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1. Introduction

Analysis of spacetime anomalies has played an important role in our understanding

of string theories and branes. String theories with branes can be generalized by

adding brane-antibrane pairs, including spacetime filling branes as in [1]. In the

present paper, we will analyze anomaly cancellation in this more general context,

showing how the familiar mechanisms for anomaly cancellation can be generalized.

We consider the type-IIB theory with D9-D9̄ pairs in section 2, the type-I theory with

such pairs in section 3, and a non supersymmetric but tachyon-free ten-dimensional
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string theory that has D-branes in section 4. In sections 5 and 6 we extend the

analysis to consider type-I compactifications on smooth K3 surfaces and on a simple

K3 orbifold. In these examples, we consider D5-D5̄ as well as D9-D9̄ pairs.

2. Type-IIB theory

We begin by considering the type-IIB theory with added D9-branes and anti-D9-

branes. This system was considered first in [1]. In this section we will review the

analysis of that paper filling in some of the details. Our reason for doing this is that we

want to start with the simplest example of a chiral theory with added spacetime-filling

brane-antibrane pairs in order to set the stage for the more complicated theories that

we will discuss later. The anomaly cancellation mechanism that we will describe is

closely related to the analysis considered in [2] to determine certain effective couplings

on branes. The main difference is that we focus on D9- and D9̄-branes, while Dp-

branes of p < 9 were the focus of that paper. Type-II anomaly cancellation including

global anomalies has been analyzed in a somewhat abstract setting in [3]; some

illustrative cases of the global anomalies were studied in [4].

Cancellation of Ramond-Ramond (R-R) tadpoles requires that the total D9-

brane charge should vanish. Therefore one must require that an equal number n of

D9-branes and anti-D9-branes are present.

2.1 The spectrum

The n D9-branes have associated massless fields, arising as excitations of 99 open-

strings, that correspond to a supersymmetric U(n) gauge theory. The adjoint

Majorana-Weyl fermions have the same chirality (call it left-handed) as the grav-

itinos of the supergravity multiplet. The adjoint representation decomposes into

irreducible representations with dimensions n2−1 and 1. The singlet fermion can be
identified as the Goldstino associated to the supersymmetry broken by the presence

of the branes. (See [5] for the interpretation of the singlet massless fermion on a

brane as a Goldstone fermion of spontaneously broken supersymmetry.) Similarly,

the anti-D9-branes carry a second supersymmetric U(n) gauge theory. Its fermions

have the same chirality (left-handed) as those of the branes. The singlet fermion of

the anti-branes is the Goldstino associated to breaking of the other supersymmetry

of the IIB theory. So, when both the branes and anti-branes are present, the super-

symmetry is completely broken. The fact that they each carry fermions of the same

chirality is clearly required, since the two supersymmetries of the IIB theory have

the same chirality. Altogether, the combined system is a non-supersymmetric theory

with U(n)× U(n) gauge symmetry.
Such a system is unstable, of course, since the branes and anti-branes will tend

to annihilate. This is reflected in the presence of tachyons in the spectrum. Specifi-

cally, the oriented type-IIB open strings that connect the branes to the anti-branes
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have the opposite GSO projection from those that connect branes to branes or anti-

branes to anti-branes. As a result, the spectrum contains tachyons T in the bi-

fundamental representation (n, n̄). These scalar fields are complex, of course. In

addition to the tachyons, the open strings connecting branes to anti-branes also give

massless fermions in the bifundamental representation. These fermions have the op-

posite chirality (right-handed) to the other ones as a consequence of the opposite

GSO projection.

2.2 Anomaly analysis

Even though the brane-antibrane system in question is unstable, it should make

sense within the context of perturbation theory. The point where the tachyon field

vanishes (T = 0) corresponds to a local maximum of the tachyon potential, and

thus it is part of a classical solution. The one-loop effective action in an expansion

around this solution should be well defined, even though the solution is unstable,

and in particular it should have a well-defined phase. Therefore, the various gauge

and gravitational anomalies, which arise as one-loop effects, should cancel. The

chiral fields of the type-IIB supergravity multiplet give cancelling contributions to the

gravitational anomalies, just as they do in the absence of the D-branes [6]. However,

there are now additional chiral fermions in the spectrum, which also contribute to

anomalies. So that needs to be analyzed. We will begin by setting T = 0, but later

we will incorporate the dependence on T .

Let us use subscripts 1 and 2 to refer to the two U(n) groups. Then the anomaly

contributed by the chiral fermions associated to the branes is characterized by the

12-form part of the following expression:

I =
(
Tr eiF1 + Tr eiF2 − tr eiF1 tr e−iF2 − tr e−iF1 tr eiF2

)
Â(R) . (2.1)

Here Â(R) is the Dirac index. The symbol Tr refers to the adjoint representation,

whereas the symbol tr refers to the fundamental representation. The coefficients +1

are introduced for the left-handed Majorana-Weyl fermions, whereas the coefficient

−1 appears for right-handed Weyl fermions and their complex conjugates.
The adjoint representation of U(n) is given by the product n × n̄. As a result,

using a basic property of the Chern character, we have

Tr eiF = tr eiF tr e−iF . (2.2)

This enables us to recast eq. (2.1) in the form I = Y Ȳ , where

Y =
(
tr eiF1 − tr eiF2)√Â(R) (2.3)

and

Ȳ =
(
tr e−iF1 − tr e−iF2)√Â(R) . (2.4)

The anomaly polynomial I12 is not zero, but because of the factorization I = Y Ȳ , the

anomalies can be cancelled by the addition of suitable Chern-Simons counterterms [7].
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The determination of the anomaly cancelling counterterms has some (inconse-

quential) ambiguities, which we will resolve by making the most symmetrical choice.

This will give the most elegant formulas, and it will make contact with previous

results in the literature. Now let us define Ω by Y = dΩ, where it is understood

that Chern-Simons terms are introduced for the gauge field factor leaving the factor√
Â(R) in tact. This is desirable because

√
Â(R) has a constant term, whereas the

constant terms arising from the gauge field factor cancel. Let us denote the vari-

ation of Ω under local gauge transformations by δΩ = dΛ. The anomaly can now

be cancelled by introducing the non-trivial gauge transformation rules for the R-R

fields C = −iC0 + C2 + iC4 − C6 − iC8
δC = Λ . (2.5)

It follows that the gauge-invariant R-R field strengths are given by H = dC −Ω. In
particular, this implies that the R-R scalar C0 is eaten by the relative U(1) gauge

field trA1 − trA2, which then becomes massive. We also note the Bianchi identity
dH + Y = 0.

Now we can write down the anomaly-cancelling Chern-Simons term in the form

SCS = µ

∫
CY , (2.6)

where µ is a normalization constant. This expression is real with the phase choices

made in the definition of C. The fact that R-R fields other than C2 can be involved

in anomaly cancellation was first recognized in [8]. An interpretation of the Chern-

Simons term in terms of anomaly inflow was given in [2].

