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We derive the set of coupled equations that describes the process of degenerate four-wave mixing in the presence
of spatially nonuniform pump-beam wave fronts. We investigate the influence of phase mismatch between plane-
wave pump beams on the efficiency and on the fidelity of the phase-conjugation process, and we furnish, in the
near-collinear geometry, the expression of the spatial degree of coherence of the phase-conjugate wave in terms of
those of the input signal and of the pump beams.

INTRODUCTION

The process of degenerate four-wave mixing in unbounded
media is usually investigated by assuming the two counter-
propagating pump waves to be plane waves; this approxima-
tion leads to the result that a phase-conjugate mirror can be
used to obtain replicas of signals whose wave fronts have, in
the paraxial approximation, an essentially arbitrary com-
plexity.' This restriction (obviously absent in the study of
the phase-conjugation process in optical waveguides 2-4 for
which the two counterpropagating pump waves are identified
with forward- and backward-traveling modes of the waveguide
itself) has been partially removed in Ref. 5, in which an anal-
ysis of phase-conjugate reflection has been carried out by as-
suming TEMOO pump beams. Recently, a detailed theory of
phase-conjugation using spatially varying pump beams was
published6 that generalizes the results of Ref. 5 to a number
of situations. Actually, the set of equations that is employed
in Ref. 6 to describe the process of degenerate four-wave
mixing with nonuniform pump and signal waves, and that
constitutes the starting point of the theory, deserves, as we
shall see in what follows, an accurate derivation that clarifies
the conditions for its applicability and points out its limits of
validity; this also, in view of different analyses of the problem,
was obtained when an approach used in the frame of volume
holography was adopted.7

In this paper we consider the problem of degenerate four-
wave mixing in an unbounded medium using spatially non-
uniform wave and derive a set of coupled integrodifferential
equations that describes the process and that under suitable
hypotheses reduces to the equation adopted in Ref. 6. As an
application, we study the effect of a phase mismatch between
the two pump beams on the process, which is shown to be in-
fluenced by the nonreciprocal self-modulation of the pump
waves. Finally, we investigate the spatial-coherence prop-
erties of the phase-conjugate signal in terms of those of the
pump beams and of the input signal.

The above results are obtained by employing a coupled-
mode formalism, which has already been used to investigate
the influence of nonlinear effects4 and of imperfections8 in
optical fibers.

2. THE COUPLED-MODE FORMALISM

By expanding the electromagnetic field in terms of the ei-
genmodes of an ideal guiding structure, it is possible to derive
a set of first-order differential equations for the expansion
coefficients, the procedure being equivalent to solving the
Maxwell equations with the proper boundary conditions.8

This formalism can also be employed to investigate electro-
magnetic propagation in an unbounded medium, for example,
the turbulent atmosphere,9 for which the appropriate set of
modes is continuous.

In the context of degenerate four-wave mixing in a bulk
medium (which, for the sake of simplicity, we shall assume to
be isotropic), the total electric field can be written in the
form

E(r, z, t) = E,(+)(r, z, t) + Es&()(r, z, t)
+ Ep(+)(r, z, t) + Ep(-)(r, z, t), (1)

where the subscripts s and p stand, respectively, for signal and
pump (see Fig. 1). In order to apply the coupled-mode for-
malism to this situation, the eigenmodes of the ideal guiding
structure have to be substituted for by the radiation modes
with real propagation constant (which excludes the presence
of evanescent waves). By assuming that the z axis coincides
with the (average) signal-propagation direction and that all
the fields vibrate at the same angular frequency c, a possible
choice is furnished by the set of orthogonally polarized
states:

E(Q, 1; r) = N, exp(-i4 * r)[x - ./OX)g],
E(Q, 2; r) = N2 exp(-it - r)

- (03 + Wx2//.)9 + (A],
where r = (x, y), 0t = (k 2

- 42)1/2 with k = wni/c (n, being the
refractive index of the medium), and the transverse wave
vector t is restricted to values of t satisfying the relation 0 <
t ' k. The two normalization factors

N, = (1/27r) [I3 Uwo/(A0I 2
+ tX 2)]1/2,

N 2 = (1/27r)[I3 Wftj/(/ 2 + (x2)]1/2 (3)
have been chosen in such a way that the orthonormalization
condition reads

(2)
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(E+
where

K(t, a; A, a'; z) = (Weo/2i) J dr[n 2(r, z) - n12 IEt*(t, a; r)

Et (', a'; r), (8)

k(t, a; A', a-;z) = (coeo/2i) fJf dr[n 2 (rz)-n, 2 Ez*(t, air)

* E ( ', a'; r), (9)

E(s
K- L -sl

/

(-)

X1

Fig. 1. Schematic geometry of degenerate four-wave mixing.

