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Minimum Propagation Delays in VLSI

CARVER MEAD anpo MARTIN REM

Abstract—Conditions are outlined under which propagation delays in
VLSI circuits can be achieved that are logarithmic in the wire lengths.
These conditions are imposed by area requirements and the velocity
of light.

[. INTRODUCTION

With feature sizes decreasing and chip area increasing it be-
comes more and more time consuming to transport signals
over long distances across the chip [5]. Designers are already
introducing more levels of metal connections using wider and
thicker paths for longer distances. Another recent develop-
ment is the introduction of an additional level of connections
between the chip and the printed circuit board; multilayer
ceramic chip carriers. The trend is undoubtedly towards even
more connecting levels,

In this paper we demonstrate that it is possible to achieve
propagation delays that are logarithmic in the lengths of the
wires, provided the connection pattern is designed to meet
rather strong constraints. These constraints are, in effect, sat-
isfied only by connection patterns that exhibit a hierarchical
structure. We also show that even at the ultimate physical
limits of the technology the propagation for reasonably sized
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VLSI chips is dominated by these considerations rather than
by the velocity of light.

II. PROPAGATION DELAY

We compute the time it takes a minimum-sized transistor
to drive a wire of length [ with width s. We assume the wire
to have a distance s to its neighboring wires and a thickness
and spacing to the layer beneath it of gs where o is a constant
smaller than one. This model is representative of current tech-
nology at all levels from the smallest transistors through printed
circuit boards, Let s, be the minimal width of a wire on the
chip so that a minimal transistor has area s3.

The following equation is a good approximation of the total
time T required to drive the wire:

T~(R;+Ry,)Cy (1

where R, is the resistance of the minimal transistor, R, is the
resistance of the wire, and C,, is its capacitance. The resis-
tance of a wire is proportional to its length and inversely pro-
portional to its cross section

!
—% (2)

as

Ry=p

The capacitance of a wire is inversely proportional to the dis-
tance to its underlying layer and it is proportional to the area
of the side facing that layer:

(3)

os a0

We note that the product of R,, and C,, is already quadratic
in /. Thus the time it takes to drive a wire is at least quadratic
in the wire length. However, things are not as bad as they
look: R,, the resistance of a minimal transistor, is the domi-
nant term in (1). We can decrease that term by fitting a larger
driver to the wire. But that driver must then in its turn be
charged by the transistor driving it. The optimal arrangement
is the well-known exponential sequence of drivers. The first
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one is the minimal transistor; the next one is bigger by a factor
a. It drives another driver that is again bigger by a factor «,
etc., until we finally reach a driver that is large enough to drive
the whole wire in a sufficiently short time.

There exists a simple rule to determine the time required to
have a driver charge another driver [2]. Let 7 be the time it
takes a minimal transistor to charge the gate of another mini-
mal transistor. The time required to have a driver with capaci-
tance C, drive another driver with capacitance C, is

(4)

Let C; be the capacitance of a minimal transistor. We have
it drive a driver with capacitance aC,. This second one drives
a driver with capacitance a?C,, etc., until the last driver has
a gate capacitance of about C,,/a. The number of drivers (in-
cluding the initial transistor) required is

C
log, —=. (5)

Ce
The capacitance C; of a minimal transistor is equal to (esé )/d
in which d is the thickness of the gate insulator. The number
of drivers is then log, Id/s30 and we get for the time T spent
in driving a zero resistance wire through the sequence of
drivers

id
Tg=arlogy, 5.

560 (6)
We may replace (1) by
T=T4z+R,C,,. (7
From (2), (3), (6), and (7) we conclude
Twazfloga—lg—i-pe%. (8)
550 s‘a

We now have a formula for the propagation delay with both
a logarithmic and quadratic term. One can see why a longer
wire requires a larger s: that decreases the quadratic term.
Actually, we wish to restrict the lengths of wires to values of
! that are sufficiently small to assure that the quadratic term
does not dominate, We therefore restrict ourselves to values
of / for which the quadratic term is smaller than the logarith-

mic one. If a signal must go a distance ! we chose a path of
width s and thickness os such that
I Id
—= < —arlog, —;. (9)
s pe S os2

With this choice we assure that the total delay will never be
larger than twice that required if there were no wire delay

TS T< 2T, (10)

