CHIP ASSEMBLY TOOLS

Stephen Trimberger and Chris Kingsley

California Institute of Technology
Pasadena, California 91125

TM #5005

CHIP ASSEMBLY TOOLS

Stephen Trimberger and Chris Kingsley
California Institute of Technology
Pasadena, California 91125

T™ #5005

CHIP ASSEMBLY TOOLS

Stephen Trimberger and Chris Kingsley

California Institute of Technology, Computer Science Department
Pasadena, Caiifomia, USA

ABSTRACT

In large-scale integrated circuit design, chip assembly Iis
more difficult, more time consuming, and more error prone
than the design of the low-level cells. Assembly erors tend
to persist until late in the design cycle requiring extensive
rework Unfortunately, the tools traditionally provided for
custom integrated circuit design address the problems of cell
design well, but do not properly address the problems of chip
assembly. A great deal of emphasis at Caltech has been
placed on tools that do address chip assembly. This paper
reports on some of these tools.

INTRODUCTION

Custom Integrated circuit layout can be split into two major
parts: cell design, the development of the low level cells
making up the 'leaves” of the hierarchical tree; and
composition, assembly of those cells into larger cells and
systems [Rowson 1880]. Although composition is at least as
time consuming as cell layout [Wedig 1881], current design
systems address low-level cell design, and rely on physical
positioning and orientation to compose chips. These
operations are not necessarily heipful in composition, since
the kinds of operations required to perform the two kinds of
operations are different. Composition systems do not
preclude custom design, since they can be buiit to give the
designer control of the connection mechanism.

COMPOSITION TOOL OVERVIEW

To avoid errors in composition, a system must have primitive
operations which attach connectors on instances as well as
position them. Proper connection operations free the
designer from a whole class of mistakes, eliminating much of
the post-design checking, like geometrical design rule
checking. The primitive operations used In Caitech's
composition tools are abutment, routing and stretching. If
the connectors on the instances to be connected are
perfectly aligned, the instances may be abutted to make the
connection (figure 1). Unfortunately, this is rarely the case.
When the connectors do not match, connection may be made
by creating a piece of routing wiring between the cells

+
L
T
[
H

Figure 1. Connection by Abutment. '

(figure 2). Composition in industry typically uses general
routing to connect Iinstances =-- a wasteful practice.
Composition tools at Caltech generally restrict the
complexity of the routing giving the global routing task to the
user explicitly. &

T

Figura 2. Connection by Routing.

In many cases, giobal chip area can be reduced and global
chip performance Increased by stretching the cells to
connect by abutment instead of placing the cells and routing
between them (figure 3) [Johannsen 1881] Stretching
does not require any wiring channels, but does require that
the positions of components in the instances be changed.
This is not possible if the cells are defined as layout, but is
possible If the cells are defined a/gorithmically or
symbolically. Both methods of cell definition are used at
Caitech for defining cells to be stretched in compasition
tools.

kS

e 0 + e =

Figure 3. Connection by Stretching.

In an algorithmic definition, a cell is designed as a program
rather than as wires and boxes. When executed, the
program generates the required wires and boxes. Cells can
be made to change shape. to fit more easily into the chip
being designed, and they can modify driver sizes and
interconnection wire width to improve the performance of the
clrcuit.

In symbolic definition, the circuit features are defined in an
abstract manner with components such as transistors and
contacts along with wires connecting them. In a symbolic, or
Sticks form, the components can be positioned anywhere and

the wires change length to maintain the connection. This
form can be used to ease cell design, since the absolute
positions of components need not be specified. The cells
can all be compacted into mininum area by a single
compaction program, or stretched to match connectors with
the environment. The symbolic form is easier to generate
than the algorithmic form, but the kind of manipulations that
can be parformed on a cell is determined by the manipulating
program, not the designer. The Sticks Standard [Tﬂmbergor
1980] is used at Caitech for ail symbolic data.

Cells may also be defined as mask geometry. In geometry

form, no stretching can be done, so connections must be
performed by routing. CIF [Sproull 1980] is used at Caltech
to reprasent geometry in cells. Extensions to CIF provide
cell names and connector locations.

