1.3622(19)
Zr(3)-C(12C)	2.8450(15)	N(3D)-C(17D)	1.4130(18)
N(1C)-C(1C)	1.4038(19)	N(3D)-C(27D)	1.4403(18)
N(1C)-C(18C)	1.4410(19)	C(1D)-C(2D)	1.404(2)
N(2C)-C(11C)	1.3532(19)	C(1D)-C(6D)	1.419(2)
N(2C)-C(7C)	1.3630(18)	C(2D)-C(3D)	1.384(2)
N(3C)-C(17C)	1.4065(18)	C(3D)-C(4D)	1.386(3)
N(3C)-C(27C)	1.4339(19)	C(4D)-C(5D)	1.371(2)
C(1C)-C(2C)	1.405(2)	C(5D)-C(6D)	1.416(2)
C(1C)-C(6C)	1.413(2)	C(6D)-C(7D)	1.476(2)
C(2C)-C(3C)	1.380(2)	C(7D)-C(8D)	1.405(2)
C(3C)-C(4C)	1.382(2)	C(8D)-C(9D)	1.383(3)
C(4C)-C(5C)	1.382(2)	C(9D)-C(10D)	1.383(2)
C(5C)-C(6C)	1.410(2)	C(10D)-C(11D)	1.391(2)
C(6C)-C(7C)	1.473(2)	C(11D)-C(12D)	1.483(2)
C(7C)-C(8C)	1.405(2)	C(12D) - C(13D)	1.414(2)
C(8C)-C(9C)	1.103(2) 1.382(2)	C(12D) - C(17D)	1.117(2) 1 417(2)
C(9C) - C(10C)	1.302(2) 1.380(2)	C(12D) = C(14D)	1.117(2) 1.368(2)
C(10C)-C(11C)	1.386(2)	C(14D)-C(15D)	1.500(2) 1 401(2)
C(11C)-C(12C)	1.500(2) 1 488(2)	C(15D)-C(16D)	1.369(2)
C(12C)- $C(12C)$	1.100(2) 1 410(2)	C(16D) - C(17D)	1.505(2) 1 405(2)
C(12C) - C(17C)	1.410(2) 1 417(2)	C(18D) - C(19D)	1.405(2) 1 405(2)
C(13C)-C(14C)	1.417(2) 1 364(2)	C(18D) - C(23D)	1.409(2) 1 409(2)
C(14C)- $C(15C)$	1.304(2) 1.402(2)	C(19D) - C(20D)	1.409(2) 1.404(2)
C(15C)- $C(16C)$	1.402(2) 1.375(2)	C(19D) - C(24D)	1.404(2) 1 501(2)
C(16C)- $C(17C)$	1.575(2) 1 406(2)	C(20D)-C(21D)	1.301(2) 1 382(3)
C(18C)-C(23C)	1.400(2) 1.409(2)	C(20D) - C(21D)	1.302(3) 1 303(2)
C(18C)-C(19C)	1.409(2) 1.411(2)	C(21D)-C(22D)	1.593(2) 1 508(2)
C(19C)-C(20C)	1.411(2) 1.382(2)	C(21D)-C(23D)	1.300(2) 1.385(2)
C(1)C) - C(20C)	1.502(2) 1.510(2)	C(22D) - C(25D)	1.505(2) 1 506(2)
C(20C)-C(21C)	1.310(2) 1 394(2)	C(25D)-C(25D)	1.300(2) 1.403(2)
C(21C)-C(22C)	1.374(2) 1.373(2)	C(27D)-C(23D)	1.403(2) 1.408(2)
C(21C)-C(22C)	1.575(2) 1.510(2)	C(28D)-C(32D)	1.400(2) 1.303(2)
C(21C)-C(23C)	1.310(2) 1 395(2)	C(28D)-C(23D)	1.575(2) 1 504(2)
C(22C)- $C(25C)$	1.595(2) 1 510(2)	C(28D) - C(35D)	1.304(2) 1 303(2)
C(23C)- $C(20C)$	1.319(2) 1.401(2)	C(30D) C(31D)	1.393(2) 1 381(2)
C(27C) - C(32C)	1.401(2) 1.410(2)	C(30D) - C(31D)	1.501(2) 1 510(2)
C(28C) - C(28C)	1.410(2) 1.381(2)	C(31D) C(32D)	1.310(2) 1 380(2)
C(28C) - C(29C)	1.501(2) 1.503(2)	C(32D) - C(32D)	1.509(2) 1 508(2)
C(28C) - C(35C)	1.303(2) 1.388(2)	C(32D) - C(35D)	1.500(2) 1 510(3)
C(29C) - C(30C)	1.300(2) 1.304(2)	C(1) - C(2) C(2) - C(7)	1.319(3) 1.387(2)
C(30C) - C(31C)	1.594(2) 1.507(2)	C(2) - C(3)	1.307(2) 1 307(3)
C(30C) - C(34C)	1.307(2) 1.304(2)	C(2) - C(3) C(3) - C(4)	1.397(3) 1 381(3)
C(31C)-C(32C) C(32C) C(35C)	1.394(2) 1.514(2)	C(3)-C(4)	1.301(3) 1.382(3)
C(32C)-C(33C) $Z_r(4) N(1D)$	1.514(2) 2.0205(12)	C(4) - C(5)	1.362(3) 1.384(2)
ZI(4)-N(1D) Zr(4) N(3D)	2.0293(12) 2.0587(12)	C(5)-C(0)	1.304(2) 1.381(3)
$Z_{r}(4) - N(3D)$	2.0307(12) 2.2700(12)	C(0) - C(1) C(11) - C(12)	1.301(3) 1.531(2)
$\frac{2r(4)-r(2D)}{2r(4)-Cl(2D)}$	2.2700(12) 2.430(1)	C(11)-C(12) C(12)-C(17)	1.331(3) 1.361(3)
$Z_{r}(4)$ -Cl(2D) $Z_{r}(4)$ -Cl(1D)	2.4437(4)	C(12)-C(17) C(12)-C(13)	1.301(3)
$Z_{r}(T) = C_{r}(TD)$	2.4030(4) 2.6467(14)	C(12)- $C(13)C(13)$ - $C(14)$	1.302(3) 1.386(3)
$Z_{r}(\tau) = C(1/D)$ $Z_{r}(\Delta) = C(18D)$	2.0407(14)	C(13)-C(14) C(14)-C(15)	1.300(3) 1.364(3)
N(1D) - C(1D)	1 4003(10)	C(17) - C(15) C(15) - C(16)	1.307(3)
	1.7003(17)	$\mathcal{C}(10)$	1.374(3)

C(16)-C(17)	1.390(3)	C(9A)-C(10A)-C(11A)	118.81(15)
C(21)-C(22)	1.512(2)	N(2A)-C(11A)-C(10A)	121.41(14)
C(22)-C(23)	1 379(2)	N(2A)-C(11A)-C(12A)	118 69(13)
C(22) - C(27)	1.373(2) 1 403(2)	C(10A)-C(11A)-C(12A)	119 84(13)
C(23)-C(24)	1.384(2)	C(17A)-C(12A)-C(13A)	118 37(14)
C(24)- $C(25)$	1.30+(2) 1.388(3)	C(17A) - C(12A) - C(11A)	122.99(13)
C(25) C(26)	1.368(3)	C(13A) C(12A) C(11A)	122.75(13) 117.75(13)
C(25) - C(20)	1.300(3) 1.301(3)	C(13A) - C(12A) - C(11A) C(14A) - C(13A) - C(12A)	117.73(13) 121.02(15)
C(20)-C(27)	1.391(3)	C(14A)-C(13A)-C(12A) C(13A)-C(15A)	121.02(13) 110.07(15)
N(1A) = 7r(1) N(2A)	107 67(5)	C(15A) - C(14A) - C(15A)	119.97(13) 120.07(15)
N(1A) - Zr(1) - N(3A) N(1A) - Zr(1) - N(2A)	78 06(5)	C(10A)-C(15A)-C(14A)	120.07(13) 121.04(15)
N(1A)-ZI(1)-N(2A)	78.90(3)	C(15A)-C(10A)-C(17A)	121.04(13) 110.26(14)
N(3A)-Zr(1)-N(2A)	62.22(4) 120.75(4)	C(16A) - C(17A) - C(12A)	119.30(14)
N(1A)-Zr(1)-Cl(2A)	120.75(4)	C(10A)-C(17A)-N(3A)	121.19(14)
N(3A)-Zr(1)-Cl(2A)	97.20(3)	C(12A)-C(17A)-N(3A)	119.27(13)
N(2A)- $Zr(1)$ - $Cl(2A)$	158.90(3)	C(16A)-C(1/A)-Zr(1)	133.95(10)
N(1A)-Zr(1)-Cl(1A)	106.97(4)	C(12A)-C(1/A)-Zr(1)	83.82(9)
N(3A)- $Zr(1)$ - $Cl(1A)$	136.38(4)	N(3A)-C(1/A)-Zr(1)	50.46(7)
N(2A)- $Zr(1)$ - $Cl(1A)$	79.23(3)	C(19A)-C(18A)-C(23A)	120.59(14)
Cl(2A)- $Zr(1)$ - $Cl(1A)$	87.099(13)	C(19A)-C(18A)-N(1A)	120.05(13)
N(1A)-Zr(1)-C(17A)	134.89(5)	C(23A)-C(18A)-N(1A)	119.20(14)
N(3A)-Zr(1)-C(17A)	31.79(5)	C(19A)-C(18A)-Zr(1)	99.58(10)
N(2A)-Zr(1)-C(17A)	76.77(4)	C(23A)-C(18A)-Zr(1)	117.25(10)
Cl(2A)- $Zr(1)$ - $C(17A)$	91.59(3)	N(1A)-C(18A)-Zr(1)	47.11(7)
Cl(1A)-Zr(1)-C(17A)	105.06(3)	C(20A)-C(19A)-C(18A)	118.84(15)
N(1A)-Zr(1)-C(18A)	31.26(5)	C(20A)-C(19A)-C(24A)	119.73(14)
N(3A)-Zr(1)-C(18A)	98.71(5)	C(18A)-C(19A)-C(24A)	121.41(14)
N(2A)-Zr(1)-C(18A)	107.43(4)	C(19A)-C(20A)-C(21A)	121.58(16)
Cl(2A)-Zr(1)-C(18A)	93.53(3)	C(20A)-C(21A)-C(22A)	118.49(16)
Cl(1A)-Zr(1)-C(18A)	124.44(3)	C(20A)-C(21A)-C(25A)	121.03(16)
C(17A)-Zr(1)-C(18A)	130.41(5)	C(22A)-C(21A)-C(25A)	120.46(16)
C(1A)-N(1A)-C(18A)	120.69(12)	C(23A)-C(22A)-C(21A)	122.15(16)
C(1A)-N(1A)-Zr(1)	137.68(10)	C(22A)-C(23A)-C(18A)	118.06(15)
C(18A)-N(1A)-Zr(1)	101.63(9)	C(22A)-C(23A)-C(26A)	120.69(14)
C(7A)-N(2A)-C(11A)	120.79(13)	C(18A)-C(23A)-C(26A)	121.24(14)
C(7A)-N(2A)-Zr(1)	132.42(10)	C(28A)-C(27A)-C(32A)	119.71(14)
C(11A)-N(2A)-Zr(1)	106.75(9)	C(28A)-C(27A)-N(3A)	121.44(13)
C(17A)-N(3A)-C(27A)	119.40(12)	C(32A)-C(27A)-N(3A)	118.76(13)
C(17A)-N(3A)-Zr(1)	97.76(9)	C(29A)-C(28A)-C(27A)	119.14(14)
C(27A)-N(3A)-Zr(1)	142.57(10)	C(29A)-C(28A)-C(33A)	119.44(13)
N(1A)-C(1A)-C(2A)	119.51(14)	C(27A)-C(28A)-C(33A)	121.42(14)
N(1A)-C(1A)-C(6A)	120.93(13)	C(28A)-C(29A)-C(30A)	121.86(14)
C(2A)-C(1A)-C(6A)	11954(14)	C(31A)-C(30A)-C(29A)	121.00(11) 118 11(14)
C(3A)-C(2A)-C(1A)	121 48(15)	C(31A)-C(30A)-C(34A)	120 66(14)
C(4A)-C(3A)-C(2A)	119 57(15)	C(29A)-C(30A)-C(34A)	120.00(11) 121.23(13)
C(5A)-C(4A)-C(3A)	119.89(15)	C(32A)-C(31A)-C(30A)	121.23(13) 122.08(14)
C(4A) C(5A) C(6A)	122 61(16)	C(31A) C(32A) C(27A)	122.00(14) 110 11(14)
C(5A) C(6A) C(1A)	122.01(10) 116 75(14)	C(31A) C(32A) C(27A)	119.11(14) 110.71(14)
C(5A) - C(6A) - C(7A)	110.75(14) 118.32(14)	C(37A) - C(32A) - C(35A)	119.71(14) 121.13(14)
$C(1\Delta)$ - $C(6\Delta)$ - $C(7\Delta)$	170.32(14) 124.02(12)	$N(1R)_7r(2) N(2R)$	107 58(5)
V(1A) = C(0A) = C(7A)	118 21(17)	N(1B) - 2I(2) - N(3D) N(1B) - 2r(2) - N(2D)	207.30(3) 20.50(5)
N(2A) - C(7A) - C(6A)	110.31(14) 120.29(12)	N(1D) - 2I(2) - N(2D) N(2D) - 7r(2) - N(2D)	80.39(3) 87 85(5)
$\mathbf{N}(2\mathbf{A}) = \mathbf{C}(7\mathbf{A}) = \mathbf{C}(0\mathbf{A})$	120.20(13) 121.20(14)	N(3D) - 2I(2) - N(2D) N(1D) - 7r(2) - CI(2D)	02.03(3)
C(0A) - C(7A) - C(0A)	121.39(14)	$N(1D)-ZI(2)-CI(2D)$ $N(2D)=Z_{T}(2)-CI(2D)$	113.48(4)
C(9A) = C(0A) = C(1A)	121.20(14)	N(3D) - ZI(2) - CI(2B) $N(3D) - ZI(2) - CI(2D)$	100.84(4)
C(0A)-C(9A)-C(10A)	119.32(14)	N(2B)-ZI(2)-CI(2B)	102.99(4)

