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ABSTRACT

The concurrent fault simulation technique is
widely used to analyze the behavior of digital cir-
cuits in the presence of faults. We show how this
technique can be applied to metal-oxide-semicon-
ductor (MOS) digital circuits when modeled at the
switch-level as a set of charge storage nodes con-
nected by bidirectional transistor switches. The
algorithm we present is capable of analyzing the
behavior of a wide variety of MOS circuit failures,
such as stuck-at-zero or stuck-at-one nodes, stuck-
open or stuck-closed transistors, or resistive opens
or shorts. We have implemented a fault simmlator
FMOSSIM based on this algorithm. The capabili-
ties and the performance of this program demon-
strate the advantages of combining switch-level
and concurrent simulation techniques.

INTRODUCTION

Test engineers use fault simulators to deter-
mine how well a sequence of test patterns, when
applied to the inputs of an integrated circuit, can
distinguish a good chip from a defective one. The
fault simmlator is given a description of the good
circuit, a set of hypothetical faults in the circuit,
a specification of the observation points of the
test (e.g. the output pins of the chip), and a se-
quence of test patterns. It then simulates how the
good circuit and all of the faulty circuits would
behave when the test patterns are applied to the
inputs. A fault is considered detected if at any
time the simmlation of that particular faulty cir-
cuit produces, at some observation point, a logic
value different than that produced by the good cir-
cuit. By keeping track of which faults have been
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detected and which have not, the fanlt simmlator
can determine the fault coverage of the test se-
quence, which is defined as the ratio of the number
of faults detected to the total number simmlated.
The simulator can also provide the user with infor-
mation about which faults have not been detected,
either because the test sequence failed to exercise
the defective part of the circuit, or because the se-
quence failed to make the effect of such an exercise
visible at some observation point. This informa-
tion guides the engineer in extending or modify-
ing the test sequence to improve its fault coverage.
Such a tool is invaluable for developing test pat-
terns for today’s complex digital systems.

For a large integrated circuit such as a micro-
processor chip, thousands of faults must be simm-
lated to adequately characterize the fault coverage
of a test sequence. Furthermore, test sequences
can involve thousands of patterns. Hence a simple
serial simmlation, in which the good circuit and
each faulty circuit are simulated separately, would
require far too much computation. Fortunately,
clever algorithms can reduce the amount of com-
putation considerably. A technique known as con-
current simulation® exploits the fact that a faulty
circuit typically differs only slightly from the good
circuit. Rather than simmlating each circuit sep-
arately, only the good circuit is simmlated in its
entirety. The simulator keeps track of how the
network state of each faulty circuit differs from
the network state of the good circuit by selec-
tively simmlating portions of the faulty network.
To the user, it appears as if the program is simulat-
ing many circuits concurrently, but the amount of
CPU time required is a small factor (e.g. often
less than 10 times) greater than the time required
to simulate the good circuit alone. Furthermore,
the simulator can easily determine when a faulty
circuit produces a value different than the good
circuit at some observation point without stor-



ing the entire output history of the good circuit
simulation. Once a fault has been detected, the
simulation of this particular faulty circuit can be
dropped, thereby reducing the amount of com-
putation required for the remainder of the simula-
tion. Typically, the faults that cause great differ-
ences from the behavior of the good circuit, and
hence require the most computational effort, are
detected quickly. Consequently, fault dropping
greatly improves the overall performance of the
simulator.