We have assumed that the values of s could be chosen from
a continuous range. Although this is a good conceptualization
of the increasing number of different connection layers, in
practice we will have to choose s from a discrete set. The con-
necting wires will be placed at different levels. The widths of
the paths at the next level will be some factor § times the
widths at the preceding level. Given a distance / the signal
has to travel (9) gives us the ideal s and we choose the next
level at which the widths of the wires are larger than s. This
leads to an interesting observation, the ‘“magnifying glass
phenomenon.” Not only will the widths of the wires at any
given level be the same but their lengths will also be about
equal. The patterns at different levels are similar; at the next
level the features are just magnified by a factor .
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Velocity of Light

Asymptotically, no signal can travel faster than the velocity
of light. We must ask under what conditions the above con-
siderations will set a limit which is more stringent, i.e., when
the velocity of light is not attainable. In (6) and (10) we can
substitute 7 =54 /v where v is the limiting velocity of electrons
in the channel (a few 10% cm/s in silicon)

2as, ld

T< logy, 5.
g"sga

(11)

The minimum additional time AT required to propagate a
signal an additional distance A/ is
AT dT _ as,

L . 12
vl ina (12)

Al dl T

The domain of validity of the above results is AI/AT < ¢ in
which ¢ is the velocity of light in SiO,

casg

1< (13)

vina'
For typical technology today, so =4 u, a/lna is about 6,
and / should be less than about 10 cm, Off chip the velocity
of light can be higher, however, and the approximation is good
to about a foot. Hence the velocity of light cannot be reached
using the best MOS technology in the most optimal way within
a typical small card bay but will be important at larger dimen-
sions. Even for the ultimate technology (sq = 0.25 u), the re-
sults given above will dominate over velocity-of-light consid-
erations for chips up to about a centimeter across.

III. AREA

The arrangements outlined in the preceding section allowing
us to treat propagation delays as being logarithmic will only
work if we can allot enough area at the lowest level for the
drivers and at the higher levels for the wires.

A minimal transistor has area s3. The next driver in the se-
quence requires an area asg, the third one a2s3, etc. The
total area A of the drivers thus becomes

A~si(1+a+a’ +: ) (log, ! terms) 14)
2
i= 1
%So( ), (15)
a- 1
or approximately
2
sol
~2— (16)
a- 1

Notice that we can trade area for time. By increasing & the
area of the drivers decreases, cf. (16), but the propagation de-
lay increases, cf, (8).

A transistor that has to drive a wire of length / requires area
1(2,1/(01— 1) at the lowest level. This area is proportional to
the length of the wire. That is fortunate; if we double both
the length and the width of a chip we also double the lengths
of the longest (cross-chip) wires and the areas of their drivers.
But the total area of the chip will quadruple and we will thus
be able to double the number of wires as well.

The longer wires come on higher levels on which the wires
are wider thereby consuming more area. Each level, however,
has the same total area. As a result, we can accommodate the
wires at the higher levels only if we do not have too many of
them. Assume again that at the next level the wires are 8 times
thicker, longer, and wider, Call the lowest level number 0 and
let N; be the number of wires at level i (i 22 0); then we must
have

N; < NgB™%. (17)
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The number of wires as a function of their lengths must de-
crease exponentially fast. This is a strong restriction. It sug-
gests that efficient chips must have a hierarchical structure
[2], [4]. If a design does not meet this exponential rule the
best we can achieve is a propagation delay linear in the wire
length by inserting repeaters at equidistant positions along
the wires, The consequences of linear wire delays are dis-
cussed in [1]. '

One may also see complexity computations that assume that
wires have no delay, Thompson, e.g., writes in [6]

The propagation time can be made independent of the length of
the wire, by fitting larger drivers to longer wires. Larger drivers
of course occupy more area, but need not take more than 10
percent of the area of the wire they drive. By fudging A upwards
by 5 percent, the area of the driver is thus absorbed into the area
of its wire.

We have seen that the area of the driver is indeed propor-
tional to the wire length but Thompson neglects the fact that
charging the gate of the larger driver will also take time, Our
choice of the sequences of exponentially growing drivers al-
lowed us to do this in a time that is logarithmic in the wire
length, a technique that can work only if we have very few
long wires. Thompson’s model also neglects the fact that the
drivers have to be at the lowest level, in polysilicon and dif-
fusion, independent of the level of the wire,
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