J dri- E(t, a; r) X H*(Q', a'; r) = 6(2)(_ -

a, a' = 1, 2, dr - dxdy, (4)

where 6(2) is the two-dimensional 6 function and 6~y is the
Kronecker symbol.

The analytic signal of the total electric field can now be
expressed in the form

E(r, z, t) = E ff dE(t, a; r)[c+(t, a)exp(icot - iAdz)

+ c-(, a)exp(iwt + i/3z)], (5)

where the expansion coefficients c+(, a) are independent of
z. The same expansion can be employed to study propagation
in a medium possessing a generic refractive index n(r, z), the

coefficients cQ, a) becoming in this case dependent on z and

obeying a set of coupled differential equations, which reads

dc (Q}I Z) E ff dt'K+,+(t, a; A', a'; z)

X exp[i(13 - I')z c (+', a'; z)

Kdc- A Z) = fE S dt'[K- +(t, C;Y; z)
dz '

x exp[-i(ot + 00~z~c+Q"', '; z)
+ K- ', a; A', a'; z)exp1-i( 3 - &')zIcQ(', a'; z)1,

(6b)

with

KPsqQ', v; O', a'; z) = pK(Q, a; A', a'; z) + qk(Q, a; A', a'; z),
p, q = +, -, (7)

and Et and E, indicate, respectively, the transverse and lon-
gitudinal components of the field.

Note that, up to this point, the analytical approach is
completely general. The refractive-index distribution n(r,
z) is not subject to any condition of slow spatial variation, and
the paraxial approximation ( << k) is not required. The set
of Eqs. (6) is perfectly equivalent to the Maxwell equations
and does not involve the neglect of second-order derivatives
with respect to z of the mode amplitude, as required by the
slowly varying approximation in the standard coupled-mode
theory.1 0

3. EVOLUTION OF THE SIGNAL AND OF
THE REFLECTED BEAMS

Let us introduce the slowly varying (with z) fields e, a,' and
ep af, defined by the relations

fS (rz) = ff d#E(t, a; r)exp[Fi(/ -k)z]cl(t, a; z),
A.(

(10) 

p a (r, z) = 33 d(E(t, a; r)exp[+i(t -kp-)zlc

X (t, a; Z), (11)

where A, and Ap represent the intervals over which the
transverse wave vectors of the signal and the pump fields,
respectively, vary, and kp I are the (average) longitudinal wave
numbers of the forward- and backward-traveling pump waves,
from which it follows that

P +(r, z, t) = E Fe8 "(r, z)exp(iwt =F ikz),

Rp'(r, z, t) = E epa'+(r, z)exp(icot T ikhpz).

(12)

(13)

By multiplying both sides of Eqs. (6a) and (6b) by E(Q, a;
r)exp[-i(I 3 t - k)z] and E(t, a; r)exp[i(O3 - k)z], respectively,
and integrating over the t interval AS, we obtain

L.,+E.,+(r, z) = E SSf d E( , a; r)

X ff dt'K+'+(t, a; A', a'; z)exp[-i(o 3 , - k)z]c+(', a'; z)

+ K+'-(, a; A', a'; z)exp[i(o3 , + k)z]c-(i', a'; z)1 (14)

k ( -)
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and

L 5 e-5,-(r, z) = A; j' d4E(Q, a; r)

X jfdt'IK-.+(t, a; A', a'; z)exp[-i(flt' + k)z]c+(t', a; z)

+ K-Q-(t, a; A', a'; z)exp[i(O3, - k)zJc-(', oa; z)1, (15)

where (see Appendix A)

L., = (a/az) + (i/2k)Vr2 :1*..*,'(16)

the second- and higher-order terms on the right-hand side
being negligible in the paraxial limit.

In order to maintain an analytical description that is not
too complicated, we have to resort now to the paraxial ap-
proximation; this allows us to neglect in Eqs. (2) the terms
containing (/Be and (ylOt* If we also assume that the signal
field is initially polarized (along the x axis), the set of equa-
tions describing the evolution of E5 (r, z) =-- Ex * "l(r, z) is
then easily derived from Eqs. (14) and (15), which yield

(a/az)e5+(r, z) = -(ik/87r 2 ) fJ' dr' fA dt

X exp[i4 * (r' - r)]{[n2(r', z)/n, 2J -1
X IE5+(r', z) + exp[i(k - kp+)z]Ep+ (r', z)
+ exp(2ikz)es(r', z) + exp[i(k + kpj)z]ep-(r', z)j