Most existing logic simulators model a digi-
tal circuit as a network of logic gates, in which
each gate produces values on its outputs based
on the values applied to its inputs, and possibly
on the value of its internal state. Some of these
simulators extend the simple Boolean gate model,
in which only the value 0 or 1 is permitted on
each input and output, with additional logic values
and special types of gates to model circuit struc-
tures such as busses and pass transistors. These
simulators are not suitable for modeling faults in
MOS digital circuits for two reasons: First, many
MOS circuit structures cannot be adequately mod-
eled as a set of logic gates. Creating gate-level
descriptions of pass transistor networks, dynamic
memory elements, and precharged logic is at best
tedious and inaccurate, and at worst impossible,
even with extended gate models. The user must
translate the logic design by hand into a form
compatible with the simulator, and the resulting
simulation is inherently biased toward the user’s
understanding of the functionality of the circuit.
Second, logic gate simulators are especially poor
at predicting the behavior of a MOS circuit in
the presence of faults. Even simple logic gates
can become seemingly complex sequential circuits
when a fault such as an open-circuited transis-
tor occurs? As a result, fault simmlators based
on logic gates can model only a limited class of
faults, such as the gate outputs and inputs stuck-
at-gzero or stuck-at-one. Faults such as short cir-
cuits across transistors and between wires, or open
circuits in transistors or wires, are beyond their
capability. Furthermore, even the modeling of
stuck-at faults is limited in accuracy when the
logic gate description is an artificial translation of
the actual circuit structure.

To remedy these problems with logic gate sim-

ulators, we propose that fanlt simulations of MOS
circuits be performed at the switch level with the
transistor structure of the circuit represented ex-
plicitly, but with each transistor modeled in a
highly idealized way. This approach has proved
successful for logic simulation in programs such
as MOSSIM® and MOSSIM II¢ because proper-
ties such as the bidirectional nature of field-effect
transistors and the charge storage capabilities of
the nodes in a MOS circuit are modeled directly,
rather than by some artificial translation into logic
gates. Unlike the precise, but time-consuming al-
gorithms used by circuit simulators, switch-level
simulators model the circuit in a sufficiently simp-
lified way that they operate at speeds comparable
with conventional logic gate simulators. Further-
more, our switch-level logic model is well suited for
modeling a variety of failures in MOS circuits in a
reasonably realistic way, because many faults can
be viewed as creating new switch-level networks
which differ from the switch-level representation
of the good circuit. Hence, while the switch-level
model has proved successful for logic simulation,
it seems especially attractive for fault simulation.
Hayes® has proposed the Connector-Switch-Atten-
uator representation of logic circuits for modeling
faults, and our switch-level model has essentially
the same capabilities.

We have adapted the technique of concur-
rent simmlation to implement a fault simulator for
MOS circuits, where the problem is viewed as one
of simulating a large number of nearly identical
switch-level networks. This program FMOSSIM
can simulate a large variety of MOS circuits, un-
der a variety of fault conditions, at much higher
speeds than would be possible with serial simmla-
tion. Other concurrent fault simulators for MOS
have been implemented® but these could only mod-
el a very limited class of networks. In this paper,
we will present an overview of the switch-level
model and how different faults can be represented
in it. We also discuss our concurrent, switch-level
simmlation algorithm and present performance re-
sults from FMOSSIM.

NETWORK MODEL

The following network model is implemented
in the simmlators MOSSIM II and FMOSSIM. It
provides a more general transistor model than pro-
vided by other switch-level simulators, giving bet-



ter capabilities for fault injection. A switch-level
network consists of a set of nodes connected by a
set of transistors. Each node has a state 0, 1, or
X, where 0 and 1 represent low and high voltages,
respectively. The X state represents an indeter-
minate voltage arising from an uninitialized node,
from a short circuit, or from improper charge shar-
ing. No restrictions are placed on how transistors
are interconnected.

Each node is classified as either an tnpué node
or a storagenode. An input node provides a strong
signal to the network, as does a voltage source in
an electrical circuit. Its state is not affected by
the actions of the network. Examples include the
power and ground nodes Vdd and Gnd, which act
as constant sources of the states 1 and 0, respec-
tively, as well as any clock or data inputs.

The state of a storage node is determined
by the operation of the network. Much like a
capacitor in an electrical circuit, a storage node
holds its state in the absence of connections to in-
put nodes. To provide a simple model of charge
sharing, each storage node is assigned a discrete
size from the set { £y, &g,..., %y }, where the sizes
are ordered x1 < Ky < -+ < &g A larger
storage node is assumed to have much greater cap-
acitance than a smaller one. When a set of storage
nodes charge share, the states of the largest nodes
in the set override the states of the smaller nodes.
The number of different sizes required (¢) depends
on the circuit to be simulated. Most circuits can be
represented with just two node sizes. In this rep-
resentation, high capacitance nodes such as busses
assigned size kg, and all other nodes are assigned
size K.