In writing the couplings, we have ignored the self-duality of the R-R fields. One

standard approach to dealing with this is to treat half of the C’s as independent fields,

in which case half of the anomaly-canceling couplings remain as we have written them

and the other half become contributions to the Bianchi identities. The self-duality of

the “middle” R-R field G5 = dC4 makes this procedure subtle to interpret for type

IIB. There are various procedures for dealing with this, and we will not discuss the

issue here. A more abstract way of interpreting actions with self-dual R-R fields is

in [3].

2.3 Inclusion of the tachyon field

A natural generalization of the Chern-Simons action to include the dependence on

the bifundamental tachyon fields T has been obtained by other authors [9, 10, 11].

The result can be elegantly described as replacing the factor (tr eiF1 − tr eiF2), which
appears in the expression (2.3) for Y , by Str eiF , where F is the curvature of an object
that has been called the superconnection [12]. The curvature of the superconnection

is given by the 2n× 2n matrix
iF =

(
iF1 − TT † DT †

DT iF2 − T †T
)
. (2.7)

4



J
H
E
P
0
3
(
2
0
0
1
)
0
3
2

The supertrace Str is the difference of the traces of the upper left block and the lower

right block, as usual. Clearly, Str eiF reduces to our previous expression for T = 0.
In fact, this notation is convenient even in that case.

If the tachyon field can be considered large, then Str eiF is very small except near
zeroes of T — or at least points at which some eigenvalues of T are zero. Indeed,

in this situation the diagonal elements of eiF are proportional to e−TT † and e−T †T ,
which can be considered small. Note that in the vacuum, T is a unitary matrix

times a fixed constant, so TT † and T †T are equal and are multiples of the identity.
So if we can ignore F1, F2, and DT , then Str e

iF vanishes pointwise. In practice,
an important case is that on the complement of a submanifold that is interpreted

as a p-brane world-volume for some p < 9, T has its vacuum expectation value (up

to a gauge transformation). Such a tachyon field describes [13] D9-D9̄ annihilation

to a Dp-brane. If all length scales in the problem are very large compared to the

string scale, then in the usual generalized “vortex” configuration describing tachyon

condensation, F1, F2, and DT all vanish exponentially fast with the distance from

the Dp-brane. So in this limit, the anomalous couplings are given by a differen-

tial form that has its support on the Dp-brane, rather than on the 9-branes where

we started.

Superconnections were introduced in the first place [12] precisely to give such an

analytic proof of “localization” of various topological quantities (such as the anoma-

lies of interest to us here) as well as to explain various physical results. From the

point of view of the application to D9-D9̄ annihilation, the fact that this works out

correctly is one consistency check on the claim that a D9-D9̄ system with no net

D9-brane charge and carrying suitable gauge fields can annihilate to a Dp-brane

with p < 9. This check of the tachyon condensation story is not really independent

of analyses in the previous literature, but it is perhaps an interesting way to look

at things.

3. Type-I theory

We now wish to repeat the analysis of the preceding section for the type-I theory.

Recall that this theory has an orientifold plane carrying −32 units of R-R charge,
which is cancelled by the contribution of 32 D9-branes. The D9-branes give SO(32)

gauge symmetry. They do not break any supersymmetry, and accordingly the open

string spectrum contains no massless Goldstinos. The various local anomalies cancel

as a result of a well-known analysis analogous to that of the preceding section [7].

We now wish to generalize this setup to include n additional D9-brane anti-D9-brane

pairs. This system has been considered previously by Sugimoto in [14]. Our purpose

in reviewing these results is to fill in some details and to set the stage for more

complicated examples.
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3.1 The spectrum

The gauge group of the 32+n D9-branes is expected to be SO(32+n), and that of the

n anti-D9-branes is expected to be SO(n). Given our knowledge of the n = 0 case,

it is pretty clear that the D9-branes should give a supersymmetric SO(32+n) gauge

theory. Thus the 99 open strings should give massless gauge bosons and massless

left-handed MW fermions, each in the adjoint representation. As before, the 99̄ open

strings have the opposite GSO projection. Therefore they give real tachyon fields in

the bifundamental representation (32 + n, n) and right-handed MW fermions that

are also in the bifundamental representation (32 + n, n).

This still leaves the question of the spectrum of 9̄9̄ open strings. Momentarily

we will sketch how to deduce this spectrum from first principles. For the moment,

we simply look for a choice that satisfies some reasonable expectations. In this

problem, we do not expect any tachyons, but we do expect massless vector fields in

the adjoint of SO(n). We expect the anti-D9-branes to break the supersymmetry, and

therefore there should be a massless left-handed MW Goldstino, which is a singlet

of the gauge group. Since there is no singlet gauge boson this tells us that the anti-

D-brane spectrum cannot be supersymmetric. That is okay — there is no reason

that it should be. To figure out what other fermions are required, let us consider the

minimal requirement of anomaly cancellation — namely, the cancellation of the trR6

term. This tells us that the branes and the anti-branes should contribute a net of

496 left-handed MW fermions. We already have (32+n)(31+n)/2 from the 99 open

strings. From this we must subtract n(32 + n) to take account of the right-handed

MW fermions associated to the 99̄ open strings. Therefore, to end up with 496, the

9̄9̄ open strings need to contribute a net of n(n+1)/2 left-handed MW fermions. The

obvious way to achieve this is with the sum of a symmetric traceless tensor and a

singlet.1 It is very gratifying that there is a singlet, since it is the required Goldstino.

3.2 Microscopic derivation

Now we will give a microscopic derivation of the spectrum.

One way to describe a system with D-antibranes as well as D-branes is to assign

variable statistics to the Chan-Paton states [16]. Let us briefly describe how this

works. Consider a system of D-branes with a Chan-Paton label that takes p + q

values; take the first p states to be bosonic and the last q to be fermionic. By a

bosonic state we mean a state on which the GSO operator (−1)F has eigenvalue
+1, while on a fermionic state it has eigenvalue −1. We claim that such a system
describes a collection of p D-branes and q D-antibranes.

To verify this, we examine the spectrum, considering first type-II superstrings (so

that the open strings are oriented). The D-D strings are states both of whose ends

have bosonic Chan-Paton labels. (−1)F acts by +1 on the Chan-Paton wavefunction
1This result is related by T-duality to an analogous result for D2-branes obtained in [15].
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of such a string, so for a state to have (−1)F = 1 overall, the internal part of the
wavefunction (made from the string oscillators) must also have (−1)F = 1. This
leads to the standard GSO projection, giving a spectrum with a massless gauge field

and no tachyon. Likewise, a D̄-D̄ string has a fermionic label at each end, so (−1)F
acts on the Chan-Paton wavefunction by (−1)2 = +1, and again the D̄-D̄ strings
have the conventional GSO projection. But for D-D̄ strings, the result is different.

