CaltechAUTHORS
  A Caltech Library Service

Rigorous model-based uncertainty quantification with application to terminal ballistics—Part II. Systems with uncontrollable inputs and large scatter

Adams, M. and Lashgari, A. and Li, B. and McKerns, M. and Mihaly, J. and Ortiz, M. and Owhadi, H. and Rosakis, A. J. and Stalzer, M. and Sullivan, T. J. (2012) Rigorous model-based uncertainty quantification with application to terminal ballistics—Part II. Systems with uncontrollable inputs and large scatter. Journal of the Mechanics and Physics of Solids, 60 (5). pp. 1002-1019. ISSN 0022-5096. https://resolver.caltech.edu/CaltechAUTHORS:20120430-133945935

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20120430-133945935

Abstract

This Part II of this series is concerned with establishing the feasibility of an extended data-on-demand (XDoD) uncertainty quantification (UQ) protocol based on concentration-of-measure inequalities and martingale theory. Specific aims are to establish the feasibility of the protocol and its basic properties, including the tightness of the predictions afforded by the protocol. The assessment is based on an application to terminal ballistics and a specific system configuration consisting of 6061-T6 aluminum plates struck by spherical 440c stainless steel projectiles at ballistic impact speeds in the range of 2.4–2.8 km/s. The system's inputs are the plate thickness, plate obliquity and impact velocity. The perforation area is chosen as the sole performance measure of the system. The objective of the UQ analysis is to certify the lethality of the projectile, i.e., that the projectile perforates the plate with high probability over a prespecified range of impact velocities, plate thicknesses and plate obliquities. All tests were conducted at Caltech's Small Particle Hypervelocity Range (SPHIR), which houses a two-stage gas gun. A feature of this facility is that the impact velocity, while amenable to precise measurement, cannot be controlled precisely but varies randomly according to a known probability density function. In addition, due to a competition between petalling and plugging mechanisms for the material system under consideration, the measured perforation area exhibits considerable scatter. The analysis establishes the feasibility of the XDoD UQ protocol as a rigorous yet practical approach for model-based certification of complex systems characterized by uncontrollable inputs and noisy experimental data.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1016/j.jmps.2011.12.002 DOIUNSPECIFIED
http://www.sciencedirect.com/science/article/pii/S0022509611002250PublisherUNSPECIFIED
ORCID:
AuthorORCID
Ortiz, M.0000-0001-5877-4824
Owhadi, H.0000-0002-5677-1600
Rosakis, A. J.0000-0003-0559-0794
Additional Information:© 2011 Elsevier Ltd. Received 23 August 2011. Revised 1 December 2011. Accepted 3 December 2011. Available online 23 December 2011. The authors gratefully acknowledge the support of the Department of Energy National Nuclear Security Administration under Award Number DE-FC52-08NA28613 through Caltech's ASC/PSAAP Center for the Predictive Modeling and Simulation of High Energy Density Dynamic Response of Materials.
Group:GALCIT
Funders:
Funding AgencyGrant Number
Department of Energy (DOE) National Nuclear Security AdministrationDE-FC52-08NA28613
Subject Keywords:Certification; Uncertainty quantification; Concentration of measure; Terminal ballistics; Martigale theory
Issue or Number:5
Record Number:CaltechAUTHORS:20120430-133945935
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20120430-133945935
Official Citation:M. Adams, A. Lashgari, B. Li, M. McKerns, J. Mihaly, M. Ortiz, H. Owhadi, A.J. Rosakis, M. Stalzer, T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics—Part II. Systems with uncontrollable inputs and large scatter, Journal of the Mechanics and Physics of Solids, Volume 60, Issue 5, May 2012, Pages 1002-1019, ISSN 0022-5096, 10.1016/j.jmps.2011.12.002.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:30402
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:01 May 2012 20:50
Last Modified:09 Mar 2020 13:19

Repository Staff Only: item control page