A transistor is a device with terminals labeled
gate, source, and drasn. No distinction is made
between the source and dram connections — each
transistor is symmetric and bidirectional. Because
transistors can be either n-iype, p-type, or d-type,
both nMOS and CMOS circuits can be modeled. A
d-type transistor corresponds to a negative thres-
hold depletion mode device. A transistor acts as
a resistive switch connecting or disconnecting its
source and drain nodes according to its type and
the state of its gate node, as shown in Figure
1. Transistor states 0 and 1 represent open (non-
conducting) and closed (fully conducting) condi-
tions, respectively. The X state represents an in-
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Figure 1. Transistor state function

determinate condition between open and closed,
inclusive.

To model the behavior of ratioed circuits, each
transistor is assigned a discrete sirengih from the
set {71,72,..-,7p }, Where strengths are ordered
7 < 72 <+ < 9p. A stronger transistor is as-
sumed to have much greater conductance than a
weaker one. When a storage node is connected to a
set of input nodes by paths of conducting transis-
tors, its resulting state depends only on the states
of the input nodes connected by paths of greatest
strength. The strength of a path is defined to
equal the strength of the weakest transistor in the
path. The total number of strengths required (p)
depends on the circuit to be modeled. Most CMOS
circuits do not utilize ratioed logic and hence can
be modeled with just one transistor strength. Most
nMOS circuits require only two strengths, with
pull-up loads assigned strength 7; and all other

transistors assigned strength s.
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Figure 2. Three transistor dynamic RAM

As an example of a switch-level network, con-
sider the three transistor dynamic RAM circuit
shown in Figure 2. The bus node has size x2 to
indicate that it cin supply its state to the size «
storage node (m; or mg) of the selected memory
element during a write operation (when w; or wg
is 1) and to the size x; drain node (c; or c3) of the
selected storage transistor during a read operation
(when 7, or rg is 1). The d-type pull-up transis-
tor in the input inverter has strength 7, to indi-
cate that it can drive the bus high only when the
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strength 3 pull-down transistor is not conduct-
ing. The strengths of all other transistors in the
circuit are arbitrary, since they are not involved
in ratioed path formation (except possibly when
faults are present).

The switch-level network model strikes a rea-
sonable balance between a detailed electrical mod-
el and an abstract logical model. As a result of this
abstraction, the model may not predict the true
behavior of circuits such as sense amplifiers and
arbiters which rely on detailed analog properties.
Moreover, the network model does not contain
enough detail to accurately model timing behavior,
because even in circuits with straightforward logi-
cal behavior, timing can be subtle. However, ex-
perience has shown that switch-level simulation
works quite well for verifying logic designs.

FAULT INJECTION

Faults are represented in FMOSSIM as though
extra fault transistors were added to the network,
much like that proposed by Lightner and Hachtel?
In the implementation, however, many of these
faults are injected without actually adding fault
transistors; nevertheless, the behavior is equivalent
to what is described below. The gate nodes of the
fault transistors are considered to be extra fault
inputs to the network that control the presence or
absence of the failures. A variety of MOS failures
can be modeled with this method. For example,
a short circuit between two nodes is modeled by
connecting the nodes with a fault transistor that
is open in the good circuit and closed in the faulty
circuit. Similarly, an open circuit is modeled by
splitting a node into two parts and connecting
the resulting nodes with a fault transistor that is
closed in the good circuit and open in the faulty
circuit. By adjusting the strength of the fault
transistor, the resistance of the short or open may
be modeled in an approximate way. For example,
if the strength of the fault transistor is set tp vp1
(ie. a strength greater than that of any normal
transistor), then setting this transistor state to 1
shorts the source and drain nodes together such
that they act as a single node. Moreover, because
the state of each fault transistor can be controlled
independently, both single and multiple faults can
be injected.