(17)

and

(a/az)es-(r, z) = (ik/8-r 2 ) J dr'f dt

X exp[i4 - (r' - r)]tn2(r', z)/n, 2] - 11

X e,(r', z) + exp[i(k -kp-)z]cp(r', z)

+ exp (-2ikz)E,+(r', z) + exp[-i(k + kp+)z]ep+(r', z)1,

(18)

where ep+(r, z) - p i " * (r, z).
We shall now assume that the optical Kerr effect is re-

sponsible for the process of four-wave mixing and write, ac-
cordingly,

n(r, z) = n1 + n2 JR(r, z, t) 12, (19)

where n2 is the nonlinear refractive-index constant of the
medium and where, recalling Eqs. (1), (12), and (13),

ER(r,z,t)12= leS+I2+ Iesj12+ lep+12+ lep-12
+ lexp(-2ikz)e5+E,-* + exp[-i(k + kp-)z]E,+Ep-*
+ exp[i(kp+ - k)z]e5 +Ep+* + exp[i(k + kp+)zIes-ep+*
+ exp[i(k - kPr)zje5 ep-*
+ exp[-i(kp+ + kp-)z]ep+Ep-* + c.c.1 (20)

[in writing Eq. (20) we have taken advantage of the hypothesis
that I Epz j2 « IE1 2 and that I Epy 1 2 << I Ep. 1 21. By in-
serting Eq. (19) into Eqs. (17) and (18) and by keeping on the
right-hand sides of the resulting equations only the terms that
do not contain any fast z dependence of the kind exp(+2ikz),
exp[±2i(kp+ + kp -)z, or exp[i(k i kP )z], and by allowing
for a small phase mismatach Ak = p- - + of the pump
waves, we finally get

(a/az)es+(r, z) = (-ia/47r 2 ) J') dr' fJJ dt

X exp[it - (r' - r)]f2[Iep+(r', Z)I2

+ I ep-(r', z)I2]Es+(r', z)

+ [21 es-(r', Z)12 + I es+(r', z) 12]eS+(r', z)

+ 2 exp(i Akz)Ep(r' , z)Ep+(r', z)e-* (r', z)), (21)

where we have set a = kn 2/ni, a perfectly analogous equation
holding true for es, provided that one performs on the
right-hand side of Eq. (21) the change + - -, - - +, and a

-a.
By inspecting Eq. (21), we recognize that if the quantities

lep'(r', z)12 and ep-(r', z)Ep+(r', z) do not contain, as a
function of r', spatial frequencies outside the interval Al, the
right-hand side of Eq. (21) consists of a space Fourier trans-
form followed by the inverse operation, so that, in this case,
one can write (assuming that I Es+ I 2 << |Ep - 1 2)

(adaz)e5+(r, z) = -2ia[l ep+(r, z) 12 + I efp(r, z)1 2 ]eS+(r, z)
- 2ia exp(i Akz)ep-(r, z)Ep+(r, z)es-*(r, z). (22)

An analogous expression, obtained by performing the changes
specified above is valid for e. -.

Note that, if we assume that

ep+(r, z) = exp(-it+ * r)fp +(r, z),
ep-(r, z) = exp(i *- r)fp(2(r, z),

where t+2 = k2 - kP 2 and where the fp (r, z) are slowly
varying functions (the ideal case of exactly contradirectional
plane-wave pump waves corresponding to fp - constant and
t+ = 0j, the above conditions require, in particular, that At
= t- - t+ not lie outside As.

4. EVOLUTION OF THE PUMP BEAMS

The set consisting of Eq. (22) and of the analogous one for es-
needs, in order to be solved, to be supplemented with the
equations describing the evolution of the pump beams. With
a procedure completely analogous to that leading to Eq. (22)
and under the same hypotheses, it is possible to show that
fp+(r, z) obeys the equation

Lp+fp+(r, z) = -ia[ fp+(r, Z)12 + 2Jfp-(r, z)I 2 ]fp+(r, z),
(24)

where

Lp+ = (a/z) + [(+/kp+) * Vr]- (25)

The equation obeyed byfp-(r, z) is obtainable with the usual
changes, provided that one writes

Lp= (a/z) + [(t-/kp-) * Vr] (26)

Equations (24) and (25) and the analogous equations for es -
and fp - completely describe the process of four-wave mixing.
However, it is evident that the equations for fp + and fp - can
often be most conveniently rewritten, in view of the boundary
conditions imposed on them, in coordinate systems that have
one of their axes (say, z' and z") aligned with the vectors (t+,
kp+) and (Q, kp-), respectively. If one refers, for example,
to Eq. (24), one can achieve the rewriting by passing from the
umprimed coordinate system characterized by the three