BRISTLE BLOCKS

Bristle Blocks [Johannsen 1881] Is a composition tool that
specializes in the construction of datapath chips. A datapath
chip consists of data processing elements connected by and
communicating across data busses (figure 4). Typical data
processing elements include register files, arithmetic/logic
units, and shifters. The chip is controlled by microcode which
Is decoded on-chip to drive the individual control lines of the
processing elements. Bristle Blocks imposes this generic
floorplan in return for ease in automating the layocut. While
not all designs can fit into the high-level datapath fioorplan,
those that can fit are implemented as efficientlty as hand
layout.

\i

Port

o

Registers
Shiften

4;

Control Lirne Buffers !

Microcode Decode
Pade

Figure 4. Datapath Floorplan Block Diagram.

The input to Bristie Blocks is a textual specification In two
parts: thae algorithmic definition of the cells, and a high level
description of the chip. The high level description of a fairly
large chip is approximately three pages long, and consists of

calis to the cell programs with parameters appropriate to the _

desired chip. Typically, the parameters are behavioral
information, such as the conditions required for the register
cell to load information from a bus. Intemally, Bristie Blocks
generates pasitional information from the datapath floorplan
and passes that information to the cell programs also.

Bristia Blocks aexecutes the cell programs to create the
datapath portion of the chip. Bristle Blocks datapath cells
are different sizes, so the height of a bit slice is determined
by the tallest cell needed. The cells are aigorithmically
defined with the means for stretching built into them, and
they stretch to match connectors with other cells in the
datapath. The datapath timing and control information is
used to add control line buffers and an instruction decoder to
drive the datapath. Finally, Bristie Blocks adds bonding pads

and wiring to complete the chip and provides documentation
about the locations of pads and signals.

Bristle Blocks has been operational since 1978, and has
been used to lay out several chips. In addition, Bristle Blocks
data paths have found their way into many other Caitech

_chips. Bristle Blocks designs have circuit densities

comparable to hand design, and the datapath floorplan has
been found to ba a powerful implementation structure.

EARL

Earl is a low level cell design and composition system, based
on an interprated language. The primitive data types of the
language include points and cells, and cell connection is a
primitive operation. Unlike Bristle Blocks, Earl handles
generalized layout; the floorplan of the design is totaily in
the hands of the designer.

The input to Earl is a set of leaf cell and composition
definitions in the Earl language. Each cell has a list of
connectors and constraints on connectors that define the
interface to the cell, the only way the outside worid may
Interact with the cell's Instances. This interface
specification is similar to modular programming techniques
commonly used in software design. By explicitly declaring
the interface, interactions with the cell can be controlled,
localizing the behavior of the cell and simplifying the task of
verifying correct usage.

Earl's composition functions allow a user to connect
individual cells edge to edge, or connect a list of cells
horizontally or vertically. The designer can optionally specify
that wires are to be shared between two cells, causing a
controlled overlap.

Earl performs composition by stretching, therefore all cells
must be able to stretch between any two adjacent
comnectors. This use of stretchable cells is a two-
dimensional generaiization of the identical notion in Bristle
Blocks. The composition must satisfy all the constraints
specified explicitly by the user as well as those introduced
by the interconnections. If the stretched connection is
Impossible or unsatisfactory to the designer, the designer
must make a leaf cell to do the routing between them.

By restricting cells to be rectangular with all connectors lying
on the boundary, the basically two-dimensional constraint
problem Is split into two one-dimensional problems. Each
dimension is translated into a directed graph (figure 5). The
nodes of the layout solution graph represent equivalent sets
of connectors. A group of connectors constrained to move
as a unit Is represented by one node in the graph. The
weighted, directed arcs represent minimum separation
constraints between connectors resulting from constraints
from the leaf ceils. Notice that the graph can have cycles,
which are used to allow limited stretching where this is
desired. The graph s solved with an algorithm that is similar
to the algorithms used in stick diagram compaction [Hsueh
1079].

Earl Iis currently being used to make class projects.
Approximately thirty chips have been made with Ear,
averaging about a thousand transistors in size. Larger
projects are planned for Earl in the near future.