Figure 3 illustrates the use of fault transistors
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Figure 3. Modeling MOS failures

to create a variety of circuit fanlts. Those transis-
tors with gate nodes labeled f are normally 0, but
are set to 1 to create the fault; the transistors with
gate nodes labeled 7 are normally 1, but are set
to O to create the fault. A stuck-at-zero or stuck-
at-one node fault can be modeled by inserting a
strength 4,4, fault transistor to short the node to
Gnd or to Vdd, respectively. A stuck-closed tran-
sistor fault is injected by shorting the transistor’s
source and drain together with a fault transistor
whose strength equals that of the failing transis-
tor. Similarly, a stuck-open transistor fault is
modeled by putting a fault transistor in series with
it. In FMOSSIM, both stuck-at node states and
stuck-at transistor states are implemented without
extra fault transistors, while other faults require
additional transistors to be inserted into the net-
work.

Although FMOSSIM can model a larger class
of faults than can be modeled by logic gate fault
simulators, it still provides only a simplified rep-
resentation of the faulty circuit. For example,
the effects of manufacturing defects such as in-
correct transistor thresholds, pinholes in the gate
oxides, and variations in the circuit delays, cannot
be described accurately. The effects of resistive



shorts and opens can only be approximated. In
fact, even existing circuit simmlators cannot model
defects that change the basic nature of the devices,
such as pinholes in the gate oxides. However, even
if the fault models supported by our simulator
do not exactly match the failure modes in actual
chips, the program can still help the designer in
developing a set of test patterns. For circuits imp-
lemented in bipolar technologies such as TTL, ex-
perience has shown that a test sequence that yields
a high level of coverage for single stuck-at-zero
and stuck-at-one faults in the logic gate network
generally provides a good test of the circuit. It
seems reasonable to expect that the test coverage
measured by a switch-level fault simulator for an
idealized set of faults should reliably predict how
well the test sequence will work on a MOS circuit.
Such a conjecture, however, can only be confirmed
by actual experience in a manufacturing environ-
ment.

Many faults in our model have the effect of
creating an X state on a node when the good circuit
has a 0 or 1. For example, if the control signal
wy In the circuit shown in Figure 2 is stuck-at-
zero, bit m, of the memory will never be initialized
and will remain at X. On the other hand, if the
precharge clock ¢, is stuck-at-one, any time we
try to read a 1 value out of a memory cell, a
short circuit will develop between Vdd and Gnd
giving an X on the bus. Whether or not such X’s
would be detected in an actual test depends on
detailed characteristics of the circuit that cannot
be predicted at the switch-level, such as the mitial
voltages of dynamic nodes, how the voltage would
divide across a shorting path, and the thresholds
of the devices sensing these X values. On one
hand, a pessimist might argue that an Xin a faulty
circuit should be considered undetectable, because
there is no guarantee that the X will produce an
effect different than the state of the node in the
good circuit. On the other hand, a fault that
prevents the circuit from being initialized, such as
a stuck-at-zero clock line, would clearly be quickly
detected. As a compromise FMOSSIM allows the
user to specify a soft detect limit [ such that if in
the good circuit some output changes both to 1
and to 0 at least [ times each, while the output
in a faulty circuit remains at X, then this fault is
considered detected. This approach seems to work
reasonably well in practice.

BEHAVIORAL MODEL

The operation of a MOS circuit is charac-
terized in the switch-level model in terms of its
steady state response fumction®® which can best
be explained in terms of an analogy to electrical
networks. A MOS transistor behaves as a voltage-
controlled, nonlinear resistor where the voltages of
its gate, source and drain nodes control the resis-
tance between its source and drain. Suppose in
a transistor circuit we could control the transis-
tor resistances independently of the node voltages.
For a given setting of the transistor resistances,
such a circuit acts as a network of passive elements
which, for a given set of initial node voltages, has
a unique set of steady state node voltages. Thus a
function that maps transistor resistances and ini-
tial node voltages to steady state node voltages
gives a partial characterization of the behavior of a
transistor circuit. The steady state response func-
tion provides just this sort of characterization, but
in terms of node and transistor states 0, 1, and X.
That is, for a given set of initial node and tran-
sistor states, the steady state response function
yields the set of states which the storage nodes
would eventually reach if all transistors were held
fixed in their initial states. This function only
approximates network behavior, since it does not
describe the rate at which nodes approach their
steady states nor the effects of the changing tran-
sistor states as their gate nodes change state.