N(1B)-Zr(2)-Cl(1B)	109.82(4)	C(16B)-C(17B)-Zr(2)	133.54(12)
N(3B)-Zr(2)-Cl(1B)	135.02(4)	N(3B)-C(17B)-Zr(2)	49.82(7)
N(2B)-Zr(2)-Cl(1B)	79.53(3)	C(23B)-C(18B)-C(19B)	120.49(15)
Cl(2B)- $Zr(2)$ - $Cl(1B)$	86.398(14)	C(23B)-C(18B)-N(1B)	121.37(14)
N(1B)-Zr(2)-C(17B)	134.64(5)	C(19B)-C(18B)-N(1B)	118.14(14)
N(3B)-Zr(2)-C(17B)	31.72(5)	C(23B)-C(18B)-Zr(2)	106.26(11)
N(2B)-Zr(2)-C(17B)	76.10(5)	C(19B)-C(18B)-Zr(2)	116.41(10)
Cl(2B)-Zr(2)-C(17B)	98.22(4)	N(1B)-C(18B)-Zr(2)	42.68(7)
Cl(1B)-Zr(2)-C(17B)	103.50(4)	C(20B)-C(19B)-C(18B)	118.30(16)
N(1B)-Zr(2)-C(18B)	28.69(5)	C(20B)-C(19B)-C(24B)	120.26(15)
N(3B)-Zr(2)-C(18B)	94,99(5)	C(18B)-C(19B)-C(24B)	121.42(14)
N(2B)-Zr(2)-C(18B)	104 57(5)	C(19B)-C(20B)-C(21B)	122.00(16)
Cl(2B)-Zr(2)-C(18B)	91 73(3)	C(22B)-C(21B)-C(20B)	118 39(16)
Cl(1B)-Zr(2)-C(18B)	12941(3)	C(22B) - C(21B) - C(25B)	121 69(17)
C(17B) - Zr(2) - C(18B)	126 70(5)	C(20B) - C(21B) - C(25B)	121.09(17) 119.91(17)
C(1B)-N(1B)-C(18B)	120.70(3) 117.80(13)	C(21B) - C(22B) - C(23B)	117.91(17) 122.28(17)
C(1B)-N(1B)-Zr(2)	13350(11)	C(22B)-C(22B)-C(18B)	122.20(17) 118 28(16)
C(1B) - N(1B) - ZI(2) C(18B) N(1B) - Zr(2)	108 63(0)	C(22B) - C(23B) - C(16B)	110.20(10) 110.34(16)
C(10D) - N(1D) - ZI(2) C(11B) N(2B) C(7B)	108.05(9)	C(22B)-C(23B)-C(20B) C(18B) C(23B) C(26B)	119.34(10) 122.32(16)
C(11B) - N(2B) - C(7B) $C(11B) - N(2B) - Z_{r}(2)$	121.03(13) 109 5 8(11)	C(10B)-C(23B)-C(20B) C(22B)-C(27B)-C(28B)	122.32(10) 110 72(14)
C(11D)-N(2D)-ZI(2) C(7D) N(2D) 7r(2)	100.36(11) 120.76(12)	C(32B)-C(27B)-C(28B) C(32B)-C(27B)-N(3B)	119.72(14) 121.24(12)
C(7B) - N(2B) - ZI(2)	129.70(12) 118.04(12)	C(32B)-C(27B)-N(3B) C(28B)-C(27B)-N(2B)	121.24(13) 118.05(12)
C(17D) - N(3D) - C(27D)	118.04(13)	C(20D) - C(27D) - N(3D)	118.93(13)
C(1/B)-N(3B)-Zr(2)	98.40(9)	C(29B)-C(28B)-C(27B)	119.05(14)
C(2/B)-N(3B)-Zf(2)	143.37(10) 122.07(16)	C(29B)-C(28B)-C(33B)	119.44(14)
N(1B)-C(1B)-C(0B)	122.07(16)	C(27B)-C(28B)-C(33B)	121.47(14)
N(1B)-C(1B)-C(2B)	118.22(16)	C(28B)-C(29B)-C(30B)	122.51(14)
C(6B)-C(1B)-C(2B)	119./1(16)	C(29B)-C(30B)-C(31B)	11/.58(14)
C(3B)-C(2B)-C(1B)	121.3(2)	C(29B)-C(30B)-C(34B)	121.09(14)
C(2B)-C(3B)-C(4B)	119.7(2)	C(31B)-C(30B)-C(34B)	121.30(14)
C(5B)-C(4B)-C(3B)	119.79(19)	C(30B)-C(31B)-C(32B)	122.05(14)
C(4B)-C(5B)-C(6B)	122.8(2)	C(31B)-C(32B)-C(27B)	119.03(14)
C(1B)-C(6B)-C(5B)	116.55(18)	C(31B)-C(32B)-C(35B)	119.17(14)
C(1B)-C(6B)-C(7B)	124.75(15)	C(27B)-C(32B)-C(35B)	121.80(14)
C(5B)-C(6B)-C(7B)	118.62(17)	N(1C)-Zr(3)-N(3C)	107.93(5)
N(2B)-C(7B)-C(8B)	117.97(18)	N(1C)-Zr(3)-N(2C)	79.42(5)
N(2B)-C(7B)-C(6B)	120.90(15)	N(3C)-Zr(3)-N(2C)	82.31(4)
C(8B)-C(7B)-C(6B)	121.13(17)	N(1C)- $Zr(3)$ - $Cl(2C)$	119.18(4)
C(9B)-C(8B)-C(7B)	121.1(2)	N(3C)- $Zr(3)$ - $Cl(2C)$	98.08(4)
C(8B)-C(9B)-C(10B)	120.20(18)	N(2C)- $Zr(3)$ - $Cl(2C)$	159.69(3)
C(9B)-C(10B)-C(11B)	118.4(2)	N(1C)- $Zr(3)$ - $Cl(1C)$	106.27(4)
N(2B)-C(11B)-C(10B)	120.60(18)	N(3C)- $Zr(3)$ - $Cl(1C)$	137.16(4)
N(2B)-C(11B)-C(12B)	118.66(15)	N(2C)- $Zr(3)$ - $Cl(1C)$	79.39(3)
C(10B)-C(11B)-C(12B)	120.70(18)	Cl(2C)- $Zr(3)$ - $Cl(1C)$	86.961(13)
C(17B)-C(12B)-C(13B)	118.29(18)	N(1C)- $Zr(3)$ - $C(17C)$	134.84(5)
C(17B)-C(12B)-C(11B)	123.19(15)	N(3C)- $Zr(3)$ - $C(17C)$	31.49(5)
C(13B)-C(12B)-C(11B)	117.81(17)	N(2C)- $Zr(3)$ - $C(17C)$	76.55(4)
C(14B)-C(13B)-C(12B)	121.5(2)	Cl(2C)-Zr(3)-C(17C)	93.12(3)
C(13B)-C(14B)-C(15B)	119.73(18)	Cl(1C)-Zr(3)-C(17C)	106.10(3)
C(16B)-C(15B)-C(14B)	120.8(2)	N(1C)-Zr(3)-C(18C)	30.57(5)
C(15B)-C(16B)-C(17B)	120.0(2)	N(3C)-Zr(3)-C(18C)	98.46(5)
C(12B)-C(17B)-C(16B)	119.49(16)	N(2C)-Zr(3)-C(18C)	106.97(4)
C(12B)-C(17B)-N(3B)	119.96(15)	Cl(2C)-Zr(3)-C(18C)	93.11(3)
C(16B)-C(17B)-N(3B)	120.45(17)	Cl(1C)-Zr(3)-C(18C)	123.85(3)
C(12B)-C(17B)-Zr(2)	85.61(10)	C(17C)-Zr(3)-C(18C)	129.90(5)
N(1C)-Zr(3)-C(12C)	133.03(5)	C(23C)-C(18C)-Zr(3)	102.69(10)
--------------------------	--------------------------	--	--------------------------
N(3C)-Zr(3)-C(12C)	56.83(4)	C(19C)-C(18C)-Zr(3)	117.18(10)
N(2C)-Zr(3)-C(12C)	55.88(4)	N(1C)-C(18C)-Zr(3)	45.85(7)
Cl(2C)-Zr(3)-C(12C)	107.37(3)	C(20C)-C(19C)-C(18C)	118.54(15)
Cl(1C)-Zr(3)-C(12C)	80.96(3)	C(20C)-C(19C)-C(24C)	120.27(14)
C(17C)-Zr(3)-C(12C)	29.58(4)	C(18C)-C(19C)-C(24C)	121.13(14)
C(18C)-Zr(3)-C(12C)	$149\ 21(4)$	C(19C)-C(20C)-C(21C)	121.99(16)
C(1C)-N(1C)-C(18C)	119.26(12)	C(22C)-C(21C)-C(20C)	118 56(16)
C(1C) - N(1C) - Zr(3)	137.03(10)	C(22C) - C(21C) - C(25C)	121 58(17)
C(18C)-N(1C)-Zr(3)	103 58(9)	C(20C)-C(21C)-C(25C)	119.86(16)
C(11C) - N(2C) - C(7C)	103.30(7) 121.19(13)	C(21C) - C(22C) - C(23C)	122 18(16)
C(11C) - N(2C) - C(7C)	106 17(0)	C(21C) - C(22C) - C(23C)	122.10(10) 118 31(15)
C(TC) = N(2C) - Zr(3)	13252(10)	C(22C) - C(23C) - C(18C)	110.31(15) 120.01(15)
C(17C) N(2C) - C(27C)	132.32(10) 110.83(12)	C(22C)- $C(23C)$ - $C(26C)$	120.01(15) 121.64(15)
C(17C) - N(3C) - C(27C)	119.03(12)	C(18C)-C(23C)-C(28C)	121.04(13) 120.10(14)
C(1/C) - N(3C) - Zr(3)	98.21(9)	C(32C)-C(27C)-C(28C)	120.19(14)
C(2/C) - N(3C) - ZF(3)	141./0(10)	C(32C)-C(27C)-N(3C)	121.41(13)
N(1C)-C(1C)-C(2C)	118.6/(15)	C(28C)-C(27C)-N(3C)	118.29(13)
N(1C)-C(1C)-C(6C)	121.72(13)	C(29C)-C(28C)-C(27C)	118.95(14)
C(2C)-C(1C)-C(6C)	119.60(14)	C(29C)-C(28C)-C(33C)	119.94(14)
C(3C)-C(2C)-C(1C)	121.68(17)	C(27C)-C(28C)-C(33C)	121.09(14)
C(2C)-C(3C)-C(4C)	119.54(16)	C(28C)-C(29C)-C(30C)	122.40(14)
C(3C)-C(4C)-C(5C)	119.45(16)	C(29C)-C(30C)-C(31C)	117.60(14)
C(4C)-C(5C)-C(6C)	122.93(17)	C(29C)-C(30C)-C(34C)	121.03(14)
C(5C)-C(6C)-C(1C)	116.72(15)	C(31C)-C(30C)-C(34C)	121.37(14)
C(5C)-C(6C)-C(7C)	118.04(15)	C(32C)-C(31C)-C(30C)	122.32(14)
C(1C)-C(6C)-C(7C)	125.22(14)	C(31C)-C(32C)-C(27C)	118.46(14)
N(2C)-C(7C)-C(8C)	117.68(14)	C(31C)-C(32C)-C(35C)	119.49(14)
N(2C)-C(7C)-C(6C)	120.27(14)	C(27C)-C(32C)-C(35C)	122.04(14)
C(8C)-C(7C)-C(6C)	122.05(14)	N(1D)-Zr(4)-N(3D)	107.12(5)
C(9C)-C(8C)-C(7C)	121.34(15)	N(1D)-Zr(4)-N(2D)	80.74(5)
C(10C)-C(9C)-C(8C)	119.50(15)	N(3D)-Zr(4)-N(2D)	82.13(5)
C(9C)-C(10C)-C(11C)	118.29(15)	N(1D)-Zr(4)-Cl(2D)	117.78(4)
N(2C)-C(11C)-C(10C)	121.96(14)	N(3D)-Zr(4)-Cl(2D)	98.94(4)
N(2C)-C(11C)-C(12C)	118.84(13)	N(2D)- $Zr(4)$ - $Cl(2D)$	159.63(3)
C(10C)-C(11C)-C(12C)	119.15(14)	N(1D)-Zr(4)-Cl(1D)	107.74(3)
C(13C)-C(12C)-C(17C)	118.35(14)	N(3D)-Zr(4)-Cl(1D)	136.49(4)
C(13C)-C(12C)-C(11C)	117.84(13)	N(2D)-Zr(4)-Cl(1D)	78.63(3)
C(17C)-C(12C)-C(11C)	122.61(13)	Cl(2D)-Zr(4)-Cl(1D)	87 075(14)
C(13C)-C(12C)-Zr(3)	137.41(10)	N(1D)-Zr(4)-C(17D)	134 92(5)
C(17C)-C(12C)-Zr(3)	68 17(8)	N(3D)-Zr(4)-C(17D)	31.95(5)
C(11C)-C(12C)-Zr(3)	78 69(8)	N(2D)-Zr(4)-C(17D)	76 32(5)
C(14C) - C(13C) - C(12C)	121.87(15)	C(2D) = Zr(4) = C(17D)	93.76(3)
C(14C) - C(13C) - C(12C)	121.07(15) 110.32(15)	Cl(2D) - Zl(4) - C(17D)	95.70(3)
C(15C) - C(14C) - C(15C)	119.32(13) 120.40(15)	$N(1D) Z_r(4) C(17D)$	105.03(3) 20.38(5)
C(15C) - C(15C) - C(14C)	120.49(15) 120.80(15)	N(1D) - ZI(4) - C(18D) N(2D) - Zr(4) - C(18D)	29.38(3)
C(15C) - C(15C) - C(17C)	120.80(13) 121.65(14)	N(3D) - ZI(4) - C(18D) N(2D) - Zr(4) - C(18D)	94.31(3) 105.27(5)
C(16C) - C(17C) - N(3C)	121.03(14) 119.95(14)	N(2D)-ZI(4)-C(18D)	103.27(3)
C(16C) - C(17C) - C(12C)	118.85(14)	CI(2D)-Zr(4)-C(18D)	94.95(3)
N(5U)-U(1/U)-U(1/U)	119.28(13)	C(1D) - Zr(4) - C(18D)	128.08(3)
U(10U)-U(1/U)-Zr(3)	130.34(11)	C(1/D) - Zr(4) - C(18D)	120.45(5)
N(3C)-C(1/C)-Zr(3)	50.30(7)	C(1D)-N(1D)-C(18D)	118.60(12)
C(12C)-C(1/C)-Zr(3)	82.25(9)	C(1D)-N(1D)-Zr(4)	134.05(10)
C(23C)-C(18C)-C(19C)	120.31(15)	C(18D)-N(1D)-Zr(4)	107.19(9)
C(23C)-C(18C)-N(1C)	120.39(14)	C(11D)-N(2D)-C(7D)	121.38(13)
C(19C)-C(18C)-N(1C)	119.28(13)	C(11D)-N(2D)-Zr(4)	108.19(10)