RIOT

Bristle Blocks and Earl are language based. The composition
of instances is specified by textual invocation and

BFG

Figure 5. Solution Graph for Horizontal Direction.

connection. Although the language form is very powerful, the
textual specification is tedious and error prone in general
systems, since much of compaosition is a graphical pasitioning
task. Highly automated language-based systems like Bristle
Blocks allow designs to be expressed simply In a very
abstract manner, but place severe restrictions on the
flcorplan of the resulting chip.

Riot [Trimberger 1982] is a simple interactive graphical
composition tool which provides primitives necessary for
composition. In Riot, the user may connect instances to one
another by abutment, simple routing, or stretching. Riot
cannot make new mask layout, except as a side-effect of a
routing operation. Other tools exist which create the leaf
cells which Riot manipulates. The Riot display organization is
shown in figure 6.

Cell

Editing Area Menu

Editing
Commands
Menu

Figure 6. Riot Display Organization.

Riot can read leaf cells defined in CIF, Sticks, and its own.

composition format. Riot's output is in compaosition format
which is transiated to CIF for mask generation or to Sticks
Afa simulation.

Riot has simple positioning and orientation commands similar
to those found In traditional graphics systems. These
commands are used in Riot to prepare instances for
connection but are not used to make the actual connection
of instances.

W

Connection of Instances Is done in two parts: first, the
connections to be made are specified graphically, by pointing
to pairs of connectors on the screen. Riot remembers the
connections to be made, and makes all specified connections
simultaneously when a route, stretch or abut commard is
given. Then the connections are made and the logical
connection information is thrown out.

A connecti/on is made by Riat by the placement of instances
80 that the connectors on the instances touch. Riot handles
connection in the positional sense, not in the logical sense: a.
connection Is the result of appropriate positioning.
Therefore, once a connection is made, it can be easily
(perhaps accidentally) destroyed. Riot does nothing to-
guarantee that connections will be maintained. This
simplified handling of connection has limited the usefulness
of Riot.

Riot's route is a simple muitiple layer river route, in which no
two signais cross. This limitation has not been severe, due
to the interactive nature of the tool. Riot's stretching uses
Rest [Mosteller 1881] to stretch one cell at a time to make a
set of connections. Options on Riot's connection operations
move instances to make minimum routing spacing, route to
current positions, and control overlapping to share common
power and ground lines in adjacent cells.

Riot has been used in the design of several custom chips.
The Interactive nature of the tool and the powerful
composition primitives enable the designer to generate
designs very quickly. Riot gives a simple way to express
stretching of cells, and has thus improved the usefulness of
our symbolic layout systems.

Riot's greatest drawback is with its geometrical view of
connection. Because connections are forgotten, the user
may accidentally destroy some connections after they have
been made. Usually, though, this has not been a problem,
since designers can see what they are doing interactively,
and repair the mistake quickly. A more insidious problem has

" been with modification of leaf cells. Since the instances of

the cells are positioned geometrically, there is no guarantee
that new leaf cells will still maintain old connections. Thus,
the designer may be forced to re-edit the entire chip.

COMPED

Comped is an interactive composition editor which attempts
to preserve the connections specified by tha user, thereby
avoiding the problems with Riot. Comped cannot make
primitive geometry, and all leaf cells for Comped must be
defined in Sticks. A Comped design is composed of
rectangular instances placed next to one ancther, with ail
connectors on each instance connected to the four
neighbors of the instance. Comped provides a connection
command to do exactly that connection (figure 7). The user
of Comped indicates desired connections by placing
instances to be connected next to one another. The logical
connection is made by abutment, and the instances are
stretched to make the connection.

" Comped's connection mechanism connects all connectors on

the adjacent sides unless the user explicitly omits some of
the connections. In Caltech designs, cells are designed to
fit next to one ancther, therefore, fewer connections have
to be omitted from a design than have to be explicitly
stated, saving some work. The adjacency of the placed
Instances together with the list of connector omissions
uniquely specifies the interconnection of the instances in the
cell. This Information is remembered so that changes in the
cell do not destroy the previously-specified connections.

[F

T
¥ =1 irvere

Figure 7. Comped Cell Before and After Connection.