In general, a switch-level network may con-
tain nodes and transistors in the X state. Such
states arise from improper charge sharing or (tran-
sient) short circuits even in properly designed net-
works. The behavior of a network in the presence
of X states must be described in a way that is
neither overly optimistic (i.e. ignoring possible er-
ror conditions), nor overly pessimistic (i.e. spread-
ing X's beyond the region of indeterminate be-
havior). This can be accomplished by defining the
steady state response of a node to be 0 or 1 if
and only if the node would have this unique state
regardless of whether each node and transistor in
the X state had state O or 1; otherwise, the steady
state of the node is defined to be X Rather than
computing the steady state for all possible com-
binations of the nodes and transistors in the X
state set to 0 or 1 (a task of exponential com-
plexity), an equivalent two-pass linear time algo-



rithm is used’ Each pass involves solving a set of
equations expressed in a simple, discrete algebra
using a relaxation algorithm.

Given a technique for computing the steady
state response function, a switch-level logic simu-
lator can be implemented that simulates the opera-
tion of the network by repeatedly performing uns¢
steps until a stable state is reached. Each unit
step involves computing the steady state response
of the network, setting the storage nodes to these
values, and setting the transistors according to the
states of their gate nodes. This simulation tech-
nique implements a timing model in which tran-
sistors switch one time unit (i.e. one evaluation
of the steady state response function) after their
gate nodes change state. Such a timing model
tells little about the speed of a circuit but usually
suffices to describe the circuit’s logical behavior.
As with other unit delay simulations, this com-
putation may not reach a stable condition due
to oscillations in the circuit, and hence an up-
per bound must be placed on the number of steps
simulated.

On a given unit step, often only a small por-
tion of the network changes state, while the rest
of the network remains inactive. Most logic sim-
ulators exploit this property by recomputing the
output of a logic gate only if at least one of the
gate’s inputs has changed state. A similar effect is
achieved in switch-level networks by viewing net-
work activity as creating small perturbations of
the network state, and only computing the effects
of these perturbations incrementally rather than
recomputing the state of the entire network. We
say that a storage node is perturbed if it is the
source or drain of a transistor that has changed
state, or If it is connected by a transistor in the
1 or X state to an input node that has changed
state. Such a perturbation can only affect storage
nodes in the vicinity of the perturbed node, where
two nodes are in the same vicinity if and only if
there exists some path of transistors in the 1 or
X state between the nodes which does not pass
through any input nodes. This definition exploits
the dynamic locality in the network where the
source and drain of a transistor in the 0 state are
considered to be electrically isolated. Typically,
a vicinity contains only a few nodes, and hence
activity remains highly localized.

unst-step( P);
U.=@;
for each n € Pdo
U:=U U update-vicinsty( n);
P:=0;
for each n € Udo
begin
P:=P | perturb-transistors(n);
update-node(n);
ends
return(P);
end unté-step;

Figure {. Implementation of unit step

Figure 4 shows a simplified implementation of
the unit step operation that uses this incremental
perturbation technique to recompute only selected
parts of the network state. The argument P is a
set of perturbed storage nodes derived from either
new data and clock inputs to the circuit or from
the last unit step. For each of these nodes, update-
vicinity finds all the nodes in the same vicinity,
computes their steady state response, and returns
a set of nodes that changed state. These updated
nodes are accumulated in the set U. Vicinities are
found by a depth first search'® originating at the
perturbed node and tracing outward through tran-
sistors in the 1 or X state from source to drain un-
til an input node is encountered. As each node is
added to the vicinity, it is flagged to avoid duplica-
tion and endless cycles. For each updated node n
in U, perturb-transistors finds all transistors whose
gate node is n and checks to see if they have
changed state. Nodes perturbed by these chang-
ing transistor states are accumulated in a new set
P in preparation for the next unit step. Finally,
update-node sets each updated node to its new
state.