In this case, there is a bosonic label at one end of the string and a fermionic one at

the other end, so the Chan-Paton wavefunction has (−1)F = −1. Hence to get an
overall value (−1)F = 1, the internal wavefunction must likewise have (−1)F = −1.
The projection onto these states is the opposite of the usual GSO projection, and

it gives for the D-D̄ strings a spectrum with a tachyon and no massless gauge field,

and opposite chirality for massless fermions in the Ramond (R) sector. These are of

course the standard results for type II.

We now move on to the case of type-I superstrings with p D9 and q D9̄ branes.

Again we represent this system by allowing p bosonic and q fermionic labels for the

Chan-Paton factors. (For tadpole cancellation, one eventually wants p − q = 32.)
The novel ingredient is that the open strings are unoriented; we must define an

operator Ω that exchanges the two ends of an open string, and project onto states

with Ω = 1. For D9-D9 strings in type I, the Ω projector is the usual one that leaves

an SO(p) gauge group. (If we take the opposite projector, we get instead the theory

discussed in section 3.4 below.) For D9-D9̄ and D9̄-D9 strings, the Ω projector simply

identifies the D9-D9̄ and D9̄-D9 states, so the correct choice of Ω projector is needed

to find the correct wavefunctions but not to find the spectrum. What about the

D9̄-D9̄ strings? In this case, we want to show that the Ω projector is the usual one

in the Neveu-Schwarz (NS) sector, but is opposite to the usual one in the R sector.

If that is true, the Chan-Paton wavefunctions for massless D9̄-D9̄ strings in the NS

sector will be the usual antisymmetric tensors ψij = −ψji, i, j = 1, . . . , q, leading to
massless SO(q) gauge fields. But the Chan-Paton wave functions of massless D9̄-D9̄

strings in the R sector will be symmetric tensors χij = χji, which is the spectrum of

left-handed massless MW fermions from D9̄-D9̄ strings that was claimed above.

To reduce the question to a standard one, note that defining the correct Ω

operator is equivalent to knowing how to compute the Moebius strip contribution

to the open string partition function. This is for a familiar reason: a Moebius strip

worldsheet can arise from a trace in the open string Hilbert space with a factor of

Ω inserted. Now the Moebius strip has only a single boundary. Let us represent the

Moebius strip in the standard fashion as the strip 0 ≤ σ1 ≤ π, −∞ < σ2 <∞ in the
σ1 − σ2 plane, with the equivalence

σ1 −→ π − σ1 , σ2 −→ σ2 + 2πt . (3.1)

The Moebius strip has only one boundary component, a circle C that we can iden-
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tify as σ1 = 0, 0 ≤ σ2 ≤ 4πt. A path integral on the Moebius strip computes
Tr (−1)βFΩe−2πtH , where β ∈ 0, 1 determines the spin structure in the σ2 direction
and F is the number of worldsheet fermions.

If the Chan-Paton labels are bosonic, then p Chan-Paton states propagating

around C give a factor of p in the path integral, multiplying the usual evaluation

of Tr (−1)βFΩe−2πtH by p and leaving unchanged the usual Ω projection. But q
fermionic Chan-Paton states propagating around C give a factor of +q if the spin

structure restricted to C is in the NS sector, and −q if the spin structure restricted
to C is in the R sector.2 If the Chan-Paton states contribute a factor of q to

Tr (−1)βFΩe−2πtH , this corresponds to the usual Ω projection, but if they contribute
a factor −q, we interpret this in an operator language to mean that the sign of Ω is
reversed, and we get the opposite-to-usual Ω projection.

The path integral on the Moebius strip, viewed in the open string channel as

computing Tr (−1)FΩe−2πH , receives contributions from both the NS and R sectors
of the open string. A standard result, explained on [17, page 42], is that the spin

structure on C is actually the same as that of the open strings. Thus, looking at the

Moebius strip in the closed string channel, a closed string wrapped once around C is

in the NS-NS sector if the open strings are in the NS sector, and in the R-R sector

if the open strings are in the R sector. (In particular, the spin structure on C does

not depend on whether the worldsheet fermions are periodic or antiperiodic under

σ1 → π − σ1, σ2 → σ2 + 2πt. That is because C covers the range 0 ≤ σ2 ≤ 4πt and
so wraps twice around the σ2 direction.)

Applied to our problem, the statement about the spin structure on C means that,

as we have claimed above, the open strings in the NS sector have the standard Ω

projection, and those in the R sector have the opposite projection. For completeness,

we summarize how the claim about the spin structure on C is established. The

transformation σ1 → π − σ1, σ2 → σ2 + 2πt, exchanges left- and right-moving

worldsheet fermions ψ and ψ̃, so under this transformation

ψ
(
σ1, σ2 + 2πt

)
= −(−1)βψ̃ (π − σ1, σ2) , (3.2)

where β ∈ {0, 1} determines the spin structure of the Möbius strip in the σ2 direction.
It is convenient to combine ψ and ψ̃ to a function defined for all values of σ1; we

extend ψ to σ1 < 0 by setting ψ(−σ1, σ2) = ψ̃(σ1, σ2), and to σ1 > π by setting

ψ(σ1, σ2) = (−1)αψ(π − σ1, σ2), where α ∈ 0, 1, with α = 0 for the R sector of open
strings and α = 1 for the NS sector. Altogether ψ(σ1, σ2) is naturally extended to a

field periodic in σ1 with

ψ
(
σ1 + 2π, σ2

)
= (−1)αψ (σ1, σ2) . (3.3)

2In other words, we get +q if worldsheet fermions restricted to C are antiperiodic and −q if they
are periodic. In the former case, the path integral has a factor which is a trace in the Chan-Paton

Hilbert space, to which all states contribute +1, while in the latter case the trace is replaced by

Tr(−1)F , and fermionic states contribute −1.
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In terms of the extended field ψ, (3.2) can be written

ψ
(
σ1, σ2 + 2πt

)
= −(−1)βψ (σ1 − π, σ2) . (3.4)

By applying this relation twice, we get

ψ
(
σ1, σ2 + 4πt

)
= ψ

(
σ1 − 2π, σ2) = (−1)αψ (σ1, σ2) . (3.5)

So the worldsheet fermions at σ1 = 0 transform under σ2 → σ2 + 4π by (−1)α, and
hence the spin structure on C is the same as the spin structure in the open string

channel at σ2 = 0, as was to be shown.