C(7D)-N(2D)-Zr(4)	130.42(11)	C(28D)-C(27D)-N(3D)	121.18(13)
C(17D)-N(3D)-C(27D)	118.99(12)	C(32D)-C(27D)-N(3D)	118.48(13)
C(17D)-N(3D)-Zr(4)	97.61(9)	C(29D)-C(28D)-C(27D)	118.32(14)
C(27D)-N(3D)-Zr(4)	143.14(10)	C(29D)-C(28D)-C(33D)	119.56(13)
N(1D)-C(1D)-C(2D)	118.65(15)	C(27D)-C(28D)-C(33D)	122.09(14)
N(1D)-C(1D)-C(6D)	121.94(14)	C(28D)-C(29D)-C(30D)	122.32(14)
C(2D)-C(1D)-C(6D)	119.41(15)	C(31D)-C(30D)-C(29D)	118.06(14)
C(3D)-C(2D)-C(1D)	121.95(17)	C(31D)-C(30D)-C(34D)	120.84(14)
C(2D)-C(3D)-C(4D)	118.90(17)	C(29D)-C(30D)-C(34D)	121.05(14)
C(5D)-C(4D)-C(3D)	120.17(17)	C(30D)-C(31D)-C(32D)	122.03(15)
C(4D)-C(5D)-C(6D)	122.83(18)	C(31D)-C(32D)-C(27D)	118.97(14)
C(5D)-C(6D)-C(1D)	116.56(16)	C(31D)-C(32D)-C(35D)	119.59(14)
C(5D)-C(6D)-C(7D)	118.18(15)	C(27D)-C(32D)-C(35D)	121.39(14)
C(1D)-C(6D)-C(7D)	125.23(14)	C(7)-C(2)-C(3)	117.69(18)
N(2D)-C(7D)-C(8D)	118.50(16)	C(7)-C(2)-C(1)	120.74(17)
N(2D)-C(7D)-C(6D)	120.44(14)	C(3)-C(2)-C(1)	121.57(18)
C(8D)-C(7D)-C(6D)	121.04(15)	C(4)-C(3)-C(2)	121.33(18)
C(9D)-C(8D)-C(7D)	120.26(16)	C(3)-C(4)-C(5)	120.04(17)
C(8D)-C(9D)-C(10D)	120.16(16)	C(4)-C(5)-C(6)	119.34(18)
C(9D)-C(10D)-C(11D)	118.52(17)	C(7)-C(6)-C(5)	120.38(18)
N(2D)-C(11D)-C(10D)	121.07(16)	C(6)-C(7)-C(2)	121.18(17)
N(2D)-C(11D)-C(12D)	118.25(13)	C(17)-C(12)-C(13)	117.9(2)
C(10D)-C(11D)-C(12D)	120.65(15)	C(17)-C(12)-C(11)	121.9(2)
C(13D)-C(12D)-C(17D)	117.97(15)	C(13)-C(12)-C(11)	120.2(2)
C(13D)-C(12D)-C(11D)	118.79(14)	C(12)-C(13)-C(14)	121.4(2)
C(17D)-C(12D)-C(11D)	122.74(14)	C(15)-C(14)-C(13)	120.4(2)
C(14D)-C(13D)-C(12D)	121.68(16)	C(14)-C(15)-C(16)	118.9(2)
C(13D)-C(14D)-C(15D)	119.75(16)	C(17)-C(16)-C(15)	119.7(2)
C(16D)-C(15D)-C(14D)	120.15(16)	C(12)-C(17)-C(16)	121.7(2)
C(15D)-C(16D)-C(17D)	121.17(16)	C(23)-C(22)-C(27)	118.03(17)
C(16D)-C(17D)-N(3D)	120.84(14)	C(23)-C(22)-C(21)	121.39(16)
C(16D)-C(17D)-C(12D)	119.15(14)	C(27)-C(22)-C(21)	120.53(17)
N(3D)-C(17D)-C(12D)	119.74(13)	C(22)-C(23)-C(24)	121.52(19)
C(16D)-C(17D)-Zr(4)	131.38(10)	C(23)-C(24)-C(25)	119.8(2)
N(3D)-C(17D)-Zr(4)	50.44(7)	C(26)-C(25)-C(24)	119.80(19)
C(12D)-C(17D)-Zr(4)	85.32(9)	C(25)-C(26)-C(27)	120.36(19)
C(19D)-C(18D)-C(23D)	121.02(15)	C(26)-C(27)-C(22)	120.48(19)
C(19D)-C(18D)-N(1D)	120.61(14)		
C(23D)-C(18D)-N(1D)	118.36(14)		
C(19D)-C(18D)-Zr(4)	104.22(10)		
C(23D)-C(18D)-Zr(4)	117.54(10)		
N(1D)-C(18D)-Zr(4)	43.43(6)		
C(20D)-C(19D)-C(18D)	117.86(15)		
C(20D)-C(19D)-C(24D)	119.84(16)		
C(18D)-C(19D)-C(24D)	122.26(15)		
C(21D)-C(20D)-C(19D)	121.86(16)		
C(20D)-C(21D)-C(22D)	118.74(16)		
C(20D)-C(21D)-C(25D)	121.16(17)		
C(22D)-C(21D)-C(25D)	120.10(18)		
C(23D)-C(22D)-C(21D)	121.91(17)		
C(22D)-C(23D)-C(18D)	118.39(15)		
C(22D)-C(23D)-C(26D)	120.15(15)		
C(18D)-C(23D)-C(26D)	121.45(14)		
C(28D)-C(27D)-C(32D)	120.26(14)		

Symmetry transformations used to generate equivalent atoms:

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for DYT12 (CCDC 697086). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Zr(1)	98(1)	106(1)	112(1)	-9(1)	2(1)	-7(1)
Cl(1A)	147(2)	121(2)	208(2)	-12(1)	26(2)	-25(1)
Cl(2A)	119(2)	169(2)	291(2)	-20(2)	39(2)	2(2)
N(1A)	172(6)	119(6)	135(6)	13(5)	-1(5)	2(5)
N(2A)	120(6)	88(5)	144(6)	10(5)	11(5)	-23(5)
N(3A)	129(6)	105(6)	119(6)	-14(5)	-2(5)	-9(5)
C(1A)	212(8)	99(7)	123(7)	-13(5)	21(6)	-35(6)
C(2A)	268(8)	156(8)	139(7)	2(6)	-10(6)	-4(7)
C(3A)	372(10)	215(9)	130(7)	-5(6)	28(7)	-65(8)
C(4A)	321(10)	229(9)	174(8)	-48(7)	87(7)	-15(7)
C(5A)	222(8)	182(8)	202(8)	-31(6)	60(7)	-2(6)
C(6A)	176(8)	115(6)	134(7)	-16(5)	18(6)	-40(6)
C(7A)	159(8)	91(7)	175(8)	3(6)	18(6)	-29(6)
C(8A)	135(8)	142(8)	226(8)	-17(6)	66(6)	5(6)
C(9A)	153(8)	118(7)	274(9)	9(6)	-28(7)	14(6)
C(10A)	179(8)	114(7)	195(8)	25(6)	-34(7)	-27(6)
C(11A)	134(7)	90(6)	139(7)	16(5)	-20(6)	-32(6)
C(12A)	131(7)	133(7)	125(7)	-7(5)	-7(6)	-28(6)
C(13A)	196(8)	181(8)	171(8)	24(6)	-10(7)	-31(6)
C(14A)	309(10)	236(9)	137(8)	36(7)	1(7)	-77(7)
C(15A)	267(9)	254(9)	148(8)	-35(6)	50(7)	-43(7)
C(16A)	202(8)	173(8)	172(8)	-28(6)	26(6)	-17(6)
C(17A)	124(7)	134(7)	130(7)	-6(6)	-7(5)	-46(6)
C(18A)	171(7)	162(7)	108(7)	12(6)	-24(6)	-1(6)
C(19A)	238(8)	170(8)	139(7)	3(6)	-46(6)	-13(6)
C(20A)	187(8)	259(9)	223(9)	3(7)	-56(7)	6(7)
C(21A)	286(9)	234(9)	164(8)	14(7)	-14(7)	83(7)
C(22A)	274(9)	179(8)	143(8)	30(6)	28(7)	17(7)
C(23A)	229(8)	158(7)	108(7)	8(5)	31(7)	-10(7)
C(24A)	246(9)	252(9)	279(9)	31(7)	-98(7)	-82(7)
C(25A)	361(11)	282(9) 287(10)	$\frac{2}{308(11)}$	5(8)	-12(9)	141(8)
C(26A)	200(8)	190(8)	194(8)	7(7)	25(7)	-21(7)
C(27A)	146(7)	116(7)	118(7)	-15(5)	4(6)	-26(6)
C(28A)	112(7)	132(7)	154(7)	-25(6)	19(6)	3(6)
C(29A)	159(8)	132(7) 128(7)	208(8)	-25(6)	-11(6)	12(6)
C(30A)	152(7)	126(7) 136(7)	200(8)	-15(6)	7(6)	0(6)
C(31A)	132(7) 137(7)	130(7) 141(8)	197(8)	-14(6)	-2(6)	-35(6)
C(32A)	132(7)	134(7)	154(7)	-19(6)	-6(6)	11(6)
C(33A)	133(7)	157(8)	276(9)	-27(7)	10(7)	17(6)
C(34A)	195(8)	131(7)	441(11)	-10(7)	-6(8)	-23(6)
C(35A)	143(8)	125(8)	311(9)	16(7)	-15(7)	-21(6)
7r(2)	102(1)	118(1)	111(1)	$\Omega(1)$	-1(1)	- 2 (1)
Cl(1P)	102(1) 167(2)	130(2)	280(2)	12(2)	-1(1) 8(2)	-2(1) 16(1)
CI(1D)	107(2) 121(2)	130(2)	209(2)	-12(2)	-0(2)	10(1)
U(2D)	131(2) 221(7)	242(2) 127(6)	$\frac{241(2)}{126(6)}$	20(2)	30(2)	1(2)
IN(ID)	221(7)	12/(0) 100(6)	130(0)	11(3)	12(0) 14(6)	-11(0)
IN(2B)	148(7)	100(6)	328(8)	-8(6)	14(6)	4(5)

N(3B)	115(6)	144(6)	141(6)	-16(5)	-5(5)	8(5)
C(1B)	383(10)	116(8)	172(8)	33(6)	93(7)	85(7)
C(2B)	551(13)	207(8)	155(8)	13(6)	38(9)	117(9)
C(3B)	883(18)	308(11)	192(9)	78(8)	124(11)	281(12)
C(4B)	859(18)	294(11)	327(12)	164(9)	375(12)	254(12)
C(5B)	513(13)	206(9)	444(12)	132(8)	316(11)	125(9)
C(6B)	355(10)	130(8)	266(9)	54(7)	153(8)	74(7)
C(7B)	199(9)	83(7)	457(12)	22(7)	135(8)	-3(6)
C(8B)	243(10)	192(9)	745(17)	70(10)	251(11)	-18(8)
C(0D)	127(9)	192(9) 193(10)	1000(20)	68(11)	71(11)	-41(8)
C(10B)	127(9) 103(0)	118(8)	770(17)	60(0)	171(11)	-41(0)
C(10D)	151(8)	05(7)	446(11)	-09(9) 58(7)	73(8)	17(6)
C(11D) C(12B)	131(8) 214(0)	93(7)	440(11) 301(10)	-38(7)	-75(8)	17(0)
C(12D) C(12D)	214(9) 275(11)	204(9) 250(10)	501(10) 502(12)	-01(7)	-140(8)	$\frac{90(7)}{142(0)}$
C(13D)	5/3(11) 508(12)	239(10)	303(13)	-209(9)	-234(10)	143(9)
C(14B)	508(13)	4/4(13)	404(13)	-290(11)	-238(11)	202(11)
C(15B)	446(12)	682(17)	183(10)	-145(10)	-88(9)	280(12)
C(16B)	332(10)	457(12)	186(9)	-22(9)	-30(8)	169(9)
C(T/B)	194(8)	253(9)	160(8)	-66(7)	-62(7)	112(7)
C(18B)	224(9)	163(8)	116(7)	-28(6)	-27(6)	-21(6)
C(19B)	223(8)	154(7)	127(7)	-16(6)	-2(7)	-10(7)
C(20B)	316(10)	171(8)	227(9)	-59(7)	41(8)	-25(7)
C(21B)	326(10)	275(10)	252(10)	-94(8)	30(8)	-106(8)
C(22B)	212(9)	383(11)	252(10)	-81(8)	-35(8)	-64(8)
C(23B)	214(9)	298(10)	167(8)	-37(7)	-59(7)	30(8)
C(24B)	201(8)	196(8)	206(9)	-7(7)	27(7)	31(7)
C(25B)	466(13)	393(12)	424(13)	-132(10)	126(10)	-260(10)
C(26B)	295(10)	398(11)	260(10)	-25(8)	-95(8)	111(9)
C(27B)	136(7)	152(8)	113(7)	11(6)	-2(6)	-1(6)
C(28B)	139(7)	160(8)	159(7)	13(6)	-19(6)	21(6)
C(29B)	127(7)	193(8)	210(8)	8(7)	-4(6)	9(6)
C(30B)	243(9)	158(7)	176(8)	45(6)	-23(7)	19(6)
C(31B)	158(8)	196(8)	199(8)	57(6)	-10(6)	-43(6)
C(32B)	149(7)	202(8)	124(7)	59(6)	-7(6)	17(6)
C(33B)	109(8)	179(8)	418(11)	14(7)	4(7)	16(6)
C(34B)	240(9)	156(8)	360(9)	35(7)	-32(8)	4(7)
C(35B)	129(8)	265(9)	277(9)	92(7)	38(7)	-15(7)
0(002)		200())	_//(>)	>=(/)	20(1)	10(1)
Zr(3)	100(1)	97(1)	99(1)	-2(1)	-2(1)	0(1)
Cl(1C)	154(2)	110(2)	194(2)	-2(1)	21(2)	-10(1)
Cl(2C)	127(2)	168(2)	255(2)	-11(2)	$\frac{21(2)}{38(2)}$	12(2)
N(1C)	122(2) 188(7)	106(6)	135(6)	7(5)	-15(5)	-2(5)
N(2C)	114(6)	07(5)	153(6)	7(5) 23(5)	-13(5)	-2(5)
N(2C)	117(6)	97(5)	110(6)	-23(3)	3(5)	-9(3)
$\Gamma(3C)$	$\frac{11}{(0)}$	91(0) 117(7)	119(0) 110(7)	0(3)	3(3)	1(3) 61(6)
C(1C)	231(8) 211(0)	175(8)	119(7) 154(8)	-3(0)	14(0)	-01(0)
C(2C)	311(9)	173(0)	134(8)	-4(0)	-4(7)	-30(7)
C(SC)	429(11)	231(9)	120(8)	-10(7)	23(8)	-116(8)
C(4C)	397(11)	285(10)	178(8)	-83(7)	97(8)	-39(8)
C(5C)	257(9)	210(9)	220(9)	-49(7)	/0(/)	-11(/)
C(6C)	208(8)	124(7)	132(7)	-20(5)	48(7)	-51(6)
C(7C)	165(8)	90(7)	181(8)	-12(6)	48(6)	-34(6)
C(8C)	180(8)	164(8)	239(9)	-25(7)	88(7)	18(6)
C(9C)	130(7)	162(7)	309(10)	-16(7)	9(7)	35(6)
C(10C)	168(8)	119(7)	217(8)	13(6)	-50(7)	8(6)
C(11C)	117(7)	102(7)	168(7)	-1(5)	4(6)	-7(6)