CONCURRENT SIMULATION

We have seen that the presence or absence of a
fault in a switch-level network is controlled by the
state of a fault input node. Suppose the test pat-
terns that specify data and clock mput values are
extended to include values for the network’s fault
input nodes. Then the behavior of a set of faulty
circuits can be determined by repeatedly simulat-
ing patterns that differ only in selected fault in-
put values. Hence, concurrent fault simulation can
be viewed as the problem of efficiently applying a



large number of nearly identical test sequences to
a single network. This viewpoint separates issues
of fault modeling from concurrent simmlation. For
example, since values for fault input nodes are
specified on an individual pattern by pattern basis,
multiple and intermittent faults are easily modeled
without changing the basic simulation algorithm.
Furthermore, there are no inherent restrictions re-
quiring that the data inputs of all test sequences
be identical. Thus, concurrent simulation is useful
not only for simulating faults, but for simulating
sets of similar test patterns on a fault-free circuit.

The concurrent simulation algorithm is given
a description of the network and a set of fest se-
quences T = {tg,...,tn }. A test sequence t; €
T consists of a sequence of test patterns, each
specifying values for the data, clock and fault in-
puts of the network. The algorithm simulates the
network to determine how each node behaves for
each test sequence ;. That is, at any point dur-
ing the simulation, each node’s state s; in test se-
quence t; is found. Since we assume that the be-
havior of the network differs only slightly from test
sequence to test sequence, s; = gy for most nodes
in the network. This observation is exploited by
representing node states compactly as a set of pairs
S = {(t;, 3;) }, called a state set, where (t;,5;) € S
if and only if 7 = 0 or 8; 3£ a9. The behavior of the
network for test sequence ty serves as a reference
point, since states are explicitly stored only for test
sequence o and those sequences {; whose states
differ from tg. For this reason, test sequence #g
is called the reference sequence. For fault simula-
tion, the reference sequence corresponds to the
good circuit, while test sequences ¢;,i 5= 0 differ
only in selected fault input values, and hence cor-
respond to faulty circuits. A node is said to be
diverged for t; if 3; = 8p. A node is said to be
diverged if it is diverged for any t;. If the gate
node of a transistor is diverged, then the transis-
tor itself is said to be diverged.

If a node is perturbed due to an input node
or transistor changing state for the reference se-
quence, it is likely that the node is also perturbed
for most other test sequences t;. We exploit this
observation by maintaining a set of perturbations
of the form P = {(nj,t;)}, called the perturba-
tion set, where (nj,to) € P if and only if node
nj is perturbed for the reference sequence ¢y and

(nj,t;) € P,i % 0, if and only if n; is perturbed -
for ¢; but not for the reference sequence. The per-
turbation (nj,t;) € P, where i 5£ 0, indicates that
the network has behaved differently in the area
near node nj for test sequence ¢; when compared
to its behavior for the reference sequence.

As described above, each unit step of the con-
ventional switch-level simulation algorithm com-
putes a steady state response for each node in the
vicinity of a perturbed node, updates those nodes
that have new steady states, and returns a set of
perturbations for the next unit step. To general-
ize this operation for concurrent sirmmulation, ob-
serve that the perturbation (nj,ty) € P repre-
sents a perturbation not only for the reference se-
quence, but likely for most other test sequences.
In general, the steady state response of nodes in a
vicinity is a function of both their initial states as
well as the states of the transistors whose source
or drain node is in the vicinity. Thus, when the
steady state response is computed for the nodes in
some vicinity as a result of a perturbation for the
reference sequence, we must check to see if any
of the nodes or transistors are diverged. We ex-
pect that most of the time, for most test sequences
t;, nodes within the vicinity will not be diverged
for ¢t;. In this case, the steady state response
computation performed for the reference sequence
will be valid for ¢{;, and hence there is no need
to duplicate this computation for ¢;. However, if
some node n; within the vicinity is diverged for
t;, then the steady state response computation us-
ing the states of the nodes and transistors for the
reference sequence may not be vahd for ¢{;. To
guarantee that an accurate computation be per-
formed for ¢;, the perturbation (nj,t;) is added
to P. In effect, we are simply scheduling a steady
state response computation that will be performed
sometime later. Diverged transistors are handled
in a similar manner, for if some transistor with
source n, or drain ng in the vicinity is found to be
diverged for t;, then the perturbations (n,,t;) and
(ng, t;) are added to P.