3.3 Anomaly analysis

Having identified the spectrum, we can now analyze the anomalies. We have already

arranged for the cancellation of the trR6 term, but there is quite a bit more that

needs to be checked. The formulas must reduce to the standard ones of the type-I

theory for n = 0, so it is really the n dependent terms that are in issue. We will

let the index 1 refer to the SO(32 + n) group and the index 2 refer to the SO(n)

group. By standard manipulations, one finds that just as in the n = 0 case the

total anomaly 12-form factorizes into a product of a four-form and an eight-form,

I12 = 2Y4Y8, where

Y4 =
1

2

(
trR2 − trF 21 + trF 22

)
(3.6)

and

Y8 =
1

24

(
1

8
trR4 +

1

32

(
trR2

)2
+
(
trF 41 − trF 42

)− 1
8
trR2

(
trF 21 − trF 22

))
, (3.7)

where the subscript 1 refers to SO(n + 32) and the subscript 2 refers to SO(n).

This factorization assures us that there is a Chern-Simons counterterm for which the

anomaly cancels, just as in the n = 0 case.

There is a slick derivation of these results using techniques pioneered in [18, 19].

(See also [20] concerning the anomalous couplings of D-branes and O-planes.) The 99

open strings give left-handed Majorana-Weyl fermions in the antisymmetric tensor

representation (A) of SO(32 + n), the 9̄9̄ open strings give left-handed Majorana-

Weyl fermions in the symmetric tensor representation (S) of SO(n), and the 99̄ open

strings give right-handed Majorana-Weyl fermions in the bifundamental representa-

tion. Thus the anomaly polynomial I12 is proportional to the 12-form piece of

1

2

(
TrA e

iF1 + TrS e
iF2 − tr eiF1 tr eiF2

)
Â(R) +

1

16
L(R) . (3.8)

The last term is the contribution of the gravitino and the dilatino from the closed-
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string sector. It is expressed here as half of the contribution of a self-dual R-R field.

(L(R) is the Hirzebruch L-polynomial.) The reason this is correct is that the anomaly

cancellation of the type-IIB theory implies that the contribution of a self-dual R-R

field cancels that of two Majorana-Weyl gravitinos and dilatinos.

Using the identities

TrA e
iF =

1

2

(
[tr eiF ]2 − tr e2iF

)
(3.9)

and

TrS e
iF =

1

2

(
[tr eiF ]2 + tr e2iF

)
, (3.10)

the expression (3.8) can be recast in the form

1

4

([
Str eiF

]2 − Str e2iF) Â(R) + 1
16
L(R) , (3.11)

where Str eiF = tr eiF1 − tr eiF2. Remarkably, the 12-form piece of this expression
agrees with the 12-form piece of 1

4
Y 2, where Y is given by

Y = Str eiF
√
Â(R)− 32

√
L

(
R

4

)
. (3.12)

The key to proving this is the identity [18, 19]√
Â(R)L(R/4) = Â

(
R

2

)
. (3.13)

This identity is an immediate consequence of the defining relations

Â(R) =
∏
i

λi/2

sinh λi/2
(3.14)

and

L(R) =
∏
i

λi

tanhλi
. (3.15)

In writing the anomaly 12-form as Y 2/4, one also needs to know that the 12-form

part of Str eiF Â(R/2) is the same as the 12-form part of 2−6 Str e2iF Â(R), since that
12-form is homogeneous of degree 6 in F and R.

Thus, just as in the IIB case, the anomaly I12 is proportional to the 12-form

part of I = Y 2. Since we take the net D9-brane charge to be 32, the 0-form part of

Y = Y0 + Y4 + Y8 + · · · vanishes, so the characteristic classes Y4 and Y8 are the two
leading terms in the expansion of Y , and I12 is proportional to Y4Y8.

The first term in the expression (3.12) for Y can be interpreted as the D-brane

(or world-sheet boundary) contribution, whereas the second term is the orientifold

plane (or cross-cap) contribution. The zero-form piece of Y cancels between the two

terms. This is the cancellation of the R-R tadpole. The three terms in Y 2 correspond

to the contributions of the annulus, the Moebius strip, and the Klein bottle.
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The original study of the type-I anomaly utilized the R-R 2-form C2 but not

the dual R-R 6-form C6. In order to give a symmetrical (but informal) treatment,

analogous to that described for the IIB theory in the previous section, we will include

both fields in the discussion that follows. Accordingly we define C = C2 − C6. This
enables us to proceed exactly as in the IIB case. Specifically, we again introduce

SCS = µ

∫
CY , (3.16)

where µ is a normalization constant. Then we define Ω by Y = dΩ and denote the

variation of Ω under local gauge and Lorentz transformations by δΩ = dΛ. Since

only the four-form and eight-form pieces of Y contribute, only the two-form and

six-form pieces of Λ are relevant. It then follows that the anomaly cancels for

δC = Λ , (3.17)

and that the gauge-invariant R-R field strengths are given by H = dC − Ω.
It is natural to suppose that the tachyon dependence could be added in the same

way as in the type-IIB theory. Specifically, in the formula for Y we would replace

tr eiF1 − tr eiF2 by Str eiF , where now the curvature of the superconnection is the
(2n+ 32)× (2n+ 32) matrix

iF =
(
iF1 − TT t DT t

DT iF2 − T tT
)
, (3.18)

since T is real. The relation to brane annihilation is the same as before.

3.4 Theories with symplectic groups

It was noted in [14] that it is possible to construct a tachyon-free non-supersymmetric

theory by modifying the orientifold projection that is used in constructing the type-I

theory out of the type-IIB theory. Specifically, instead of modding out by Ω — the

usual Z2 symmetry, discussed in section 3.2, that is utilized in the type-I construction

— one mods out by the Z2 symmetry Ω
′ = Ω(−1)FL , where FL is the world-sheet

fermion number for left-movers. The resulting theory contains an orientifold plane

which has R-R charge +32, which is the opposite sign from the usual case. Accord-

ingly, it is necessary to add 32 anti-D9-branes to cancel the R-R charge. Moreover,

in this situation the gauge group associated to the anti-D9-branes is the symplectic

group that is variously called Sp(16) or USp(32).

This theory is tachyon-free, but it contains a tree-level dilaton potential term.

The orientifold plane has positive tension (as well as positive charge). Thus, in con-

trast to the usual type-I theory, this tension reinforces the tension of the D9-branes,

to give a total vacuum energy of 64TD9 [14]. In string metric this includes a fac-

tor of e−φ, where φ represents the dilaton. In canonical metric this becomes e3φ/2.
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Therefore, the runaway dilaton would appear to drive the system to zero coupling.

It may be possible to achieve stability and finite coupling with a warped compacti-

fication [21, 22]. At any rate, a weak-coupling anomaly analysis in ten-dimensional

Minkowski space should make sense.

The closed string spectrum (at zero coupling) is identical to that of the type-I

theory. In particular, it contains a massless gravitino. This is somewhat surprising,

since the open string sector associated to the anti-D9-branes is not supersymmetric.