C(12C)	128(7)	132(7)	121(7)	-16(6)	-33(6)	8(6)
C(13C)	200(8)	135(7)	161(8)	9(6)	-20(6)	5(6)
C(14C)	276(9)	194(8)	146(8)	45(6)	-9(7)	-3(7)
C(15C)	262(9)	214(8)	102(7)	-21(6)	3(6)	35(7)
C(16C)	223(8)	136(7)	152(8)	-32(6)	15(6)	12(6)
C(17C)	120(7)	124(7)	118(7)	13(6)	-24(6)	-16(6)
C(18C)	178(8)	159(7)	93(7)	21(6)	-15(6)	-3(6)
C(19C)	193(8)	157(7)	109(7)	10(5)	10(6)	-9(7)
C(20C)	320(10)	159(8)	140(8)	25(6)	27(7)	-2(7)
C(21C)	254(9)	258(9)	164(8)	47(7)	7(7)	78(8)
C(22C)	197(9)	322(10)	205(9)	61(7)	-21(7)	20(7)
C(23C)	207(8)	222(9)	142(7)	42(6)	-54(6)	-46(7)
C(24C)	255(9)	194(8)	150(8)	10(6)	27(7)	-39(7)
C(25C)	387(11)	360(11)	327(11)	92(9)	34(9)	192(9)
C(26C)	295(10)	275(10)	276(10)	49(8)	-114(8)	-112(8)
C(27C)	136(7)	97(7)	107(7)	-19(5)	-20(6)	10(6)
C(28C)	130(7) 131(8)	109(7)	162(8)	-15(5)	-24(6)	0(6)
C(20C)	120(7)	153(8)	245(9)	16(6)	-41(6)	-23(6)
C(2)C)	120(7) 202(8)	117(7)	2+3(9) 210(8)	14(6)	-41(0)	-23(0)
C(30C)	182(8)	117(7) 131(7)	186(8)	14(0)	-40(7)	-55(0)
C(31C)	162(8)	131(7) 120(7)	130(3) 111(7)	13(0) 20(5)	-31(0)	5(6)
C(32C)	109(8)	150(7)	111(7) 252(10)	-29(3)	-12(0)	-3(0)
C(33C)	111(0)	130(8) 148(7)	332(10)	10(7)	-29(7)	21(0)
C(34C)	200(8)	148(7)	430(11)	30(7)	-78(8)	-24(0)
C(35C)	132(8)	160(8)	245(9)	-4(7)	17(7)	29(6)
Zr(4)	107(1)	99(1)	101(1)	4(1)	4(1)	7(1)
Cl(1D)	169(2)	113(2)	225(2)	0(2)	0(2)	27(1)
Cl(2D)	138(2)	206(2)	214(2)	12(2)	53(2)	6(2)
N(1D)	203(7)	128(6)	108(5)	11(4)	16(5)	17(6)
N(2D)	141(6)	91(6)	203(7)	17(5)	24(5)	26(5)
N(3D)	119(6)	112(6)	110(6)	-8(5)	0(5)	2(5)
C(1D)	271(9)	115(7)	152(7)	14(6)	31(6)	60(6)
C(2D)	392(10)	187(8)	134(7)	5(6)	14(7)	67(8)
C(3D)	515(12)	234(9)	152(8)	18(7)	57(8)	110(9)
C(4D)	521(13)	251(10)	200(9)	89(7)	178(9)	134(9)
C(5D)	367(10)	161(8)	278(9)	68(7)	128(9)	65(8)
C(6D)	257(9)	124(7)	194(8)	26(6)	83(7)	68(7)
C(7D)	200(8)	96(7)	249(8)	33(6)	82(7)	29(6)
C(8D)	200(0) 211(9)	203(9)	$\frac{249(0)}{380(11)}$	41(8)	127(8)	-2(7)
C(0D)	165(9)	101(0)	495(12)	38(8)	78(9)	-2(7)
C(10D)	201(8)	131(9)	355(10)	7(7)	51(8)	-12(7)
C(10D)	201(8) 145(8)	131(8) 87(7)	333(10)	-7(7)	-31(8)	-13(0)
C(11D)	143(8) 157(8)	0/(/) 116(7)	270(9)	0(0)	-22(7)	25(0)
C(12D)	137(8)	110(7) 120(7)	195(8)	-10(0)	-39(0)	20(0)
C(13D)	209(9)	139(7)	283(9)	-23(7)	-94(8)	-1(7)
C(14D)	325(10)	227(9)	225(9)	-102(7)	-86(8)	55(8)
C(15D)	310(9)	277(10)	151(8)	-50(7)	-25(7)	29(8)
C(16D)	205(8)	196(8)	184(8)	-26(7)	-16(6)	11(7)
C(T/D)	119(7)	138(7)	147(7)	-11(6)	-33(6)	47(6)
C(18D)	201(8)	193(8)	75(7)	-5(6)	-9(6)	-18(7)
C(19D)	199(8)	280(9)	127(7)	-24(7)	-33(7)	15(7)
C(20D)	199(9)	408(11)	174(9)	-44(8)	1(7)	-84(8)
C(21D)	353(11)	297(10)	183(9)	-60(7)	53(8)	-164(8)
C(22D)	312(10)	205(9)	166(8)	-26(7)	33(7)	-41(7)
C(23D)	220(8)	171(7)	101(7)	-9(5)	5(7)	-4(7)

C(24D)	262(9)	468(12)	182(9)	-34(8)	-76(7)	124(9)
C(25D)	509(13)	401(12)	386(12)	-117(10)	136(10)	-238(11)
C(26D)	207(9)	195(8)	174(8)	-16(6)	-4(7)	17(7)
C(27D)	164(8)	81(7)	86(7)	1(5)	-5(6)	18(6)
C(28D)	133(7)	146(7)	96(7)	12(5)	-22(6)	-17(6)
C(29D)	191(8)	124(7)	149(8)	13(6)	-29(6)	-21(6)
C(30D)	198(8)	121(7)	160(7)	3(6)	-34(6)	12(6)
C(31D)	163(8)	136(8)	178(8)	-10(6)	-16(6)	42(6)
C(32D)	125(7)	142(7)	139(7)	0(6)	-18(6)	-13(6)
C(33D)	154(8)	147(8)	212(8)	28(6)	4(7)	-21(6)
C(34D)	245(9)	126(7)	329(10)	-11(6)	-56(8)	27(7)
C(35D)	133(8)	144(8)	306(9)	25(7)	11(7)	15(6)
C(1)	411(12)	441(13)	475(13)	-86(11)	28(10)	15(10)
C(2)	230(9)	437(12)	218(9)	-31(8)	-38(8)	-61(8)
C(3)	255(9)	546(13)	201(9)	-20(9)	4(8)	-113(9)
C(4)	285(10)	504(13)	258(10)	158(9)	-56(8)	-169(9)
C(5)	267(10)	319(11)	431(12)	144(9)	-78(9)	-37(8)
C(6)	181(9)	391(11)	330(11)	134(9)	-18(8)	-2(8)
C(7)	210(8)	334(10)	249(9)	86(8)	-26(7)	-48(8)
C(11)	1130(20)	810(20)	441(16)	182(14)	115(16)	616(18)
C(12)	493(13)	531(14)	215(10)	45(9)	60(9)	172(11)
C(13)	738(16)	416(13)	299(11)	-64(9)	-61(11)	54(12)
C(14)	437(12)	461(13)	372(12)	52(10)	-89(10)	5(10)
C(15)	408(12)	410(13)	429(13)	66(10)	150(10)	-27(10)
C(16)	511(14)	610(16)	308(12)	-36(11)	99(11)	-232(12)
C(17)	320(11)	841(19)	274(11)	172(12)	-8(9)	-38(12)
C(21)	358(10)	297(10)	276(9)	73(8)	52(8)	21(8)
C(22)	235(9)	364(10)	180(8)	93(7)	69(7)	70(8)
C(23)	354(10)	394(11)	159(8)	-14(8)	32(8)	89(9)
C(24)	502(13)	371(11)	238(10)	-13(9)	89(9)	160(10)
C(25)	366(11)	541(14)	281(11)	158(10)	95(9)	203(10)
C(26)	243(10)	575(15)	350(11)	216(11)	22(9)	24(10)
C(27)	301(10)	417(12)	334(10)	165(9)	33(8)	-49(9)

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 12 March 2009

Crystal Structure Analysis of:

DYT13

(Complex 6)

For	Investigator: Daniel Tofan		ext. 6576
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman	ext. 2734
		e-mail: mikeda	y@caltech.edu

Contents

Table 1. Crystal data Figures Minimum overlap Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles Table 5. Anisotropic displacement parameters Table 6. Observed and calculated structure factors (available upon request)

DYT13

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 723743.

Table 1. Crystal data and structure refinement for DYT13 (CCDC 723743).

Empirical formula	$C_{39}H_{41}N_3OCl_2Zr$	
Formula weight	729.87	r p
Crystallization Solvent	THF	15
Crystal Habit	Block	
Crystal size	0.26 x 0.22 x 0.15 mm ³	ALL PROPERTY.
Crystal color	Yellow/orange	for the
Dat	a Collection	M
Type of diffractometer	Bruker KAPPA APEX I	Ι
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9916 reflections used in lattice determination	2.43 to 38.89°	
Unit cell dimensions	a = 11.7169(5) Å b = 12.7754(6) Å c = 13.0786(6) Å	$\alpha = 61.415(2)^{\circ}$ $\beta = 85.745(3)^{\circ}$ $\gamma = 85.899(3)^{\circ}$
Volume	1712.89(13) Å ³	
Z	2	
Crystal system	Triclinic	
Space group	P-1	
Density (calculated)	1.415 Mg/m ³	
F(000)	756	
Data collection program	Bruker APEX2 v2.1-0	
θ range for data collection	1.74 to 39.30°	
Completeness to $\theta = 39.30^{\circ}$	87.1 %	
Index ranges	$-20 \le h \le 20, -19 \le k \le 2$	22, $0 \le 1 \le 23$
Data collection scan type	ω scans; 16 settings	
Data reduction program	Bruker SAINT-Plus v7.	34A
Reflections collected	17760	
Independent reflections	17760 [$R_{int} = 0.0000$]	
Absorption coefficient	0.513 mm ⁻¹	
Absorption correction	Empirical, Twinabs, mu	lti-scan
Max. and min. transmission	0.7477 and 0.6054	

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	17760 / 0 / 422
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.957
Final R indices [I>2 σ (I), 14403 reflections]	R1 = 0.0381, wR2 = 0.0678
R indices (all data)	R1 = 0.0540, wR2 = 0.0693
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.003
Average shift/error	0.000
Largest diff. peak and hole	1.171 and -0.920 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

The crystal is a twin. Reflections from the multiple crystals were combined in a file by the thresholding routine. Input to Cellnow, the twin relationship between the two major components (related to each other by a two-fold rotation along the real a-axis) resulted in a multiple matrix file for use in data integration. The structure was solved by direct methods using data from the major domain and refined against an HKLF5 type file compiled with Twinabs.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Ųx\ 10³) for DYT13 (CCDC 723743). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U _{eq}
$\overline{\mathrm{Zr}(1)}$	2552(1)	2832(1)	7065(1)	13(1)
Cl(1)	4521(1)	3297(1)	7158(1)	18(1)
Cl(2)	556(1)	2647(1)	6755(1)	20(1)
O(1)	2485(1)	4571(1)	5408(1)	19(1)
N(1)	1976(1)	3437(1)	8286(1)	15(1)
N(2)	2683(1)	1043(1)	8768(1)	15(1)
N(3)	3165(1)	1692(1)	6334(1)	15(1)
C(1)	1075(1)	2903(1)	9104(1)	17(1)
C(2)	236(1)	3606(1)	9359(1)	23(1)
C(3)	-719(1)	3098(2)	10076(1)	29(1)
C(4)	-848(1)	1884(2)	10576(1)	30(1)
C(5)	-8(1)	1176(1)	10397(1)	27(1)
C(6)	989(1)	1655(1)	9679(1)	19(1)
C(7)	1920(1)	803(1)	9698(1)	18(1)
C(8)	2037(1)	-272(1)	10740(1)	26(1)
C(9)	2870(1)	-1117(1)	10821(1)	29(1)
C(10)	3612(1)	-886(1)	9884(1)	24(1)
C(11)	3532(1)	215(1)	8861(1)	17(1)
C(12)	4391(1)	379(1)	7912(1)	17(1)
C(12)	5471(1)	-208(1)	8233(1)	23(1)
C(14)	6254(1)	-322(1)	7450(1)	27(1)
C(15)	5938(1)	111(1)	6308(1)	25(1)
C(16)	4903(1)	720(1)	5955(1)	21(1)
C(17)	4132(1)	946(1)	6715(1)	15(1)
C(18)	2336(1)	4545(1)	8160(1)	16(1)
C(19)	3242(1)	4515(1)	8827(1)	19(1)
C(20)	3212(1) 3650(1)	5587(1)	8645(1)	27(1)
C(21)	3197(1)	6685(1)	7840(1)	$\frac{28(1)}{28(1)}$
C(22)	2266(1)	6695(1)	7233(1)	26(1)
C(23)	1823(1)	5645(1)	7378(1)	19(1)
C(24)	3771(1)	3349(1)	9710(1)	28(1)
C(25)	3703(2)	7824(2)	7639(2)	45(1)
C(26)	797(1)	5723(1)	6711(1)	25(1)
C(27)	2772(1)	1943(1)	5219(1)	16(1)
C(28)	3291(1)	2817(1)	4171(1)	21(1)
C(29)	2827(1)	3086(1)	3118(1)	29(1)
C(29)	1879(1)	2543(2)	3061(1)	33(1)
C(31)	1079(1) 1410(1)	1654(2)	4097(1)	30(1)
C(31)	1846(1)	1342(1)	5173(1)	22(1)
C(32)	A34A(1)	3434(1)	4158(1)	22(1) 27(1)
C(34)	1348(7)	2803(2)	1014(1)	50(1)
C(35)	1370(2) 1377(1)	235(2)	6267(1)	31(1)
C(35)	1322(1) 3224(1)	555(1) 5501(1)	5082(1)	$\frac{31(1)}{22(1)}$
C(30)	3224(1) 3685(1)	5591(1) 6615(1)	4036(1)	$\frac{22(1)}{32(1)}$
C(37)	2000(1) 22002(1)	5002(1)	$\frac{1030(1)}{3/32(1)}$	32(1) 31(1)
C(30)	2202(1) 1609(1)	<i>JJJJJJJJJJJJJ</i>	3+33(1)	31(1) 32(1)
U(39)	1098(1)	4904(1)	443/(1)	23(1)

Zr(1)-N(1)	2.1327(10)	N(1)-Zr(1)-N(3)	161.79(3)
Zr(1)-N(3)	2.1515(11)	N(1)-Zr(1)-O(1)	99.74(4)
Zr(1)-O(1)	2.2432(7)	N(3)- $Zr(1)$ - $O(1)$	98.47(4)
Zr(1)-N(2)	2.3103(9)	N(1)-Zr(1)-N(2)	80.79(4)
Zr(1)- $Cl(1)$	2.4497(3)	N(3)- $Zr(1)$ - $N(2)$	80.99(4)
Zr(1)-Cl(2)	2.4495(3)	O(1)-Zr(1)-N(2)	178.15(3)
		N(1)- $Zr(1)$ - $Cl(1)$	90.43(3)
		N(3)- $Zr(1)$ - $Cl(1)$	90.48(3)
		O(1)- $Zr(1)$ - $Cl(1)$	86.01(2)
		N(2)- $Zr(1)$ - $Cl(1)$	92.22(3)
		N(1)- $Zr(1)$ - $Cl(2)$	89.56(3)
		N(3)- $Zr(1)$ - $Cl(2)$	91.97(3)
		O(1)- $Zr(1)$ - $Cl(2)$	86.26(2)
		N(2)-Zr(1)-Cl(2)	95.52(3)

Table 3. Selected bond lengths [Å] and angles $[\circ]$ for DYT13 (CCDC 723743).

