CaltechAUTHORS
  A Caltech Library Service

Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI

Gallagher, Joseph J. and Zhang, Xiaowei and Ziomek, Gregory J. and Jacobs, Russell E. and Bearer, Elaine L. (2012) Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI. NeuroImage, 60 (3). pp. 1856-1866. ISSN 1053-8119. PMCID PMC3328142. https://resolver.caltech.edu/CaltechAUTHORS:20120427-131435062

[img] PDF - Accepted Version
See Usage Policy.

5Mb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20120427-131435062

Abstract

Mounting evidence implicates axonal transport defects, typified by the presence of axonal varicosities with aberrant accumulations of cargo, as an early event in Alzheimer's disease (AD) pathogenesis. Work identifying amyloid precursor protein (APP) as a vesicular motor receptor for anterograde axonal transport further implicates axonal transport in AD. Manganese-enhanced MRI (MEMRI) detects axonal transport dynamics in preclinical studies. Here we pursue an understanding of the role of APP in axonal transport in the central nervous system by applying MEMRI to hippocampal circuitry and to the visual pathway in living mice homozygous for either wild type or a deletion in the APP gene (n = 12 for each genotype). Following intra-ocular or stereotaxic hippocampal injection, we performed time-lapse MRI to detect Mn^(2+) transport. Three dimensional whole brain datasets were compared on a voxel-wise basis using within-group pair-wise analysis. Quantification of transport to structures connected to injection sites via axonal fiber tracts was also performed. Histology confirmed consistent placement of hippocampal injections and no observable difference in glial-response to the injections. APP−/− mice had significantly reduced transport from the hippocampus to the septal nuclei and amygdala after 7 h and reduced transport to the contralateral hippocampus after 25 h; axonal transport deficits in the APP−/− animals were also identified in the visual pathway. These data support a system-wide role for APP in axonal transport within the central nervous system and demonstrate the power of MEMRI for assessing neuronal circuitry involved in memory and learning.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1016/j.neuroimage.2012.01.132 DOIArticle
http://www.sciencedirect.com/science/article/pii/S1053811912001590PublisherArticle
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328142/PubMed CentralArticle
ORCID:
AuthorORCID
Jacobs, Russell E.0000-0002-1382-8486
Additional Information:© 2012 Elsevier Inc. Received 21 October 2011. Revised 24 January 2012. Accepted 25 January 2012. Available online 10 February 2012. We would like to acknowledge the contributions of Dr. Benoit Boulat for help with MR imaging and Grace Cai for help with image pre-processing; Kathleen Kilpatrick for lab management and coordination of projects; Aaron Gonzales and Anna Vestling for digital image analysis support in the Bearer lab; and Drs. Art Toga and Ivo Dinov and graduate student Alen Zamanyan at the Laboratory for NeuroImaging at UCLA for invaluable assistance with LONI pipeline and TBM analysis. This project was funded in part by NINDS NS062184 (ELB) and the Beckman Institute (REJ).
Funders:
Funding AgencyGrant Number
National Institute of Neurological Disorders and Stroke (NINDS)NS062184
Caltech Beckman InstituteUNSPECIFIED
Subject Keywords:Amyloid precursor protein; Manganese enhanced MRI (MEMRI); Alzheimer's disease; Axonal transport; Statistical parametric mapping; Optic tract; Synaptic transmission; Hippocampus; Visual pathway
Issue or Number:3
PubMed Central ID:PMC3328142
Record Number:CaltechAUTHORS:20120427-131435062
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20120427-131435062
Official Citation:Joseph J. Gallagher, Xiaowei Zhang, Gregory J. Ziomek, Russell E. Jacobs, Elaine L. Bearer, Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI, NeuroImage, Volume 60, Issue 3, 15 April 2012, Pages 1856-1866, ISSN 1053-8119, 10.1016/j.neuroimage.2012.01.132.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:30376
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:30 Apr 2012 18:31
Last Modified:03 Oct 2019 03:49

Repository Staff Only: item control page