In addition to the Sp(16) gauge bosons, the massless spectrum contains Majorana-

Weyl fermions in the antisymmetric tensor representation of the gauge group. In

contrast to the case of orthogonal groups, this multiplet is not the adjoint, which is

a symmetric tensor. In fact, it is reducible into a part that has no symplectic trace

and a singlet. The singlet can be identified as the Goldstino associated with the

broken supersymmetry. Both the gravitino and the Goldstino have only one chirality,

a situation that would be impossible in a maximally symmetric ten-dimensional

spacetime (such as Minkowski or de Sitter space), for supersymmetry breaking in

such a spacetime would require the gravitino to get mass, and this is only possible

if both chiralities are present. Supersymmetric invariance of a theory with such an

inedible Goldstino, which has only one chirality and cannot combine with the graviton

to give a massive state, depends on the dilaton potential term in the effective action,

as was demonstrated in [23]. Because this term is present, such a theory does not

lead to a maximally symmetric ten-dimensional spacetime, and the chirality of the

gravitino and Goldstino leads to no contradiction.

Even though this theory has many differences from the type-I theory, the

anomaly analysis works in exactly the same way. The antisymmetric tensor rep-

resentation of Sp(16) has dimension 496, just as in the SO(32) case. Moreover, all

of its charges with respect to the maximal torus (Cartan subalgebra) are identical

to those in the SO(32) case. Therefore, since the massless closed string sector is

identical to that of the type-I theory, the anomaly analysis is the same. Moreover,

as discussed in [14], one can also add additional brane antibrane pairs to make an

unstable theory with Sp(16 + n)× Sp(n) gauge symmetry. The anomaly analysis of
this system is identical to that of the SO(32 + 2n)× SO(2n) theory described in the
previous section.

4. Another class of ten-dimensional models

Three examples of ten-dimensional tachyon-free string theories without spacetime

supersymmetry are known. The first one discovered is the SO(16)×SO(16) heterotic
theory [24, 25]. Since heterotic theories do not have D-branes, this example does not

lend itself to the type of analysis we are doing here. A second example is the Sp(16)

theory discussed in the previous section. The third example, which is the subject of

this section, has U(32) gauge symmetry. It was discovered by Sagnotti in [26, 27].
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(For a review and a discussion of related models in lower dimensions see [28].) We

will quickly recall the essential features of this theory and then consider including

additional brane antibrane pairs to give a theory with U(32 + n) × U(n) gauge
symmetry. Other examples of tachyon-free models without supersymmetry, which

we will not consider here, have been constructed in lower dimensions [29, 30].

4.1 The U(32) theory

A variant of the type-IIB superstring theory, usually called the type-0B theory, is

constructed by making a different GSO projection from the usual one [24, 31]. It

also gives a modular invariant partition function and therefore is perturbatively con-

sistent. The type-0B theory is a theory of oriented closed strings only. It involves

no orientifold plane or spacetime filling D-branes. The spectrum includes the closed

string tachyon, which is ordinarily removed by the GSO projection. The entire spec-

trum contains bosons only, since the R-NS and NS-R sectors are both projected

out. At the massless level, the NS-NS spectrum is the same as for type-II super-

strings: a graviton, two-form, and dilaton. The massless R-R spectrum is double

that of the IIB theory. By this we mean that there is no self-duality constraint

on the R-R spectrum. Evidently, the 0B theory is non chiral, and so it is trivially

anomaly-free.

Sagnotti’s U(32) theory is constructed as an orientifold projection of the type-0B

theory. The resulting theory has unoriented breakable strings, rather like the type-I

theory. The orientifold projection removes the tachyon and half the massless R-R

fields from the spectrum. The remaining massless R-R fields are identical to those

of the IIB theory. The massless NS-NS spectrum consists only of the graviton and

the dilaton, just as in the type-I theory. There are still no fermions in the closed

string spectrum. Thus the closed string spectrum includes just one chiral field: the

four-form R-R potential whose field strength is self-dual. Clearly, if this were the

whole story, the theory would be anomalous. However, there is an orientifold plane

that carries −32 units of R-R charge (just as in the type-I theory) which requires the
addition of 32 spacetime-filling D9-branes. Properties of some of the other D-branes

in this theory have been discussed in [32, 33].

As was explained by Sagnotti, and will be clear from the anomaly analysis, the

massless open-string spectrum contains U(32) gauge fields. It also contains Weyl

fermions that belong to the antisymmetric tensor representation (496) of the gauge

group. Sagnotti showed that these fermions together with the self-dual R-R field give

anomalies that can be cancelled by the addition of a Chern-Simons term in the usual

way. It is an amusing fact that whereas the cancellation of the trR6 term in the

type-I theory anomaly polynomial requires 496 Majorana-Weyl fermions to cancel

the contributions of the gravitino and dilatino, the cancellation in this case takes

place between the contributions of the self-dual R-R field and 496 Weyl fermions. It
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is clear that this is the right counting, since we know that in the type-IIB theory the

gravitational anomaly contributions of the self-dual R-R field precisely cancel those

of a pair of Majorana-Weyl gravitinos and dilatinos.

4.2 Addition of brane-antibrane pairs

Let us now consider adding n D9-branes and n anti-D9-branes to the U(32) theory.

Clearly, this will give a theory that has U(32 + n)× U(n) gauge symmetry. Also, it
contains complex tachyon fields in the bifundamental representation. Like the type-

IIB and type-I theories with added brane-antibrane pairs, which were analyzed in

previous sections, we expect this theory to be perturbatively well behaved. Therefore

the anomalies should cancel.

It is easy to figure out what the chiral fermions are in this case. The 99 open

strings give left-handed Weyl fermions in the antisymmetric tensor representation of

U(32+n), the 9̄9̄ open strings give left-handed Weyl fermions in the symmetric tensor

representation of U(n), and the 99̄ open strings give right-handed Weyl fermions in

the bifundamental representation. The anomalies can be computed as usual, and

one finds that the anomaly polynomial I12 is proportional to the 12-form piece of(
TrA e

iF1 + TrS e
iF2 − tr eiF1 tr eiF2

)
Â(R) +

1

8
L(R) , (4.1)

where the subscript 1 refers to U(n + 32) and the subscript 2 refers to U(n). The

last term is the contribution of the self-dual R-R field. This expression looks just

like (3.8), though now we are dealing with unitary groups instead of orthogonal

groups. Just as in the previous case, the expression (4.1) can be recast in the form

1

2

([
Str eiF

]2 − Str e2iF) Â(R) + 1
8
L(R) , (4.2)

where Str eiF = tr eiF1 − tr eiF2 . Again, the 12-form piece of this expression agrees
with the 12-form piece of 1

2
Y 2, where Y is given by

Y = Str eiF
√
Â(R)− 32

√
L

(
R

4

)
. (4.3)