Zr(1)-N(1)	2.1327(10)	C(37)-C(38)	1.518(2)
Zr(1)-N(3)	2.1515(11)	C(38)-C(39)	1.5147(16)
Zr(1)-O(1)	2.2432(7)		· · · ·
Zr(1)-N(2)	2.3103(9)	N(1)-Zr(1)-N(3)	161.79(3)
Zr(1)-Cl(1)	2.4497(3)	N(1)-Zr(1)-O(1)	99.74(4)
Zr(1)- $Cl(2)$	2.4495(3)	N(3)-Zr(1)-O(1)	98.47(4)
O(1)-C(36)	1.4843(16)	N(1)-Zr(1)-N(2)	80.79(4)
O(1)-C(39)	1.4785(15)	N(3)-Zr(1)-N(2)	80.99(4)
N(1)-C(1)	1.4006(13)	O(1)-Zr(1)-N(2)	178.15(3)
N(1)-C(18)	1.4355(17)	N(1)-Zr(1)-Cl(1)	90.43(3)
N(2)-C(7)	1.3760(14)	N(3)-Zr(1)-Cl(1)	90.48(3)
N(2)-C(11)	1.3663(17)	O(1)-Zr(1)-Cl(1)	86.01(2)
N(3)-C(17)	1.3848(16)	N(2)-Zr(1)-Cl(1)	92.22(3)
N(3)-C(27)	1.4408(14)	N(1)-Zr(1)-Cl(2)	89.56(3)
C(1)-C(2)	1 4122(18)	N(3)-Zr(1)-Cl(2)	91 97(3)
C(1) - C(6)	1.4078(19)	O(1)-Zr(1)-Cl(2)	86 26(2)
C(2)- $C(3)$	1 3847(16)	N(2)-Zr(1)-Cl(2)	95 52(3)
C(3)- $C(4)$	1 380(2)	C[(1)-Zr(1)-C](2)	$172\ 164(10)$
C(4)- $C(5)$	1.300(2) 1.372(2)	C(36)-O(1)-C(39)	108 24(8)
C(5)- $C(6)$	1.372(2) 1.4174(15)	C(36)-O(1)-Zr(1)	125.63(7)
C(6)- $C(7)$	1 478(2)	C(39)-O(1)-Zr(1)	125.03(7) 126.13(7)
C(7) - C(8)	1.470(2) 1.4043(16)	C(1)-N(1)-C(18)	120.13(7) 116.27(10)
C(8) - C(9)	1.4043(10) 1.373(2)	C(1)-N(1)-Zr(1)	121 56(9)
C(0)-C(10)	1.375(2) 1.3700(19)	C(18)-N(1)-Zr(1)	121.30(7) 121.08(6)
C(10) C(11)	1.3700(19)	C(10) - N(1) - ZI(1) C(7) N(2) C(11)	121.00(0) 110.41(0)
C(10)- $C(11)C(11)$ $C(12)$	1.4050(15)	C(7) N(2) Zr(1)	119.41(9) 120.70(8)
C(11)- $C(12)C(12)$ $C(17)$	1.4007(10) 1.4210(15)	C(1) - N(2) - ZI(1) C(11) N(2) Zr(1)	120.70(8) 110.88(7)
C(12)- $C(17)C(12)$ $C(13)$	1.4219(13) 1.4070(18)	C(17) - N(2) - ZI(1) C(17) - N(3) - C(27)	119.00(7) 116 57(10)
C(12)- $C(13)C(13)$ $C(14)$	1.4079(18)	C(17) N(3) - C(27) C(17) N(3) Tr(1)	110.37(10) 122.44(8)
C(13)-C(14) C(14) $C(15)$	1.3703(19) 1.3016(10)	C(17) - N(3) - ZI(1) C(27) - N(3) - ZI(1)	122.44(8) 118 67(8)
C(14)-C(15) C(15) $C(16)$	1.3910(19) 1.3762(10)	C(27)- $N(3)$ - $ZI(1)N(1)$ $C(1)$ $C(2)$	110.07(0) 120.67(12)
C(15)-C(10) C(16) C(17)	1.3703(19) 1.4102(16)	N(1) - C(1) - C(2) N(1) - C(1) - C(6)	120.07(12) 120.31(12)
C(10)-C(17) C(18) C(10)	1.4103(10) 1.4001(18)	R(1)-C(1)-C(0)	120.31(12) 110.01(10)
C(18) - C(19)	1.4091(10) 1.4068(17)	C(2)-C(1)-C(0)	119.01(10) 120.07(14)
C(18)-C(25) C(10) $C(20)$	1.4008(17) 1.287(2)	C(3)-C(2)-C(1)	120.97(14) 120.04(14)
C(19)-C(20)	1.387(2)	C(2)-C(3)-C(4)	120.04(14) 110.92(12)
C(19)-C(24)	1.3030(19)	C(3)-C(4)-C(3)	119.83(12) 122.02(14)
C(20)-C(21)	1.380(2) 1.201(2)	C(4)-C(5)-C(6)	122.03(14) 117.75(12)
C(21)-C(22)	1.391(2)	C(5) - C(6) - C(1)	117.73(13) 117.26(12)
C(21)-C(25)	1.508(2)	C(5)-C(6)-C(7)	117.30(12)
C(22)-C(23)	1.393(2)	C(1)-C(0)-C(7)	124.40(10)
C(23)-C(26)	1.5078(19)	N(2)-C(7)-C(8)	119.91(13)
C(27)-C(32)	1.3944(18)	N(2)-C(7)-C(6)	122.95(10)
C(27)-C(28)	1.4154(15)	C(8)-C(7)-C(6)	117.09(11)
C(28)-C(29)	1.3931(18)	C(9)-C(8)-C(7)	120.57(12)
C(28)-C(33)	1.505(2)	C(10)-C(9)-C(8)	119.25(11)
C(29)- $C(30)$	1.377(2)	C(9)-C(10)-C(11)	120.18(14)
C(30)- $C(31)$	1.390(2)	N(2)-C(11)-C(10)	120.56(11)
C(30)- $C(34)$	1.5150(19)	N(2)-C(11)-C(12)	123.78(9)
C(31)-C(32)	1.3923(19)	C(10)-C(11)-C(12)	115.63(12)
C(32)-C(35)	1.5166(18)	C(17)-C(12)-C(13)	118.35(11)
C(36)-C(37)	1.5100(17)	C(17)-C(12)-C(11)	123.51(11)

Table 4. Bond lengths [Å] and angles $[\circ]$ for DYT13 (CCDC 723743).

C(13)-C(12)-C(11)	117.49(10)
C(14)-C(13)-C(12)	122.75(11)
C(15)-C(14)-C(13)	118.35(13)
C(14)-C(15)-C(16)	120.39(13)
C(15)-C(16)-C(17)	122.14(11)
N(3)-C(17)-C(12)	120.12(10)
N(3)-C(17)-C(16)	122.68(10)
C(12)-C(17)-C(16)	117.20(11)
C(19)-C(18)-C(23)	119.92(12)
C(19)-C(18)-N(1)	118.49(11)
C(23)-C(18)-N(1)	121.58(11)
C(20)-C(19)-C(18)	118.70(12)
C(20)-C(19)-C(24)	120.23(12)
C(18)-C(19)-C(24)	121.06(12)
C(21)-C(20)-C(19)	122.56(14)
C(20)-C(21)-C(22)	117.83(14)
C(20)-C(21)-C(25)	120.55(15)
C(22)-C(21)-C(25)	121.62(15)
C(21)-C(22)-C(23)	121.98(13)
C(22)-C(23)-C(18)	118.85(12)
C(22)-C(23)-C(26)	119.11(12)
C(18)-C(23)-C(26)	122.03(12)
C(32)-C(27)-C(28)	119.65(11)
C(32)-C(27)-N(3)	119.49(9)
C(28)-C(27)-N(3)	120.83(11)
C(29)-C(28)-C(27)	118.58(13)
C(29)-C(28)-C(33)	119.21(11)
C(27)-C(28)-C(33)	122.18(11)
C(30)-C(29)-C(28)	122.49(12)
C(29)-C(30)-C(31)	117.89(13)
C(29)-C(30)-C(34)	121.81(14)
C(31)-C(30)-C(34)	120.30(16)
C(30)-C(31)-C(32)	121.98(14)
C(31)-C(32)-C(27)	119.28(11)
C(31)-C(32)-C(35)	119.37(13)
C(27)-C(32)-C(35)	121.33(12)
O(1)-C(36)-C(37)	104.91(11)
C(36)-C(37)-C(38)	102.56(12)
C(39)-C(38)-C(37)	101.78(11)
O(1)-C(39)-C(38)	104.87(11)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for DYT13 (CCDC 723743). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{\mathrm{Zr}(1)}$	110(1)	136(1)	117(1)	-50(1)	4(1)	-5(1)
Cl(1)	125(1)	212(1)	215(1)	-111(1)	15(1)	-31(1)
Cl(2)	126(1)	273(2)	246(1)	-147(1)	-22(1)	0(1)
O(1)	145(4)	185(5)	165(3)	-27(3)	3(3)	-6(3)
N(1)	140(4)	177(5)	156(3)	-86(3)	27(3)	-33(4)
N(2)	154(5)	158(5)	135(3)	-66(3)	-14(3)	-35(4)
N(3)	134(4)	167(5)	138(3)	-74(3)	-23(3)	4(3)
C(1)	131(5)	243(6)	141(4)	-98(4)	2(4)	-27(4)
C(2)	194(6)	304(7)	196(4)	-133(4)	33(4)	-13(5)
C(3)	180(6)	470(9)	243(5)	-202(6)	43(5)	-3(6)
C(4)	193(6)	476(10)	265(5)	-201(6)	92(5)	-126(6)
C(5)	251(7)	361(8)	229(5)	-158(5)	88(5)	-156(6)
C(6)	179(6)	269(7)	159(4)	-119(4)	34(4)	-83(5)
C(7)	194(6)	197(6)	149(4)	-74(4)	12(4)	-81(5)
C(8)	307(7)	254(7)	155(4)	-50(4)	12(5)	-106(6)
C(9)	405(8)	200(7)	182(5)	-6(4)	-51(5)	-66(6)
C(10)	294(7)	174(6)	216(5)	-47(4)	-73(5)	13(5)
C(11)	186(6)	156(6)	167(4)	-65(4)	-58(4)	-11(4)
C(12)	181(6)	136(5)	192(4)	-83(4)	-52(4)	14(4)
C(13)	232(6)	200(6)	267(5)	-114(5)	-101(5)	53(5)
C(14)	196(6)	277(8)	372(6)	-185(5)	-105(5)	89(5)
C(15)	209(6)	266(7)	318(6)	-179(5)	-19(5)	57(5)
C(16)	201(6)	216(6)	226(5)	-124(4)	-24(4)	25(5)
C(17)	139(5)	137(5)	187(4)	-84(4)	-29(4)	6(4)
C(18)	153(5)	167(5)	167(4)	-93(4)	25(4)	-9(4)
C(19)	176(6)	221(6)	217(5)	-131(4)	-9(4)	-10(5)
C(20)	210(7)	325(8)	360(6)	-237(5)	-12(5)	-30(6)
C(21)	251(7)	251(7)	402(7)	-225(6)	89(6)	-62(5)
C(22)	285(7)	171(6)	286(5)	-103(5)	55(5)	21(5)
C(23)	176(6)	211(6)	196(4)	-111(4)	11(4)	31(4)
C(24)	292(7)	310(8)	230(5)	-124(5)	-96(5)	42(6)
C(25)	424(10)	302(9)	726(11)	-332(8)	88(9)	-103(8)
C(26)	231(6)	284(7)	234(5)	-134(5)	-45(5)	84(5)
C(27)	160(5)	181(6)	157(4)	-95(4)	-38(4)	31(4)
C(28)	242(6)	212(6)	167(4)	-95(4)	8(4)	43(5)
C(29)	357(8)	328(8)	169(4)	-122(5)	-26(5)	123(6)
C(30)	348(8)	476(10)	259(5)	-267(6)	-151(5)	228(7)
C(31)	223(7)	438(9)	395(7)	-322(6)	-125(6)	87(6)
C(32)	195(6)	245(7)	271(5)	-173(5)	-51(5)	42(5)
C(33)	294(7)	239(7)	242(5)	-105(5)	98(5)	-41(5)
C(34)	528(11)	770(15)	341(7)	-401(8)	-249(7)	337(10)
C(35)	270(7)	259(8)	430(7)	-178(6)	-16(6)	-78(6)
C(36)	198(6)	167(6)	235(5)	-45(4)	51(4)	-29(5)
C(37)	225(7)	199(7)	311(6)	33(5)	82(5)	39(5)
C(38)	207(6)	340(8)	183(5)	24(5)	16(5)	70(5)
C(39)	174(6)	276(7)	168(4)	-48(4)	-34(4)	52(5)

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 16 November 2010

Crystal Structure Analysis of:

IAT65

(Complex 7)

For	Investigator: Ian Tonks		ext. 6576
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman	ext. 2734
		e-mail: mikeday	@caltech.edu

Contents

Table 1. Crystal data Figures Minimum overlap Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles Table 5. Anisotropic displacement parameters Table 6. Observed and calculated structure factors (available upon request)

IAT65

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 800979.

Table 1. Crystal data and structure refinement for IAT65 (CCDC 800979).

Empirical formula	$C_{59}H_{67}N_3Zr \bullet C_5H_{12}$	
Formula weight	981.52	
Crystallization Solvent	Pentane	
Crystal Habit	Block	
Crystal size	0.19 x 0.18 x 0.11 mm ³	-
Crystal color	Yellow	
Dat	a Collection	
Type of diffractometer	Bruker KAPPA APEX II	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9856 reflections used in lattice determination	2.17 to 27.29°	
Unit cell dimensions	a = 10.5191(4) Å b = 12.8102(5) Å c = 20.6372(8) Å	$\alpha = 96.952(2)^{\circ}$ $\beta = 90.511(2)^{\circ}$ $\gamma = 98.726(2)^{\circ}$
Volume	2727.45(18) Å ³	
Z	2	
Crystal system	Triclinic	
Space group	P-1	
Density (calculated)	1.195 Mg/m ³	
F(000)	1048	
θ range for data collection	1.79 to 27.45°	
Completeness to $\theta = 27.45^{\circ}$	99.0 %	
Index ranges	$-13 \le h \le 13, -16 \le k \le 16, -26 \le 16$	1≤26
Data collection scan type	ω scans; 17 settings	
Reflections collected	93111	
Independent reflections	12342 [$R_{int} = 0.0489$]	
Absorption coefficient	0.243 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9738 and 0.9553	

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	12342 / 0 / 658
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.925
Final R indices [I>2 σ (I), 10227 reflections]	R1 = 0.0352, wR2 = 0.0492
R indices (all data)	R1 = 0.0466, wR2 = 0.0499
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	0.633 and -0.734 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Ųx 10³) for IAT65 (CCDC 800979). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U _{eq}	Occ
Zr(1)	2382(1)	2506(1)	8270(1)	14(1)	1
N(1)	2731(1)	4026(1)	8782(1)	14(1)	1
N(2)	205(1)	2683(1)	8508(1)	13(1)	1
N(3)	1642(1)	2418(1)	7349(1)	15(1)	1
C(1)	2332(2)	3938(1)	9436(1)	14(1)	1
C(2)	3232(2)	4125(1)	9954(1)	18(1)	1
C(3)	2887(2)	3976(1)	10583(1)	21(1)	1
C(4)	1605(2)	3624(1)	10707(1)	22(1)	1
C(5)	701(2)	3437(1)	10206(1)	20(1)	1
C(6)	1034(2)	3588(1)	9560(1)	14(1)	1
C(7)	-3(2)	3340(1)	9048(1)	14(1)	1
C(8)	-1161(2)	3717(1)	9135(1)	19(1)	1
C(9)	-2127(2)	3400(1)	8666(1)	22(1)	1
C(10)	-1938(2)	2695(1)	8127(1)	20(1)	1
C(11)	-760(2)	2338(1)	8058(1)	15(1)	1
C(12)	-545(2)	1521(1)	7514(1)	16(1)	1
C(13)	-1544(2)	680(1)	7326(1)	22(1)	1
C(14)	-1376(2)	-135(1)	6851(1)	27(1)	1
C(15)	-201(2)	-146(1)	6558(1)	29(1)	1
C(16)	799(2)	686(1)	6730(1)	$2^{2}(1)$	1
C(17)	633(2)	1532(1)	7191(1)	16(1)	1
(17)	3461(2)	5003(1)	8652(1)	10(1) 14(1)	1
C(10)	3401(2) 3441(2)	5962(1)	9047(1)	14(1)	1
C(20)	4136(2)	6913(1)	8895(1)	14(1)	1
C(20)	4130(2)	6878(1)	8334(1)	14(1) 15(1)	1
C(21)	4071(2)	5030(1)	7028(1)	13(1) 14(1)	1
C(22)	4910(2)	5939(1)	8002(1)	14(1) 15(1)	1
C(23)	4109(2)	5000(1)	0092(1)	13(1) 17(1)	1
C(24)	4001(2)	7937(1) 8430(2)	9327(1)	$\frac{1}{(1)}$	1 0.642(3)
C(25)	2900(3)	8430(2) 7799(2)	9008(2)	33(1)	0.042(3)
C(20)	5850(4) 5225(2)	//88(2)	10043(1)	33(1)	0.042(3)
C(27)	5525(5) 4401(6)	8/30(2)	9318(2)	34(1)	0.042(3)
C(25B)	4491(6)	8962(4)	8978(3)	30(2)	0.338(3)
C(20B)	2030(5)	8048(4)	9521(3)	39(2)	0.358(3)
C(2/B)	4888(7)	8035(4)	9933(3)	44(2)	0.358(3)
C(28)	5789(2)	5854(1)	7336(1)	16(1)	l
C(29)	6857(2)	5228(1)	7500(1)	33(1)	l
$\mathcal{L}(30)$	5042(2)	5261(1)	6/31(1)	26(1)	l
C(31)	6415(2)	6948(1)	7171(1)	33(1)	l
C(32)	1714(2)	3241(1)	6923(1)	15(1)	1
C(33)	2050(2)	3054(1)	6278(1)	18(1)	1
C(34)	2091(2)	3852(1)	5866(1)	18(1)	1
C(35)	1806(2)	4832(1)	6132(1)	18(1)	1
C(36)	1490(2)	5058(1)	6783(1)	17(1)	1
C(37)	1444(2)	4238(1)	7174(1)	16(1)	1
C(38)	2464(2)	3610(1)	5152(1)	22(1)	1
C(39)	1529(2)	2659(1)	4812(1)	29(1)	1
C(40)	2393(2)	4562(1)	4769(1)	32(1)	1