Composition in Comped has four phases. First, the user
positions instances of cells on the screen. Since the cells
will be stretched, the size and shape of the rectangle
representing a cell can specified by the user. This ability is
essential, since the connection depends on the adjacency of

the instances. The user may also specify that certain

connections be omitted from the connection.

The second phase of the assembly is the connection phase

in which logical connections are automatically made between

pairs of non-omitted connectors on adjacent instances. The

user is asked to resolve any ambiguity with the connection.

Qt this point, the user may omit more connections or add more
gic.

In the third phase, Comped stretches all instances to make
the connections. Comped determines the stretches
necessary to make the connection using the same graph
technique used in Earl, and shows the new shapes and
positions of the instances on the screen. The actual
stretching of the leaf cells is delayed until the user exits
Comped, so the user does not have to wait for the
generation of mask geometry before viewing the effects of
the stretch on the design. After the stretch, Comped
provides the user with size information so that the user can
determine the optimal arrangement of Instances.

When an acceptable layout is produced, the user exits
Comped and the real stretching of cells is done. In this final
phase, the actual geometry of instances is defined and the
geometry corresponding to omitted connectors is removed
trom the instance to ensure design rule correctness.

Comped is a new tool, and has not yet been used in any
fabricated designs.

CONCLUSIONS

Work is continuing not only in the physical domain, but in the
timing domain as well. A prototype system finds critical
timing paths on the chip and sets device sizes to match
loads. This tool will aillow designers to trade off speed for
power In a controliled fashion, making global decisions and
relegating the detailed manipulation to the computer.

As Integrated circuit densities Iimprove, the ratio of
composition tasks to leaf cell design tasks Increases.
Therefore, good composition tools become more essential
Traditional solutions to the chip assembly task, such as
automatic place and route systems, are wasteful of chip
area and performance. The compocsition tools at Caitech
avoid the disastrous inefficiency of traditional tools by
providing a lass limited floorplan and more varied connection
operations. These tools produce designs comparable to hand
layout yet eliminate the detail usually needed to assemble
custom chips. They are paving the way for much more
sophisticated chip assembly tools in the future.

We would like to thank those people at Caltech who have
allowed us to report on their work, notably Dave Johannsen,
for Bristle Blocks; and John Tanner, the author of Comped.

The work reported in this paper was supported by the
Caitech Silicon Structures Project and by the United States
Department of Defense Advanced Research Projects Agency.

REFERENCES

[Hsueh 1978] M-Y Hsueh, "Symbolic Layout and Compaction
of Integrated Circuits”, Ph.D. Thesis, University of Califomia
at Berkeley, UCB/ERL M 79/80 Memo.

[Johannsen 1881] D. Johannsen, "Silicon Compilation”, Ph.D.
Thesis, California Institute of Technology, Computer Science
Department.

[Kingsiey 1882] C. Kingsley, "Earl: An Integrated Circuit
Design Language”, Technical Memorandum #4710, California
Institute of Technology, Computer Science Department.

[Mosteller 1981] R. Mosteller, "REST — A Leaf Cell Design
System"”, from J.P. Gray, ed., VLS! 81 Very Large Scale
Integration, Academic Press.

[Rowson 1878] J.A. Rowson, 'Understanding Hierarchical
Design"”, Ph.D. Thesis, California Institute of Technology,

" Computer Science Department.

[Sproul 1880] R. Sproull and R. Lyon, 'The Cailtech
Intermediate Form for LS| Layout Description”, in C. Mead and
L Conway, Introduction to VLS! Systems, Addison Wesley,
1880.

[Trimberger 1980] S. Trimberger, 'The Proposed Sticks
Standard"”, Technical Report #3880, Califomnia Institute of
Technology, Computer Science Department.

[Trimberger 1882] S. Trimberger and J. Rowson, 'Riot — A
Simple Graphical Chip Assembly Tool", Proceedings of
Microelectronics 1882 Conference, Adelaide, South Australia.

[Wedig 1881] R.G. Wedig, "A Phenomenal Chip for Toy
Design', Lambda Magazine, vol ||, No. 3, Third Quarter 1981.