One difference from the SO(32 + n)× SO(n) type-I theory is that traces of odd
powers of F are now non zero. The anomaly can now be cancelled by the addition of

a Chern-Simons term of the form µ
∫
CY . This formula is more like that of the IIB

case in that C = −iC0 + C2 + iC4 − C6 − iC8, with the same self-duality constraint
as in that case. This example provides a pleasing mix of features of the type-I and

type-IIB theories. Note that the relative U(1) gauge field eats the R-R scalar, just

as in the type-IIB problem. The dependence on bifundamental tachyons could be

added in the same way that it was added there.
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5. Type I compactified on a smooth K3

When the type-I superstring theory is compactified on a smooth K3, the requirement

that dH = trR2 − trF 2 should be exact implies that there are 24 units of instanton
number. This can be achieved by a combination of large instantons embedded in

the SO(32) gauge group and small instantons (which are D5-branes) localized on the

K3 [34]. If there are k coincident D5-branes, the associated world-volume theory is

an Sp(k) gauge theory. In this case, the remaining 24− k units of instanton number
must be embedded in the SO(32) gauge group, which breaks it to SO(8 + k).

To be specific, we will focus on the case k = 24, which gives the maximal sym-

metry group SO(32) × Sp(24). This theory has 32 D9-branes and 24 coincident
D5-branes. The resulting 6d theory has N = 1 supersymmetry (8 conserved su-
percharges). The massless fields consist of the supergravity multiplet, one tensor

multiplet, vector multiplets for each of the gauge groups, and three classes of hy-

permultiplets. There are 20 hypermultiplets of gravitational origin, which are gauge

singlets. The second class of hypermultiplets arises as zero modes of 55 strings.

They belong to the antisymmetric tensor representation of the Sp(24) gauge group.

This representation is reducible because it contains a symplectic traceless part and

a singlet. The singlet provides the requisite Goldstone fermion. The third class of

hypermultiplets arises as zero modes of 59 strings. They belong to the bifundamen-

tal representation, of course. These states actually belong to “half hypermultiplets”,

which is possible because the representation is pseudoreal.

The anomaly analysis of these systems and the other compactified systems we

will consider could be analyzed from either a ten-dimensional or a six-dimensional

viewpoint. In the former case the fivebranes would be described as localized de-

fects embedded in ten dimensions and anomalies would be analyzed locally taking

account of the phenomenon of “anomaly inflow”. In the alternative six-dimensional

viewpoint, one simply considers the effective six-dimensional theory that arises at

length scales large compared to the compactification scale. This is the approach we

will take in the following discussion. For example, in the particular example under

consideration at the moment, altogether there are 244 more hypermultiplets than

vector multiplets. This is the number required for the cancellation of the trR4 piece

of the anomaly 8-form in N = 1 6d theories with one tensor multiplet [35].
The anomaly 8-form for this 6d theory was analyzed in detail in [36], where it

was shown that it factorizes in the form

I8 = − 1
16

(
trR2 − trF 29

) (
trR2 + 2 trF 29 − 2 trF 25

)
. (5.1)

Here F9 refers to the SO(32) group and F5 refers to the Sp(24) group. It follows

that the gauge and Lorentz anomalies can be cancelled by adding a Chern-Simons

term of the form
∫
C2Y4 and requiring that C2 transform under Lorentz and gauge
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transformations in the usual fashion. Our goal in the remainder of this section is to

explore how this analysis should be generalized when one allows for the addition of

anti-D9-branes and anti-D5-branes.

We add n D9-brane anti-D9-brane pairs and m D5-brane anti-D5-brane pairs.

Then the D9-branes and anti-D9-branes give the gauge group

G9 = SO(32 + n)× SO(n) (5.2)

just as we found for the uncompactified theory in the preceding section. Taking all

the D5-branes and all the anti-D5-branes to be coincident3 gives the gauge group

G5 = Sp(24 +m)× Sp(m) . (5.3)

This theory is unstable and non supersymmetric with tachyons, like the examples

described in the preceding sections. As was done for those examples, we will identify

the various chiral fermions, compute the associated anomaly polynomial, and deduce

the Chern-Simons term of the effective theory.

Let us now consider the massless chiral fermions. We use the convention that

fermions that have the same chirality as the supercharge (and hence of fermions

in vector supermultiplets) are left-handed and contribute to the anomaly polyno-

mial with a plus sign. Right-handed fermions, such as the ones in hypermultiplets,

contribute with a minus sign. Here and in section 6, handedness of fermions is

understood in the six-dimensional sense.

Let us start with the zero modes of strings connecting the various 9-branes. Since

the 99 spectrum is supersymmetric, these fermions are left-handed and belong to the

adjoint representation. The 99̄ fermions are right-handed (as follows, for example,

from the discussion in section 3.2) and belong to the bifundamental representation.

The 9̄9̄ fermion zero modes are left-handed and belong to the symmetric represen-

tation of SO(n), just as we found previously in ten dimensions. Thus the Chern

characters associated with these states give

Tr eiF9 − tr eiF9 tr eiF9̄ + TrS eiF9̄ = 1
2

(
Str eiF9

)2 − 1
2
Str e2iF9 . (5.4)

As usual, Tr refers to the adjoint representation, tr to the fundamental representation,

and TrS to the symmetric tensor representation.

Next let us consider the 55 spectrum. As before, the 55 strings give left-handed

fermions in the adjoint representation and right-handed fermions in the antisym-

metric tensor representation of the Sp(24 +m) gauge group. For the 5̄5̄ strings the

chiralities are reversed: the adjoint fermions are right-handed and the antisymmetric

3It does not matter whether the D5-branes are coincident with the anti-D5-branes, since any

massless fermions arising in this way would be non chiral. This has to be the case, because the two

sets of branes can be separated without changing the gauge groups.
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tensor representation fermions are left-handed.4 As explained in a footnote above,

there is no contribution from 55̄ strings. Altogether these states contribute

Tr eiF5 − Tr eiF5̄ − TrA eiF5 + TrA eiF5̄ = Str e2iF5 . (5.5)

Finally, we have four classes of fermion zero modes for 59 strings. In each case

we get a bifundamental representation, with the factor of 1/2 explained earlier. The

95 and 9̄5̄ fermion zero modes are right-handed whereas the 95̄ and 9̄5 ones are

left-handed. Thus these contributions give

−1
2
tr eiF9 tr eiF5 − 1

2
tr eiF9̄ tr eiF5̄ +

1

2
tr eiF9̄ tr eiF5 +

1

2
tr eiF9 tr eiF5̄ =

= −1
2
Str eiF9 Str eiF5 . (5.6)

Adding up the three sets of terms given above and expanding gives

−224 + 6 StrF 25 − 3 StrF 29 +
1

8

(
StrF 29

)2 − 1
8
StrF 29 StrF

2
5 + · · · . (5.7)

Including the gravitational contributions, one finds that the anomaly 8-form factor-

izes

I8 = − 1
16
Y
(1)
4 Y

(2)
4 , (5.8)

where

Y
(1)
4 = trR2 − StrF 29 (5.9)

and

Y
(2)
4 = trR2 + 2StrF 29 − 2 StrF 25 . (5.10)

Given the result in the absence of the extra brane-antibrane pairs, this is the simplest

outcome we could have expected.