C(41)	3838(2)	3350(1)	5128(1)	34(1)	1
C(42)	1180(2)	6161(1)	7044(1)	20(1)	1
C(43)	797(2)	6222(1)	7760(1)	30(1)	1
C(44)	71(2)	6417(1)	6634(1)	26(1)	1
C(45)	2363(2)	7016(1)	6992(1)	30(1)	1
C(46)	2030(2)	1120(1)	8862(1)	24(1)	1
C(47)	792(2)	372(1)	8808(1)	22(1)	1
C(48)	-197(2)	501(1)	9243(1)	29(1)	1
C(49)	-1352(2)	-192(1)	9176(1)	36(1)	1
C(50)	-1552(2)	-1019(1)	8676(1)	35(1)	1
C(51)	-588(2)	-1156(1)	8240(1)	33(1)	1
C(52)	567(2)	-470(1)	8307(1)	27(1)	1
C(53)	4522(2)	2298(1)	8135(1)	22(1)	1
C(54)	4691(2)	1475(1)	7601(1)	28(1)	1
C(55)	4661(2)	411(2)	7700(1)	48(1)	1
C(56)	4753(2)	-375(2)	7182(2)	74(1)	1
C(57)	4905(2)	-128(2)	6554(2)	82(1)	1
C(58)	4957(2)	917(2)	6450(1)	65(1)	1
C(59)	4843(2)	1696(2)	6959(1)	40(1)	1
C(61)	8152(2)	3269(1)	6251(1)	49(1)	1
C(62)	8251(2)	2199(2)	5859(1)	45(1)	1
C(63)	7721(2)	2139(2)	5168(1)	51(1)	1
C(64)	7906(2)	1111(2)	4760(1)	54(1)	1
C(65)	7206(2)	108(2)	4979(1)	64(1)	1

Zr(1)-N(3)	2.0312(13)	N(3)-Zr(1)-N(1)	115.23(5)
Zr(1)-N(1)	2.0791(13)	N(3)-Zr(1)-C(46)	122.10(6)
Zr(1)-C(46)	2.2616(14)	N(1)-Zr(1)-C(46)	117.27(6)
Zr(1)-C(53)	2.3215(16)	N(3)-Zr(1)-C(53)	104.94(6)
Zr(1)-N(2)	2.3850(13)	N(1)-Zr(1)-C(53)	96.62(6)
Zr(1)-C(1)	2.8494(16)	C(46)- $Zr(1)$ - $C(53)$	91.72(6)
		N(3)- $Zr(1)$ - $N(2)$	80.03(5)
		N(1)-Zr(1)-N(2)	82.37(5)
		C(46)- $Zr(1)$ - $N(2)$	84.28(5)
		C(53)- $Zr(1)$ - $N(2)$	174.82(6)
		N(3)- $Zr(1)$ - $C(1)$	134.40(5)
		N(1)- $Zr(1)$ - $C(1)$	28.62(4)
		C(46)- $Zr(1)$ - $C(1)$	89.59(5)
		C(53)- $Zr(1)$ - $C(1)$	105.92(6)
		N(2)- $Zr(1)$ - $C(1)$	70.84(5)

 Table 3.
 Selected bond lengths [Å] and angles [°] for IAT65 (CCDC 800979).

Zr(1)-N(3)	2.0312(13)	C(34)-C(38)	1.535(2)
Zr(1)-N(1)	2.0791(13)	C(35)-C(36)	1.393(2)
Zr(1)-C(46)	2.2616(14)	C(36)-C(37)	1.3962(19)
Zr(1)-C(53)	2.3215(16)	C(36)-C(42)	1.533(2)
Zr(1)-N(2)	2.3850(13)	C(38)-C(41)	1.532(2)
Zr(1)-C(1)	2.8494(16)	C(38)-C(39)	1.536(2)
N(1)-C(18)	1.4220(17)	C(38)-C(40)	1.542(2)
N(1)-C(1)	1.4287(19)	C(42)-C(44)	1.533(2)
N(2)-C(11)	1.354(2)	C(42)-C(43)	1.532(2)
N(2)-C(7)	1.355(2)	C(42)-C(45)	1.542(2)
N(3)-C(17)	1.4352(19)	C(46)-C(47)	1.490(2)
N(3)-C(32)	1.4466(18)	C(47)-C(52)	1.392(2)
C(1)-C(2)	1 397(2)	C(47)-C(48)	1.396(2)
C(1) - C(6)	1.397(2) 1 407(2)	C(48)- $C(49)$	1.396(2) 1.386(2)
C(2)-C(3)	1.107(2) 1.377(2)	C(49)-C(50)	1.300(2) 1.377(3)
C(3)- $C(4)$	1.377(2) 1.392(2)	C(50)- $C(51)$	1.379(2)
C(4)- $C(5)$	1.372(2) 1.373(2)	C(51)- $C(52)$	1.379(2) 1.382(2)
C(5)- $C(6)$	1.373(2) 1.409(2)	C(51)-C(52)	1.362(2) 1.462(2)
C(5) - C(0)	1.409(2) 1.484(2)	C(54) C(59)	1.402(2) 1.303(3)
C(0)-C(1)	1.404(2) 1.381(2)	C(54) - C(55)	1.393(3) 1.300(2)
C(8) C(9)	1.301(2) 1.378(2)	C(55) C(56)	1.399(2) 1 201(2)
C(0) - C(10)	1.370(2) 1.382(2)	C(55)-C(50)	1.371(3) 1.275(2)
C(10) C(11)	1.302(2) 1.287(2)	C(50)-C(57)	1.373(3) 1.274(2)
C(10)-C(11)	1.307(2) 1.482(2)	C(57)-C(58)	1.374(3) 1.277(2)
C(11)-C(12)	1.465(2) 1.401(2)	C(58)-C(59)	1.377(3) 1.522(2)
C(12) - C(13)	1.401(2)	C(61)-C(62)	1.525(5) 1.512(2)
C(12) - C(17)	1.410(2)	C(62)-C(63)	1.515(3)
C(13)-C(14)	1.375(2)	C(63)-C(64)	1.514(3)
C(14)-C(15)	1.382(2)	C(64)-C(65)	1.503(2)
C(15)-C(16)	1.389(2)		115 00(5)
C(16)-C(17)	1.387(2)	N(3)-Zr(1)-N(1)	115.23(5)
C(18)-C(23)	1.392(2)	N(3)-Zr(1)-C(46)	122.10(6)
C(18)-C(19)	1.393(2)	N(1)-Zr(1)-C(46)	117.27(6)
C(19)-C(20)	1.3934(19)	N(3)-Zr(1)-C(53)	104.94(6)
C(20)-C(21)	1.398(2)	N(1)-Zr(1)-C(53)	96.62(6)
C(20)-C(24)	1.529(2)	C(46)- $Zr(1)$ - $C(53)$	91.72(6)
C(21)-C(22)	1.387(2)	N(3)-Zr(1)-N(2)	80.03(5)
C(22)-C(23)	1.3963(19)	N(1)- $Zr(1)$ - $N(2)$	82.37(5)
C(22)-C(28)	1.538(2)	C(46)- $Zr(1)$ - $N(2)$	84.28(5)
C(24)-C(25)	1.508(3)	C(53)- $Zr(1)$ - $N(2)$	174.82(6)
C(24)-C(26)	1.535(3)	N(3)- $Zr(1)$ - $C(1)$	134.40(5)
C(24)-C(27B)	1.503(6)	N(1)-Zr(1)-C(1)	28.62(4)
C(24)-C(27)	1.539(3)	C(46)- $Zr(1)$ - $C(1)$	89.59(5)
C(24)-C(25B)	1.560(5)	C(53)- $Zr(1)$ - $C(1)$	105.92(6)
C(24)-C(26B)	1.572(5)	N(2)- $Zr(1)$ - $C(1)$	70.84(5)
C(28)-C(30)	1.525(2)	C(18)-N(1)-C(1)	117.95(13)
C(28)-C(29)	1.534(2)	C(18)-N(1)-Zr(1)	133.52(10)
C(28)-C(31)	1.5339(19)	C(1)-N(1)-Zr(1)	107.18(9)
C(32)-C(33)	1.382(2)	C(11)-N(2)-C(7)	119.67(15)
C(32)-C(37)	1.389(2)	C(11)-N(2)-Zr(1)	121.50(11)
C(33)-C(34)	1.404(2)	C(7)-N(2)-Zr(1)	117.32(11)
C(34)-C(35)	1.385(2)	C(17)-N(3)-C(32)	115.51(13)

 Table 4. Bond lengths [Å] and angles [°] for IAT65 (CCDC 800979).

C(17)-N(3)-Zr(1)	112.93(9)	C(27B)-C(24)-C(20)	110.0(2)
C(32)-N(3)-Zr(1)	128.95(10)	C(27)-C(24)-C(20)	110.92(16)
C(2)-C(1)-C(6)	118.91(15)	C(25)-C(24)-C(25B)	66.0(2)
C(2)-C(1)-N(1)	120.68(15)	C(26)-C(24)-C(25B)	133.4(3)
C(6)-C(1)-N(1)	120.26(15)	C(27B)-C(24)-C(25B)	108.4(3)
C(2)-C(1)-Zr(1)	126.65(11)	C(27)-C(24)-C(25B)	45.9(2)
C(6)-C(1)-Zr(1)	94.98(10)	C(20)-C(24)-C(25B)	113.3(2)
N(1)-C(1)-Zr(1)	44.20(7)	C(25)-C(24)-C(26B)	43.3(2)
C(3)-C(2)-C(1)	121.97(16)	C(26)-C(24)-C(26B)	68.5(3)
C(2)-C(3)-C(4)	119.25(17)	C(27B)-C(24)-C(26B)	109.6(4)
C(5)-C(4)-C(3)	119.94(16)	C(27)-C(24)-C(26B)	135.8(2)
C(4)-C(5)-C(6)	121.66(16)	C(20)-C(24)-C(26B)	111.3(2)
C(1)-C(6)-C(5)	118.27(16)	C(25B)-C(24)-C(26B)	104.1(3)
C(1)- $C(6)$ - $C(7)$	123.83(14)	C(30)-C(28)-C(29)	108.38(14)
C(5)-C(6)-C(7)	117.87(15)	C(30)- $C(28)$ - $C(31)$	108.13(13)
N(2)-C(7)-C(8)	121.34(16)	C(29)-C(28)-C(31)	108.54(14)
N(2)-C(7)-C(6)	117 23(15)	C(30)-C(28)-C(22)	111 28(13)
C(8)-C(7)-C(6)	121 34(16)	C(29)-C(28)-C(22)	108.07(13)
C(9)- $C(8)$ - $C(7)$	119.08(17)	C(31)-C(28)-C(22)	112 34(14)
C(8)-C(9)-C(10)	119.00(17)	C(33)-C(32)-C(37)	112.91(11) 119.95(14)
C(9)- $C(10)$ - $C(11)$	119.70(17)	C(33)-C(32)-N(3)	121 29(15)
N(2)-C(11)-C(10)	120 75(16)	C(37)-C(32)-N(3)	121.25(13) 118 75(14)
N(2)-C(11)-C(10) N(2)-C(11)-C(12)	120.75(10) 118 04(15)	C(37)-C(32)-C(34)	120.76(16)
C(10)-C(11)-C(12)	121 11(16)	C(32)-C(33)-C(34)	117 60(16)
C(13) C(12) C(17)	118 51(16)	C(35) - C(34) - C(38)	117.00(10) 123.27(14)
C(13)-C(12)-C(11)	118.31(10) 118.43(15)	C(33) C(34) C(38)	123.27(14) 110 12(15)
C(13)- $C(12)$ - $C(11)$	110.43(15) 123.02(15)	C(34) C(35) C(36)	119.12(15) 123.27(15)
C(17)-C(12)-C(11) C(14) C(13) C(12)	123.02(13) 121.10(17)	C(34)- $C(35)$ - $C(30)$	123.27(13) 117.25(16)
C(14)-C(13)-C(12) C(13)-C(14)-C(15)	121.10(17) 120.10(17)	C(35)-C(36)-C(37)	117.23(10) 120.46(14)
C(13)-C(14)-C(15)	120.19(17) 110.76(18)	C(33)-C(36)-C(42)	120.40(14) 122.28(15)
C(14)-C(15)-C(10) C(17) $C(16)$ $C(15)$	119.70(16) 120.81(17)	C(37)- $C(30)$ - $C(42)C(32)$ $C(37)$ $C(36)$	122.20(13) 121.14(15)
C(17)-C(10)-C(13) C(16) C(17) C(12)	120.01(17) 110 51(15)	C(32)- $C(37)$ - $C(30)$	121.14(13) 100 66(15)
C(10)-C(17)-C(12) C(16) C(17) N(3)	119.31(13) 121.15(15)	C(41)- $C(38)$ - $C(34)$	109.00(13) 100.61(15)
C(10)-C(17)-N(3) C(12)-C(17)-N(3)	121.13(13) 110.24(15)	C(41)- $C(38)$ - $C(39)$	109.01(13) 100.72(12)
C(12)-C(17)-N(3) C(22)-C(18)-C(10)	119.34(13) 119.61(14)	C(34)- $C(38)$ - $C(39)$	109.73(13) 109.77(14)
C(23)-C(18)-C(19)	110.01(14) 110.50(15)	C(41)-C(38)-C(40)	106.77(14)
C(23)-C(18)-N(1)	118.30(13) 122.84(14)	C(34)- $C(38)$ - $C(40)$	111.39(13)
C(19)-C(18)-N(1) C(20)-C(10)-C(18)	122.84(14)	C(39)-C(38)-C(40)	107.44(15) 100.41(14)
C(20)- $C(19)$ - $C(18)$	121.48(14)	C(36)-C(42)-C(44)	109.41(14)
C(19)-C(20)-C(21)	118.00(15)	C(36)-C(42)-C(43)	111.93(13)
C(19)-C(20)-C(24)	120.18(14)	C(44)-C(42)-C(43)	108.82(15)
C(21)- $C(20)$ - $C(24)$	121.81(13)	C(36)-C(42)-C(45)	110.12(14)
C(22)-C(21)-C(20)	122.28(14)	C(44)- $C(42)$ - $C(45)$	108.43(13)
C(21)-C(22)-C(23)	117.88(15)	C(43)- $C(42)$ - $C(45)$	108.05(15)
C(21)-C(22)-C(28)	123.74(14)	C(47)-C(46)-Zr(1)	121.//(12)
C(23)-C(22)-C(28)	118.23(15)	C(52)-C(47)-C(48)	11/.40(1/)
C(18)-C(23)-C(22)	121.73(16)	C(52)-C(47)-C(46)	120.86(17)
C(25)-C(24)-C(26)	109.5(2)	C(48)-C(47)-C(46)	121.72(17)
C(25)-C(24)-C(27B)	140.5(3)	C(49)-C(48)-C(47)	120.84(18)
C(26)-C(24)-C(27B)	43.9(3)	C(50)-C(49)-C(48)	120.67(19)
C(25)-C(24)-C(27)	110.21(19)	C(49)-C(50)-C(51)	119.32(18)
C(26)-C(24)-C(27)	106.6(2)	C(50)-C(51)-C(52)	120.16(19)
C(27B)-C(24)-C(27)	66.6(3)	C(51)-C(52)-C(47)	121.60(18)
C(25)-C(24)-C(20)	107.64(18)	C(54)-C(53)-Zr(1)	112.62(12)
C(26)-C(24)-C(20)	111.98(15)	C(59)-C(54)-C(55)	115.96(19)