To determine the steady state response for
nodes in the vicinity of a perturbation (ny,1;),
where i £ 0, states of the nodes and transistors
for test sequence t; must be found. This involves
searching node state sets S for elements of the
form (s, t;). If such an element is not found, then



Vdd=m; = ms =m={(to,1)}
- Gnd = ¢pu = ¢in = data = {(to,O)}
ro = w = wp =¢; = cg = {(to, 0) }
bus = {(to, 1),(t1,0) }
n=Jf= {<tﬂl°)s<t111)}
f2 = {{t, 0), (ta, 1)}

Figure 5. Initial Node States

the state for the reference sequence is used. To
reduce search time, elements in both the state sets
S and perturbation set P are kept sorted by test
sequence.

As an example of this simulation technique,
consider the circuit shown in Figure 2. An opera-
tion that sets node mg to 0 will be described.
Suppose initially that nodes Vdd, m,, mq, bus,
and data have state 1 and all other nodes have
state 0. Two fault transistors are added to the
network, one connecting node mq to Vdd whose
gate is fault input f;, the other connecting node
#1 to Vdd whose gate is f3. For the reference se-
quence, both of these fault input nodes have state
0 so that the faults are absent. For test sequence
t1, f1 has state 1 to inject fault r; stuck-at-one.
For test sequence t3, fo has state 1 to inject fault
my stuck-at-one. Due to the fault injected by ¢,
bus and Gnd are connected by conducting tran-
sistors, hence bus is initially 0 for £;. The repre-
sentation of these initial states is shown in Figure
5.

To set mg to 0, nodes ¢;, and wg must be set
to 1. These changes perturb bus, data, and mg,
since they are connected to the source or drain of
transistors that have changed state. The vicinity
for each of these perturbed nodes contains bus,
data, mg, Vdd, and Gnd, and so their steady state
responses are determined. All three storage nodes
have steady states 0 due to the connection to Gnd
through transistors whose gates are ¢;, and data.
The states of Vdd and Gnd are unchanged since
they are input nodes. Notice that the pull-up
connection between data and V dd has no effect on
the steady state of data since the strength of this
connection, which is 71, is less than the strength
+9 pull-down connection between data and Gnd.

The steady state computation just described
was performed relative to the reference sequence,
since node states for the reference sequence were

Vdd:ml - ¢'|'n'= wa =m= {(tﬂil)}
Gnd = ¢po = data = {(t9,0) }
re = wy; =¢; = c3 = {(t,0)}

bus = {(to,0),(t2, X} }
rn=f1={(t,0),(t1,1)}
mg = fy = {{to, 0),(t2,1) }

Figure 6. Final Node States

used to determine which nodes were within the
vicinity as well as their steady state responses.
This computation may be invalid for sequences ¢,
or tg since bus has state 0 for {3 and mq is con-
nected to a conducting fault transistor for ¢;. So
that the appropriate steady state response com-
putations will be performed for both ¢; and s, the
perturbations (bus,t,) and (mg,t3) are generated
as the vicinity is found.

Consider the effects of perturbation (mg, 5).
A vicinity containing bus, data, mg, Vdd, and Gnd
is found, as in the simmlation for the reference se-
quence. The steady state response of bus depends
on the strengths of the transistors whose gates
are @i, and wqg. If both of these transistors have
strength 7, data stays 0 but bus becomes X due
to the short between Gnd and Vdd through the
fault transistor connected to mg.

Now consider the effects of the perturbation
(bus, t1). In this case, the vicinity contains node
¢1, in addition to those found above. The short
between bus and Gnd has no effect, and ¢;, mg,
bus, and data all have steady state responses equal
to those in the good circuit. The representation of
the final node states is shown in Figure 6.