It follows that the anomaly cancellation works as before. For example, if we

define Y
(1)
4 = dΩ3 and δΩ3 = dΛ2, then a Chern-Simons term of the form µ

∫
C2Y

(2)
4

can cancel the anomaly provided that we require δC2 = Λ2. As usual, H = dC2−Ω3
is then gauge invariant.

In a more symmetrical treatment C2Y
(2)
4 would be replaced by C+2 (Y

(2)
4 +Y

(1)
4 )+

C−2 (Y
(2)
4 − Y

(1)
4 ), where C

±
2 =

1
2
(C2 ± C̃2). The self-dual part C

+
2 belongs to the

supergravity multiplet, and the anti-self-dual part C−2 belongs to the tensor super-
multiplet. (This separation is difficult to achieve covariantly, but that is a problem

we face in all the examples with self-dual R-R forms.)

4A 5̄-brane differs from a 5-brane by reflection of one of its worldvolume coordinates together with

one of the normal coordinates, so the 5̄5̄ spectrum can be deduced directly from the 55 spectrum.

Alternatively, according to the reasoning in section 3.2, going from 55 to 5̄5̄ should reverse the Ω

projection in the R sector, exchanging the roles of symmetric and antisymmetric tensors of Sp(m)

or in other words exchanging the adjoint representation with the antisymmetric tensor.
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6. Type I compactified on a T4/Z2 orbifold

6.1 Review of the basic model

The study of a particular compactification of the type-I theory on a T4/Z2 orbifold

was explored in [37]. The anomaly cancellation analysis of this model was subse-

quently carried out in [38]. This orbifold is a singular limit of a K3, so once again

it is necessary to account for 24 units of instanton number. In the model of [37] one

unit of instanton number is localized at each of the 16 fixed points of the orbifold

and the remaining 8 units are realized as D5-branes. Equivalently, we can look at

the R-R charge. Each orbifold point has a charge of −3/2 arising from the geometry
and +1 from the embedded instanton for a total of −1/2. Even though none of the
instantons is embedded in the SO(32) gauge group associated with the D9-branes

(except as point instantons that do not break the gauge symmetry), the Z2 that is

used to form the orbifold action acts on the gauge group breaking it to U(16). This

group can be broken further by Wilson lines, as we will discuss.

Altogether the model has a gauge group of the form G5 × G9, where G5 is

associated with the D5-branes and G9 is associated with the D9-branes. There

is a rich set of possibilities for each. Those for the D5-branes can be understood

geometrically, whereas those for the D9-branes correspond to various possibilities

for the Wilson lines. Remarkably the two stories are isomorphic, and the full set of

models that can be realized this way is invariant under T-duality. In other words, for

every construction there is a dual construction for which the role of the D9-branes

and the D5-branes is interchanged.

Let us recall the geometric description of the possible gauge groups G5. Just

as in the preceding section, when k D5-branes coincide at a regular point of the

the orbifold, the associated world-volume theory is an N = 1 Sp(k) gauge theory.
However, when fivebranes approach an orbifold point, the mirror images come into

play and the group is enhanced to U(2k). Thus, for example, if all eight of them

are on the same orbifold point this gives G5 = U(16). Another interesting fact is

that half fivebranes can attach to orbifold points, so that unitary groups of odd rank

are also possible. Only an integral number of fivebranes can move off of an orbifold

point. One extreme case is to attach a half fivebrane to each of the orbifold points

giving the group G5 = U(1)
16. This configuration is special, in that it is the only one

that cancels the R-R charge locally. However, it is not necessary to do that. Thus

there are a number of topologically distinct sectors characterized by the number

(and locations) of orbifold points that have a half fivebrane attached to them. As

required by T-duality, there are corresponding statements that could be made about

the possible configurations of Wilson lines and their implications for G9. According

to [38], most of the topological sectors suffer a non-perturbative anomaly that makes

them unacceptable, even though they are all consistent perturbatively. The rule is

that the number of orbifold points with attached half fivebranes must be either 0,
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8, or 16. Since one also has the corresponding restriction for the Wilson lines, there

are 9 different topological sectors that are allowed, but only 6 of them are distinct

when T-duality is taken into account.

We will review how the anomaly analysis works for this class of models. Later

we will generalize the results to allow for the addition of anti-D5-branes and anti-

D9-branes. For describing the analysis it is convenient to assign all the fivebranes to

orbifold points, so that G5 =
∏16
1 U(mi), where

∑16
1 mi = 16. Note that we include

all the orbifold points in the sum, since we allow the mi’s to be zero. This helps to

keep the notation relatively simple. Situations in which there are fivebranes in the

bulk correspond to a simple Higgsing of this class of models. On the other hand, the

anomaly analysis of these models is more subtle than those with only fivebranes in

the bulk, because of the U(1) factors. Therefore by considering the model with this

choice of G5 and G9 =
∏16
1 U(ni), where

∑16
1 ni = 16, we are really taking account

of all interesting cases.

6.2 The massless spectrum

As in the preceding section, the massless gauge singlet fields, associated to zero

modes of closed strings, consist of the supergravity multiplet, a tensor multiplet,

and 20 hypermultiplets. One significant fact is that 16 of these hypermultiplets are

associated to the 16 orbifold points. One of the scalars in each of the hypermultiplets

belongs to the R-R sector. The corresponding 16 R-R scalar fields play an important

role in the anomaly analysis.

Let us now consider the part of the massless spectrum that arises as zero modes

of open strings. Most of it is pretty obvious. Consider the 5i5j open string spectrum

first. It is clear that there is no contribution from open strings connecting fivebranes

at one orbifold point to ones at a different orbifold point, since they are spatially

separated. So we need only consider the case i = j. These give vector supermulti-

plets for each of the U(mi) groups. In addition, they also give two hypermultiplets

belonging to antisymmetric tensor representations. The spectrum of 99 strings is

completely analogous, as required by T-duality.

We now turn to the spectrum of zero modes of 5i9j open strings. This spectrum,

which was analyzed in [38], turns out to be quite subtle. It is pretty evident that

one expects each of the possible 59 open strings to give a massless hypermultiplet

in the bifundamental representation. The subtlety is that there are two possibilities

(mi, nj) and (mi, n̄j).
5 For any given pair i, j, the distinction between these two cases

is a matter of convention, as it can be reversed by complex conjugation of one of the

groups. However, in general, there are more distinct pairings than there are unitary

groups, so this distinction is not entirely convention. Therefore let us distinguish the

5Recall that a hypermultiplet contains the complex conjugate, so (mi, nj) is the same as (m̄i, n̄j)

and (mi, n̄j) is the same as (m̄i, nj).
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two possibilities by a parameter wij that takes the value +1 for values of i and j such

that the 59 open strings transform as (mi, nj) and the value −1 in the second case.
This matrix of parameters satisfies certain properties that we will describe later.