C(59)-C(54)-C(53)	122.09(17)
C(55)-C(54)-C(53)	121.91(19)
C(56)-C(55)-C(54)	121.4(2)
C(57)-C(56)-C(55)	121.1(2)
C(56)-C(57)-C(58)	118.3(3)
C(57)-C(58)-C(59)	121.0(3)
C(58)-C(59)-C(54)	122.3(2)
C(63)-C(62)-C(61)	111.34(17)
C(64)-C(63)-C(62)	111.74(18)
C(65)-C(64)-C(63)	115.84(19)

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for IAT65 (CCDC 800979). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{\mathrm{Zr}(1)}$	135(1)	143(1)	144(1)	20(1)	-10(1)	7(1)
N(1)	140(8)	150(7)	124(8)	22(6)	19(6)	-15(6)
N(2)	151(8)	120(7)	131(8)	51(6)	-4(6)	-8(6)
N(3)	156(8)	156(7)	128(8)	17(6)	-1(6)	2(6)
C(1)	176(9)	99(9)	142(9)	4(7)	-2(8)	11(7)
C(2)	162(9)	153(9)	210(10)	14(8)	-14(8)	18(7)
C(3)	263(11)	197(10)	164(10)	17(8)	-84(8)	51(8)
C(4)	322(11)	222(10)	134(10)	47(8)	16(9)	27(9)
C(5)	212(10)	208(10)	162(10)	26(8)	35(8)	-10(8)
C(6)	171(9)	109(9)	131(9)	18(7)	-2(8)	4(7)
C(7)	158(9)	128(9)	140(10)	61(8)	25(8)	-19(7)
C(8)	179(10)	189(9)	182(10)	7(8)	41(8)	-2(8)
C(9)	135(10)	262(11)	279(12)	38(9)	27(8)	42(8)
C(10)	154(9)	215(10)	219(11)	48(8)	-29(8)	-7(8)
C(11)	159(9)	140(9)	143(10)	64(8)	-9(8)	-21(7)
C(12)	189(10)	144(9)	146(10)	49(8)	-43(8)	15(7)
C(13)	223(10)	220(10)	195(10)	43(8)	-32(8)	-8(8)
C(14)	328(12)	206(10)	242(11)	10(9)	-57(9)	-68(9)
C(15)	434(13)	186(10)	224(11)	-43(9)	15(10)	-1(9)
C(16)	291(11)	218(10)	203(11)	24(9)	34(9)	36(9)
C(17)	214(10)	150(9)	129(9)	33(8)	-40(8)	19(8)
C(18)	104(9)	158(9)	137(9)	21(8)	-22(7)	4(7)
C(19)	126(9)	188(9)	98(9)	11(7)	17(7)	18(7)
C(20)	130(9)	154(9)	127(9)	16(7)	-14(7)	33(7)
C(21)	138(9)	157(9)	162(10)	53(8)	-4(8)	-19(7)
C(22)	113(9)	195(9)	113(9)	24(8)	-13(7)	14(7)
C(23)	142(9)	159(9)	139(9)	-16(8)	-11(7)	9(7)
C(24)	208(10)	151(9)	157(10)	18(8)	38(8)	5(8)
C(25)	400(20)	257(19)	350(20)	-34(16)	18(17)	133(16)
C(26)	580(30)	207(18)	188(18)	-1(14)	74(18)	32(17)
C(27)	370(20)	225(18)	350(20)	-117(16)	115(17)	-74(15)
C(25B)	440(40)	140(30)	320(40)	10(30)	120(30)	60(30)
C(26B)	400(40)	180(30)	580(50)	-40(30)	220(40)	50(30)
C(27B)	820(60)	150(30)	340(40)	-80(30)	-150(40)	150(40)
C(28)	143(9)	189(9)	148(10)	3(8)	33(8)	-6(7)
C(29)	226(11)	541(13)	245(12)	76(10)	71(9)	118(10)
C(30)	228(11)	366(11)	157(10)	-5(9)	52(9)	-29(9)
C(31)	406(13)	276(11)	263(12)	-18(9)	198(10)	-75(9)
C(32)	101(9)	197(9)	135(9)	26(8)	-18(7)	-19(7)
C(33)	150(9)	189(9)	172(10)	-14(8)	12(8)	1(7)
C(34)	137(9)	230(10)	140(10)	17(8)	-6(8)	-25(8)
C(35)	152(9)	216(10)	170(10)	69(8)	-28(8)	-12(8)
C(36)	113(9)	200(10)	178(10)	19(8)	-25(8)	11(7)
C(37)	130(9)	237(10)	110(9)	18(8)	1(7)	24(7)
C(38)	233(10)	257(10)	140(10)	20(8)	21(8)	-18(8)
C(39)	370(12)	320(11)	155(11)	9(9)	17(9)	-13(9)
C(40)	426(13)	352(11)	154(11)	49(9)	80(10)	-33(10)

C(41)	303(12)	497(13)	205(11)	-2(10)	89(10)	42(10)
C(42)	211(10)	209(10)	189(10)	34(8)	-17(8)	58(8)
C(43)	435(13)	270(11)	226(12)	-11(9)	-11(10)	195(10)
C(44)	243(11)	287(11)	260(11)	57(9)	-10(9)	83(9)
C(45)	288(12)	218(10)	388(13)	-11(9)	-73(10)	52(9)
C(46)	291(11)	199(10)	258(11)	77(9)	-28(9)	58(8)
C(47)	308(11)	149(10)	233(11)	105(9)	-45(9)	53(8)
C(48)	401(13)	176(10)	257(12)	20(9)	27(10)	-29(9)
C(49)	369(13)	288(12)	405(14)	40(10)	86(11)	-22(10)
C(50)	349(13)	186(11)	480(15)	28(10)	-86(11)	-41(9)
C(51)	435(14)	174(11)	365(13)	-28(9)	-124(11)	78(10)
C(52)	359(12)	209(10)	276(12)	50(9)	-19(10)	110(9)
C(53)	156(10)	225(10)	295(12)	53(9)	-34(9)	20(8)
C(54)	102(9)	294(11)	420(14)	1(10)	-14(9)	19(8)
C(55)	357(13)	290(12)	800(20)	18(13)	133(13)	102(10)
C(56)	445(17)	352(15)	1350(30)	-188(18)	243(19)	83(12)
C(57)	368(16)	740(20)	1170(30)	-650(20)	107(18)	36(15)
C(58)	391(15)	990(20)	500(18)	-291(16)	17(13)	164(16)
C(59)	286(12)	504(14)	417(15)	-36(12)	55(11)	120(11)
C(61)	609(17)	391(13)	470(16)	61(12)	-44(13)	51(12)
C(62)	396(14)	592(15)	358(14)	114(12)	17(11)	47(12)
C(63)	494(16)	604(16)	425(16)	71(13)	12(13)	27(13)
C(64)	474(16)	565(16)	546(17)	-79(14)	-13(13)	50(13)
C(65)	770(20)	604(17)	513(18)	-52(14)	-1(15)	56(15)

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 13 September 2010

Crystal Structure Analysis of:

ECW18

(^tBuNNN)-H₂

For	Investigator: Edward Wei	ext. 6576	
	Advisor: J. E. Bercaw		ext. 6577
By	Michael W. Day	116 Beckman e-mail: mikeda	ext. 2734 ay@caltech.edu

Contents

Table 1. Crystal dataFigures Minimum overlap, unit cell contentsTable 2. Atomic CoordinatesTable 3. Full bond distances and anglesTable 4. Anisotropic displacement parametersTable 5. Hydrogen bond distances and angles

Table 6. Observed and calculated structure factors (available upon request)

ECW18

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 793155.

Table 1. Crystal data and structure refinement for ECW18 (CCDC 793155).

Empirical formula	$C_{45}H_{55}N_3 \bullet C_6H_{12}$
Formula weight	722.08
Crystallization Solvent	Hexanes
Crystal Habit	Block
Crystal size	0.19 x 0.17 x 0.16 mm ³
Crystal color	Colorless
Dat	ta Collection
Type of diffractometer	Bruker KAPPA APEX II
Wavelength	0.71073 Å MoKα
Data Collection Temperature	100(2) K
θ range for 9933 reflections used in lattice determination	2.39 to 25.70°
Unit cell dimensions	$a = 13.2349(5)$ Å $\alpha = 90^{\circ}$ $b = 17.6560(8)$ Å $\beta = 102.355(2)^{\circ}$ $c = 19.0978(8)$ Å $\gamma = 90^{\circ}$
Volume	4359.3(3) Å ³
Z	4
Crystal system	Monoclinic
Space group	P 2 ₁ / <i>c</i>
Density (calculated)	1.100 Mg/m ³
F(000)	1576
θ range for data collection	1.95 to 27.52°
Completeness to $\theta = 27.52^{\circ}$	99.8 %
Index ranges	$-17 \le h \le 16, -22 \le k \le 22, -24 \le l \le 24$
Data collection scan type	ω scans; 8 settings
Reflections collected	63493
Independent reflections	10009 [$R_{int} = 0.0554$]
Absorption coefficient	0.063 mm ⁻¹
Absorption correction	None
Max. and min. transmission	0.9900 and 0.9881

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	10009 / 0 / 537
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	2.513
Final R indices [I> 2σ (I), 6629 reflections]	R1 = 0.0641, wR2 = 0.0867
R indices (all data)	R1 = 0.0986, wR2 = 0.0886
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.000
Average shift/error	0.000
Largest diff. peak and hole	1.093 and -0.828 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

One of the t-butyl groups is disordered by rotation around the tertiary C-C bond as is common for t-butyl groups. Additional disorder occurs in the solvent of crystallization, methylcylcopentane, with the methyl group disordered over two carbon sites.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for ECW18 (CCDC 793155). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U _{eq}	Occ
N(1)	3974(1)	8271(1)	4141(1)	22(1)	1
N(2)	3363(1)	9602(1)	4650(1)	19(1)	1
N(3)	2370(1)	8733(1)	5492(1)	25(1)	1
C(1)	4677(1)	7661(1)	4308(1)	18(1)	1
C(2)	4719(1)	7273(1)	4946(1)	18(1)	1
C(3)	5436(2)	6695(1)	5167(1)	18(1)	1
C(4)	6113(1)	6524(1)	4722(1)	19(1)	1
C(5)	6104(2)	6910(1)	4085(1)	18(1)	1
C(6)	5372(1)	7482(1)	3879(1)	18(1)	1
C(7)	3521(2)	8552(1)	3468(1)	20(1)	1
C(8)	3363(2)	8084(1)	2864(1)	24(1)	1
C(9)	2885(2)	8353(1)	2194(1)	28(1)	1
C(10)	2544(2)	9099(1)	2112(1)	29(1)	1
C(11)	2696(2)	9559(1)	2705(1)	25(1)	1
C(12)	3192(2)	9318(1)	3388(1)	19(1)	1
C(13)	3352(2)	9866(1)	3987(1)	21(1)	1
C(14)	3500(2)	10632(1)	3869(1)	27(1)	1
C(15)	3600(2)	11128(1)	4437(1)	31(1)	1
C(16)	3585(2)	10860(1)	5114(1)	27(1)	1
C(17)	3496(2)	10079(1)	5214(1)	21(1)	1
C(18)	3558(2)	9757(1)	5939(1)	20(1)	1
C(19)	4210(2)	10096(1)	6522(1)	26(1)	1
C(20)	4336(2)	9830(1)	7213(1)	30(1)	1
C(21)	3793(2)	9191(1)	7334(1)	30(1)	1
C(22)	3141(2)	8833(1)	6771(1)	26(1)	1
C(23)	3011(2)	9095(1)	6067(1)	22(1)	1
C(24)	1772(2)	8074(1)	5509(1)	19(1)	1
C(25)	1853(1)	7499(1)	5024(1)	19(1)	1
C(26)	1253(1)	6847(1)	4986(1)	18(1)	1
C(27)	575(1)	6789(1)	5453(1)	19(1)	1
C(28)	470(2)	7356(1)	5936(1)	20(1)	1
C(29)	1081(2)	8007(1)	5957(1)	20(1) 21(1)	1
C(30)	5452(2)	6275(1)	5869(1)	20(1)	1
C(31A)	6273(2)	5639(2)	6012(1)	30(1)	0.849(3)
C(32A)	4393(2)	5904(2)	5835(1)	27(1)	0.849(3)
C(33A)	5693(2)	6833(2)	6488(1)	$\frac{2}{31(1)}$	0.849(3)
C(31B)	6545(11)	6330(10)	6405(8)	44(5)	0.0151(3)
C(32B)	5142(13)	5441(9)	5736(8)	43(5)	0.151(3)
C(33B)	4651(12)	6629(9)	6323(8)	39(5)	0 151(3)
C(34)	6925(2)	6765(1)	3642(1)	22(1)	1
C(35)	7413(2)	5985(1)	3780(1)	44(1)	1
C(36)	6456(2)	6806(2)	2840(1)	79(1)	1
C(37)	7762(2)	7364(1)	3841(2)	5 9(1)	1
C(38)	1318(2)	6211(1)	4453(1)	21(1)	1
C(39)	1588(2)	5459(1)	4857(1)	32(1)	1
C(40)	2134(1)	6362(1)	4005(1)	29(1)	1
C(41)	2157(1) 260(1)	6124(1)	303(1)	$\frac{2}{2}(1)$	1