In this example, we have seen that fanlts may
affect the steady state response of nodes as well
as which nodes are contained within a vicinity.
By explicitly generating perturbations for diverged
nodes and transistors when a vicinity m the good
circuit is simulated, we exploit the locality of ac-
tivity in each faulty circuit independent of ac-
tivity in other circuits. Furthermore, this tech-
nique selectively simulates only differing portions
of a faulty circuit, and hence simulation proceeds
quickly.

PERFORMANCE RESULTS

As a test case for evaluating the performance
of FMOSSIM, we simulated a 84 bit dynamic RAM
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Figure 7. Performance on Memory Circuit

circuit containing 374 transistors. This circuit in-
corporates a variety of MOS structures sach as
logic gates, bidirectional pass transistors, dynamic
latches, precharged busses, and three-transistor
dynamic memory elements. The circuit was sinm-
lated with 428 faults — each storage node stuck-
at-zero, each storage node stuck-at-one, and pairs
of adjacent busses shorted together. To validate
the program, we also simulated other faults, in-
cluding stuck-open and stuck-closed transistors.
The simulator was implemented in the Mainsail
programming language} ' and run on a DEC-20/60.

Figure 7 illustrates the performance of FMOS-
SIM when simulating a test sequence consisting of
a marching test!? of the memory, together with
special tests for the control logic. The curve climb-
ing diagonally upward indicates the total number
of faults detected as the test progresses. All faults
were detected after 407 patterns. The falling curve
indicates the CPU time required to simmlate each
pattern. This time starts at 27 seconds when the
circuits are initialized. After 100 patterns, it drops
to around 1 second as faults were detected and the
simulations of these circuits were dropped. This
time finally reaching 0.3 seconds at the end of the
simulation, when only the good circuit is being
simulated.
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Figure 8. Effective Concurrency

Figure 8 illustrates the performance advan-
tage of concurrent simulation over simmlating each
faulty circuit separately. The curve falling diagon-
ally to the right indicates the number of circuits
being simmlated as the test proceeds. The other
curve indicates the CPU time required to simulate
each pattern divided by the number of circuits be-
ing simulated for that pattern. This curve starts
at about 0.05 seconds per pattern, drops to a low
of 0.005 seconds once those faults causing major
differences from the good circuit are dropped, and
finally climbs back to 0.3 seconds when only the
good circuit is being simulated. Considering that
simulating a single circuit requires about 0.3 sec-
onds per pattern, the effective benefit of simulat-
ing all of the circuits concurrently starts at 6 times
serial simmlation, rises to 60 times, and drops back
down to 1.

Over the entire test sequence, simmlating the
good machine alone requires 2.5 CPU minutes.
QOur fault simmlation requires 11 CPU minutes,
whereas simulating each faulty circuit serially un-
til it produces a different result than the good ir-
cuit would take almost 8 hours. Thus, in this
case, concurrent simulation has a thirty-fold net
advantage over serial simulation. Such a perfor-
mance gain is clearly worth the effort.
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- CONCLUSION

Our experience with FMOSSIM has shown
that it is a very useful tool for developing test se-
quences. Even when developing a test for a small
section of an integrated circuit (such as an ALU
or a register array), the fault simmlator provides
information that is hard to obtain by any other
means. It quickly directs the designer to those
areas of the circuit that require further tests. For
example, in developing test sequences for the mem-
ory design described previously, we discovered that
a simple marching test provided high coverage in
the memory array itself, but that testing the con-
trol logic and peripheral circuits such as the input
and output latches was more difficult.

It remains to be seen how the performance
characteristics of FMOSSIM will vary as the size
of the circuit and the number of faults to be simm-
lated grows large. Even if it becomes impractical
to run full-chip fault simulations with large num-
bers of faults, the program could still produce use-
ful results by simulating portions of the chip, by
eliminating faults that produce effects identical to
other faults, or by simulating only a subset of the
possible faults selected at random.
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