6.3 Anomaly analysis

Let us now focus on the Chern characters that enter in the anomaly analysis. The

9i9i chiral fermions give

Tr eiF9i −2TrA eiF9i = ni−2 trF 29i+2 (trF9i)2+
2

3
trF 49i−

2

3
trF9i trF

3
9i+ · · · . (6.1)

Similarly, the 5i5i chiral fermions give

Tr eiF5i−2TrA eiF5i = mi−2 trF 25i+2 (trF5i)2+
2

3
trF 45i−

2

3
trF5i trF

3
5i+ · · · . (6.2)

The 5i9j chiral fermions, with the rule described above, give

− tr eiF5i tr eiwijF9j = −minj + 1
2
mi trF

2
9j +

1

2
nj trF

2
5i + wij trF5i trF9j −

− 1
24
mi trF

4
9j −

1

24
nj trF

4
5i −
1

4
trF 25i trF

2
9j −

− 1
6
wij trF

3
5i trF9j −

1

6
wij trF5i trF

3
9j + · · · . (6.3)

Combining all of the above give

−224 + 6
∑
i

trF 29i + 6
∑
i

trF 25i −
1

4

∑
i

trF 25i
∑
j

trF 29j + 2
∑
i

(trF9i)
2 +

+2
∑
i

(trF5i)
2 +

∑
ij

wij trF5i trF9j − 2
3

∑
i

trF9i trF
3
9i −

− 2
3

∑
i

trF5i trF
3
5i −
1

6

∑
ij

wij trF
3
5i trF9j −

1

6

∑
ij

wij trF5i trF
3
9j . (6.4)

Multiplying this by Â(R), adding the closed-string contribution, and extracting the

8-form gives

I8 = − 1
16

(
trR2

)2
+
1

8
trR2

(∑
i

trF 29i +
∑
i

trF 25i

)
− 1
4

∑
i

trF 25i
∑
j

trF 29j +

+
1

24
trR2

(∑
i

(trF9i)
2 +

∑
i

(trF5i)
2 +
1

2

∑
ij

wij trF5i trF9j

)
+

− 2
3

∑
i

trF9i trF
3
9i −
2

3

∑
i

trF5i trF
3
5i −
1

6

∑
ij

wij trF
3
5i trF9j −

− 1
6

∑
ij

wij trF5i trF
3
9j . (6.5)
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The key identity [38] that makes it possible to factorize this in the way required to

achieve anomaly cancellation is

16∑
i=1

wijwik = 16δjk . (6.6)

Using this, we can recast I8 in the factorized form

I8 = −1
4
Y
(5)
4 Y

(9)
4 −

2

3

16∑
i=1

Y2iY6i , (6.7)

where

Y
(5)
4 =

1

2
trR2 −

∑
i

trF 25i ,

Y
(9)
4 =

1

2
trR2 −

∑
i

trF 29i ,

Y2i = trF5i +
1

4

∑
j

wij trF9j ,

Y6i = trF
3
5i +
1

4

∑
j

wij trF
3
9j −

1

16
trR2Y2i . (6.8)

Thus anomaly cancellation is achieved by adding Chern-Simons terms of the form

µ

∫ (
C2Y

(9)
4 +

16∑
i=1

C0iY6i

)
.

Here, C0i are the 16 R-R scalars that were pointed out earlier. This completes the

review of results from [38]. Now, we are ready to consider adding additional brane-

antibrane pairs.

6.4 Addition of brane-antibrane pairs

Let us now consider adding additional brane-antibrane pairs. As before we will

only consider the case when all the D5-branes and anti-D5-branes are located at the

orbifold points so that the gauge group is a product of unitary groups. Letting mi
denote the number of half-D5-branes and m̃i the number of half anti-D5-branes at

the i-th orbifold point, the gauge group is

G5 =

16∏
i=1

U(mi)× U(m̃i) . (6.9)

Each of the mi and m̃i is allowed to be either zero or a positive integer. Since the

total fivebrane charge must be 8, the only perturbative restriction is

16∑
i=1

(mi − m̃i) = 16 . (6.10)
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The D9-branes are treated in similar manner, so that

G9 =
16∏
i=1

U(ni)× U(ñi) , (6.11)

where
16∑
i=1

(ni − ñi) = 16 . (6.12)

Let us now consider the spectrum of chiral fermions arising from open-string

zero modes [30]. As before the 9i9i and 5i5i open strings give left-handed fermions

in the adjoint representation and two copies of right-handed fermions in the anti-

symmetric tensor representation. The 9̄i9̄i and 5̄i5̄i open strings give left-handed

fermions in the adjoint representation and two copies of right-handed fermions in the

symmetric tensor representation. The 9i5j and 9̄i5̄j open strings give right-handed

fermions in a bifundamental representation, whereas the 9i5̄j and 9̄i5j opens strings

give left-handed fermions in a bifundamental representation. In each of these four

cases the issue of whether one has (fundamental, fundamental) or (fundamental,

antifundamental) is described by the parameters wij introduced earlier.

At this point, it is easy to verify that the number of right-handed fermions ex-

ceeds the number of left-handed ones by 244, as required. However, this is not yet

the whole story. There are still 9i9̄i and 5i5̄i open-string zero modes to be taken

into account. They do provide additional chiral content, even though they give an

equal number of left-handed and right-handed fermions. The correct rule in each

case is that they give (fundamental, fundamental) and (antifundamental, antifunda-

mental) left-handed fermions and (fundamental, antifundamental) and (antifunda-

mental, fundamental) right-handed fermions. The contribution of this set of states

to the Chern character term in the anomaly is(
tr eiF9i − tr e−iF9i) (tr eiF9̄i − tr e−iF9̄i) = −4 tr sinF9i tr sinF9̄i . (6.13)

Taking all of the above into account, it is straightforward to recompute the

anomaly 8-form I8. The answer turns out to be just what one might have guessed.

Namely, I8 is still given by eq. (6.7), where now

Y
(5)
4 =

1

2
trR2 −

∑
i

StrF 25i ,

Y
(9)
4 =

1

2
trR2 −

∑
i

StrF 29i ,

Y2i = StrF5i +
1

4

∑
j

wij StrF9j ,

Y6i = StrF
3
5i +
1

4

∑
j

wij StrF
3
9j −

1

16
trR2Y2i . (6.14)
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Thus the anomaly cancellation works as before with the substitution of supertraces

for traces. This seems to be the general rule.
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