C(42)	-307(2)	7315(1)	6430(1)	25(1)	1
C(43)	-857(2)	6548(1)	6377(1)	42(1)	1
C(44)	250(2)	7437(1)	7213(1)	40(1)	1
C(45)	-1133(2)	7936(1)	6206(1)	42(1)	1
C(51)	1385(2)	4424(1)	1794(1)	45(1)	1
C(52)	1090(2)	4984(1)	2341(1)	49(1)	1
C(53)	-141(2)	4988(2)	2108(2)	82(1)	1
C(54)	-426(2)	4637(2)	1296(2)	69(1)	1
C(55)	633(2)	4593(2)	1085(1)	45(1)	1
C(56A)	639(2)	4039(2)	498(1)	50(1)	0.886(3)
C(56B)	-745(12)	3769(10)	1281(10)	21(5)	0.114(3)

N(1)-C(7)	1.388(2)	C(38)-C(41)	1.543(3)
N(1)-C(1)	1.414(2)	C(42)-C(43)	1.530(3)
N(2)-C(13)	1.348(2)	C(42)-C(44)	1.535(3)
N(2)-C(17)	1.350(2)	C(42)-C(45)	1.544(3)
N(3)-C(23)	1.391(2)	C(51)-C(55)	1.529(3)
N(3)-C(24)	1.413(2)	C(51)-C(52)	1.548(3)
C(1)-C(2)	1.389(3)	C(52)-C(53)	1.595(3)
C(1)-C(6)	1.392(2)	C(53)-C(54)	1.638(4)
C(2)-C(3)	1.396(3)	C(54)-C(56B)	1.590(17)
C(3)-C(4)	1.393(3)	C(54)-C(55)	1.541(3)
C(3)-C(30)	1.529(3)	C(55)-C(56A)	1.489(3)
C(4)-C(5)	1.391(3)		
C(5)-C(6)	1.397(3)	C(7)-N(1)-C(1)	127.91(18)
C(5)-C(34)	1.534(3)	C(13)-N(2)-C(17)	120.47(19)
C(7)-C(8)	1.398(3)	C(23)-N(3)-C(24)	127.63(18)
C(7)-C(12)	1.417(3)	C(2)-C(1)-C(6)	119.75(19)
C(8)-C(9)	1.386(3)	C(2)-C(1)-N(1)	118.37(18)
C(9)- $C(10)$	1.390(3)	C(6)-C(1)-N(1)	121.71(19)
C(10)- $C(11)$	1.373(3)	C(1)-C(2)-C(3)	121.53(19)
C(11)-C(12)	1 396(3)	C(4)-C(3)-C(2)	117 3(2)
C(12)-C(13)	1 479(3)	C(4)-C(3)-C(30)	122.72(19)
C(12) = C(13)	1.179(3) 1.391(3)	C(2)-C(3)-C(30)	122.72(19) 120.00(19)
C(14)- $C(15)$	1 379(3)	C(5)-C(4)-C(3)	122.00(17) 122.7(2)
C(15)- $C(16)$	1.379(3) 1 381(3)	C(4)-C(5)-C(6)	122.7(2) 118 43(19)
C(16)- $C(17)$	1 309(3)	C(4) - C(5) - C(34)	121 66(19)
C(17) - C(18)	1.377(3) 1 483(3)	C(6)-C(5)-C(34)	121.00(19) 119 74(19)
C(18)- $C(19)$	1.405(3)	C(1)-C(6)-C(5)	120.3(2)
C(18)-C(23)	1.370(3) 1.422(3)	N(1)-C(7)-C(8)	120.3(2) 120.7(2)
C(10)-C(20)	1.422(3) 1.376(3)	N(1)-C(7)-C(12)	120.7(2) 120.2(2)
C(20) C(21)	1.370(3)	C(8) C(7) C(12)	120.2(2) 110 1(2)
C(21) - C(21)	1.30+(3) 1.381(3)	C(8) - C(7) - C(12) C(9) - C(8) - C(7)	119.1(2) 121.1(2)
C(21)- $C(22)C(22)$ $C(23)$	1.301(3) 1.308(3)	C(9) - C(0) - C(10)	121.1(2) 120.2(2)
C(22)- $C(23)$	1.396(3)	C(11) C(10) C(0)	120.2(2) 118 7(2)
C(24)-C(29) C(24)-C(25)	1.363(3) 1.303(3)	C(11)-C(10)-C(3) C(10)-C(11)-C(12)	110.7(2) 123.2(2)
C(24)-C(25) C(25) $C(26)$	1.393(3) 1.202(3)	C(10)-C(11)-C(12) C(11)-C(12)-C(7)	123.2(2) 117.7(2)
C(25)- $C(20)$	1.393(3) 1.207(2)	C(11)-C(12)-C(7)	117.7(2) 118.02(10)
C(20)-C(27)	1.597(5)	C(11)-C(12)-C(13) C(7)-C(12)-C(13)	110.93(19) 122.4(2)
C(20)-C(38)	1.330(3)	V(2) C(12) C(13)	123.4(2) 121.0(2)
C(27)-C(28)	1.388(3)	N(2) - C(13) - C(14)	121.0(2)
C(28) - C(29)	1.399(3)	N(2)-C(13)-C(12)	118.10(19)
C(28)-C(42)	1.539(3)	C(14)-C(13)-C(12)	120.9(2)
C(30)-C(33A)	1.520(3)	C(15)-C(14)-C(13)	118.9(2)
C(30)-C(32B)	1.536(15)	C(14)-C(15)-C(16)	120.0(2)
C(30)-C(32A)	1.536(3)	C(15)-C(16)-C(17)	119.0(2)
C(30)-C(31A)	1.546(3)	N(2)-C(17)-C(16)	120.4(2)
C(30)-C(31B)	1.586(15)	N(2)-C(17)-C(18)	118.45(19)
C(30)-C(33B)	1.631(14)	C(16)-C(17)-C(18)	121.1(2)
C(34)-C(35)	1.520(3)	C(19)-C(18)-C(23)	117.9(2)
C(34)-C(37)	1.520(3)	C(19)-C(18)-C(17)	118.87(19)
C(34)-C(36)	1.527(3)	C(23)-C(18)-C(17)	123.18(19)
C(38)-C(40)	1.538(2)	C(20)-C(19)-C(18)	123.2(2)
C(38)-C(39)	1.538(3)	C(19)-C(20)-C(21)	118.6(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for ECW18 (CCDC 793155).

C(22)-C(21)-C(20)	120.2(2)	C(44)-C(42)-C(45)	109.46(19)
C(21)-C(22)-C(23)	121.7(2)	C(28)-C(42)-C(45)	108.84(18)
N(3)-C(23)-C(22)	122.41(19)	C(55)-C(51)-C(52)	105.2(2)
N(3)-C(23)-C(18)	119.2(2)	C(51)-C(52)-C(53)	101.8(2)
C(22)-C(23)-C(18)	118.3(2)	C(52)-C(53)-C(54)	106.1(2)
C(29)-C(24)-C(25)	120.24(19)	C(56B)-C(54)-C(55)	101 5(6)
C(29)-C(24)-N(3)	120.21(19) 122 17(19)	C(56B) - C(54) - C(53)	112 8(7)
C(25) - C(24) - N(3)	122.17(19) 117 49(18)	C(55)-C(54)-C(53)	103.2(2)
C(25) - C(25) - C(24)	117.49(10) 120.82(10)	C(56A) C(55) C(51)	105.2(2) 115.6(2)
C(25) - C(25) - C(24)	120.02(19) 117.6(2)	C(56A) C(55) C(51)	113.0(2) 112 4(2)
C(25) - C(26) - C(27)	117.0(2) 121.02(10)	C(50A) - C(55) - C(54)	112.4(2) 103 5(2)
C(25)-C(20)-C(58)	121.92(19) 120.45(10)	C(31)-C(33)-C(34)	105.5(2)
C(27)- $C(20)$ - $C(36)$	120.43(19)		
C(28)-C(27)-C(20)	122.7(2) 119.16(10)		
C(27)- $C(28)$ - $C(29)$	118.10(19)		
C(27)- $C(28)$ - $C(42)$	123.18(19)		
C(29)-C(28)-C(42)	118.63(19)		
C(24)-C(29)-C(28)	120.4(2)		
C(33A)-C(30)-C(3)	109.25(19)		
C(33A)-C(30)-C(32B)	139.0(6)		
C(3)-C(30)-C(32B)	111.5(6)		
C(33A)-C(30)-C(32A)	110.32(19)		
C(3)-C(30)-C(32A)	109.19(18)		
C(32B)-C(30)-C(32A)	51.3(6)		
C(33A)-C(30)-C(31A)	108.1(2)		
C(3)-C(30)-C(31A)	112.62(18)		
C(32B)-C(30)-C(31A)	59.0(6)		
C(32A)-C(30)-C(31A)	107.4(2)		
C(33A)-C(30)-C(31B)	56.5(6)		
C(3)-C(30)-C(31B)	112.1(6)		
C(32B)-C(30)-C(31B)	109.9(9)		
C(32A)-C(30)-C(31B)	138.7(6)		
C(31A)-C(30)-C(31B)	54.6(6)		
C(33A)-C(30)-C(33B)	52.4(6)		
C(3)-C(30)-C(33B)	113.1(5)		
C(32B)-C(30)-C(33B)	105.9(8)		
C(32A)-C(30)-C(33B)	59.7(6)		
C(31A)-C(30)-C(33B)	134.1(5)		
C(31B)-C(30)-C(33B)	103.9(8)		
C(35)-C(34)-C(37)	109.08(18)		
C(35)-C(34)-C(36)	106.4(2)		
C(37)-C(34)-C(36)	109.6(2)		
C(35)-C(34)-C(5)	112.41(18)		
C(37)-C(34)-C(5)	108.10(18)		
C(36)-C(34)-C(5)	111.23(18)		
C(26)-C(38)-C(40)	112.91(17)		
C(26)-C(38)-C(39)	109.86(17)		
C(40)-C(38)-C(39)	108.26(17)		
C(26)-C(38)-C(41)	109.30(17)		
C(40)-C(38)-C(41)	107.81(18)		
C(39)-C(38)-C(41)	108.60(17)		
C(43)-C(42)-C(44)	108.1(2)		
C(43)-C(42)-C(28)	111.93(19)		
C(44)-C(42)-C(28)	110.26(17)		
C(43)-C(42)-C(45)	108 19(18)		
$\mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L})$	100.17(10)		

Table 4. Anisotropic displacement parameters (Å²x 10⁴) for ECW18 (CCDC 793155). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
N(1)	279(11)	223(11)	177(11)	-13(9)	77(9)	94(9)
N(2)	167(10)	156(10)	257(11)	-18(9)	96(8)	3(8)
N(3)	364(12)	197(11)	172(11)	20(9)	41(9)	-107(9)
C(1)	183(12)	147(12)	191(13)	-40(10)	7(10)	6(9)
C(2)	181(12)	190(13)	188(13)	-53(10)	65(10)	-16(10)
C(3)	161(11)	192(13)	178(12)	-11(10)	6(10)	-40(10)
C(4)	161(12)	182(13)	233(13)	-10(10)	28(10)	11(9)
C(5)	167(12)	179(13)	191(12)	-52(10)	38(10)	-31(10)
C(6)	222(12)	164(12)	160(12)	-18(10)	40(10)	-32(10)
C(7)	164(12)	228(13)	205(13)	16(11)	56(10)	-15(10)
C(8)	233(13)	208(13)	264(14)	16(11)	37(11)	19(10)
C(9)	316(14)	300(15)	224(14)	-32(12)	42(11)	-63(11)
C(10)	306(14)	303(15)	248(14)	69(12)	25(11)	-14(12)
C(11)	261(13)	190(13)	318(15)	67(12)	95(11)	18(11)
C(12)	165(12)	176(13)	246(13)	41(11)	95(10)	-6(10)
C(13)	148(12)	195(13)	300(14)	28(11)	85(10)	22(10)
C(14)	278(14)	219(14)	320(15)	53(12)	95(11)	-19(11)
C(15)	271(14)	165(13)	500(18)	37(13)	131(13)	-34(11)
C(16)	243(13)	183(13)	410(16)	-94(12)	113(12)	-40(11)
C(17)	131(12)	197(13)	326(15)	-42(11)	94(10)	-18(10)
C(18)	185(12)	177(13)	272(14)	-60(11)	107(10)	5(10)
C(19)	192(13)	239(14)	370(16)	-112(12)	114(11)	-52(10)
C(20)	243(13)	371(16)	286(15)	-137(13)	34(11)	-51(12)
C(21)	292(14)	378(16)	223(14)	-48(12)	44(11)	3(12)
C(22)	266(13)	260(14)	259(14)	-22(12)	83(11)	-39(11)
C(23)	196(12)	198(13)	258(14)	-64(11)	66(11)	7(10)
C(24)	215(12)	167(13)	181(12)	21(10)	19(10)	-24(10)
C(25)	175(12)	223(13)	178(12)	4(10)	47(10)	-15(10)
C(26)	169(12)	177(13)	176(12)	1(10)	-9(10)	19(10)
C(27)	192(12)	146(12)	234(13)	16(10)	30(10)	-34(10)
C(28)	195(12)	208(13)	179(12)	30(10)	22(10)	14(10)
C(29)	255(13)	191(13)	168(12)	-18(10)	40(10)	-7(10)
C(30)	178(12)	235(14)	196(13)	28(11)	36(10)	2(10)
C(31A)	278(17)	370(20)	265(18)	106(15)	75(14)	60(14)
C(32A)	256(16)	323(19)	239(17)	62(14)	49(13)	-23(14)
C(33A)	356(19)	372(19)	194(16)	-20(14)	45(14)	-41(15)
C(31B)	430(110)	690(150)	190(100)	20(100)	40(80)	170(100)
C(32B)	640(140)	410(120)	290(100)	110(90)	190(100)	140(100)
C(33B)	400(110)	600(140)	210(90)	190(90)	150(80)	260(100)
C(34)	196(12)	251(14)	213(13)	-19(11)	76(10)	10(10)
C(35)	479(16)	312(16)	650(20)	-17(15)	382(15)	66(13)
C(36)	560(20)	1570(40)	278(17)	60(20)	197(15)	490(20)
C(37)	454(17)	390(18)	1070(30)	-287(18)	518(18)	-168(14)
C(38)	183(12)	208(13)	245(13)	-53(11)	31(10)	-2(10)
C(39)	320(14)	214(14)	432(17)	-46(12)	95(12)	24(11)
C(40)	273(13)	309(15)	303(15)	-83(12)	97(11)	0(11)
C(41)	251(13)	441(17)	314(15)	-141(13)	23(11)	12(12)

C(56A)	640(20)	450(20)	331(19)	-162(17)	-92(16)	186(17)
C(55)	420(17)	467(19)	433(18)	1(15)	35(14)	-28(14)
C(54)	383(18)	970(30)	720(20)	20(20)	115(17)	81(18)
C(53)	640(20)	860(30)	990(30)	170(20)	250(20)	51(19)
C(52)	549(19)	490(20)	436(18)	2(16)	119(15)	-72(15)
C(51)	457(17)	473(19)	442(18)	-6(15)	157(14)	14(14)
C(45)	375(16)	498(19)	467(18)	39(15)	246(14)	73(13)
C(44)	386(15)	600(20)	248(15)	-41(14)	147(12)	-95(14)
C(43)	510(17)	398(17)	466(18)	-83(14)	327(14)	-178(14)
C(42)	255(13)	275(14)	242(14)	-12(11)	105(11)	-41(11)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)N(2)	0.88	2.06	2.730(2)	131.7
N(3)-H(3)N(2)	0.88	2.08	2.750(2)	132.3
			,	

Table 5. Hydrogen bonds for ECW18 (CCDC 793155) [Å and $^\circ$].