B. Crosignani and A. Yariv

(23) 



Vol. 1, No. 10/October 1984/J. Opt. Soc. Am. A 1037

mutually orthogonal unit vectors e&, gy, and 6, to one de-
scribed by the unit vectors x',, 6y,, and 6z by means of the
change of variables

x' = x(6x, * ex) + y(6" * 9y) + Z(6x" 9Az)
y' = XVY, *-ex) + y(6yt * 6Y) + z (ey, * ez) I
Z' = X (zZ * ex) + Y(6z' * ey) + Z(ez ez),

provided that 6z, fulfills the conditions

(27)

9z, * ex = px+/k, , *y = (y+/k, 6z, * 9z = kp+/k.

(28)

A relation completely similar to Eqs. (28) is valid for the
double-primed variables referring to the equation describing
fp -, eO, being in this case determined by the conditions

z- - ex = ux-/k, 6z * ey = (y -/k, 6z,, * 6z = kp-/k.

In these coordinate systems, the equations describing the
evolution of f+ and fp - become

(d/d9z')fp +(r', z'
=-ia[Ifp+(r',z')1 2 +21fp-(r',Z')1 2]fp+(r',z') (30)

and

(d/dz")fp -(r", z")
- ia[2Ifp+(r",Z")12 + Ifp-(r"',z"')I2]fp (r",z"). (31)

5. INFLUENCE OF PHASE MISMATCH
BETWEEN THE PUMP WAVES

If we assume that the two pump beams are represented by
plane waves, Eqs. (30) and (31) can be integrated immediately
to give

fp +(r, z' - fp+(z')
= exp[-ia(I+ + 2I-)z']fp+(z' = 0) (32)

and

fp -(r', z") -p- p(z ")
= exp[ia(2I + I-)(z"-L)]fp-(z" = L), (33)

where L is the interaction length of the pump waves, I+
+(Z' - 0)12, andI - Ifp-(z" = L)I2. Equations (32) and

(33) allow us, by means of Eqs. (27)-(29), to deduce the rela-
tion

exp(iAkz)Ep-(r, z)ep+(r, z) = exp[-ia(2I+ + I-)L
+ (i6t- r) + ibkz]fp+(z' = O)fp-(z" = L),

(a/Oz)E.+(r, z) = -iBe 5+(r, z) - iD(r)exp(i kz)es-* (r, z),

(a/Oz)E,-*(r, z) = -iBes-*(r, z)

- iD*(r)exp(-i kz)E5 +(r, z), (37)

where

B = 2a(I+ + I),
D(r) = 2a exp[-ia(2I+ + I-)L + (i6. -r)]

X fp+ (z' = 0)fp-(z" = L). (38)

The set of Eqs. (37) can be easily integrated, and its solu-
tion, which obeys the boundary conditions es+(r, z = 0) =
E,+(r, 0) and E,-(r, z = L) = 0, reads

e,+(r, z) = exp(-iBz + i az)
y 2 cos[,y(L - z)] + iacy sin[y(L - z)] e 5+( 0)

X .y 
2 cos(,yL) + ia sin(,yL) E r, (39)

(29) E,-*(r, z) = -i exp(-iBz - iaz)

X - sin[y(z - L)] D*(r)E.+(r, O), (40)
'y cos(,yL) + ia sin(yL)

with a = 6k/2andy = (ID 12 + a2)1/2. Inparticular,atz = O
we obtain

E,-(r, 0) = -iD(r) sin(,yL) e 0+*(r, 0),
y cos(,yL) + ia sin(yL)

(41)

which shows that the influence of the phase mismatch (6k 5d
0) on the phase-conjugation process consists of both a re-
duction in its efficiency,

R = Ies-(r, 01 2 IDI 2

IEs+(r,0)12 IDI2 + a2

X tan2[(IDI 2 + of2)1/2L] (42)
1 + [a 2 /(1D12 + a2)]tan 2 [(IDI2 + a 2)1/2 L]

and the appearance of a phase factor exp(i6b * r) that alters
the phase of the reflected signal E, -(r, 0) and thus deteriorates
the fidelity of the process.

The power-reflection coefficient R formally coincides with
that worked out for ideal degenerate four-wave mixing"l
(plane-wave signal and pump beams, no phase mismatch) in
the presence of wavelength detuning (see Fig. 2), provided that
one identifies K with ID I and T with bkL/2-r.

(34)

where

= t-[1 + (a/k)(2I+ + I-)] - +1 + (a/k)(I+ + 2I-)]
(35)

and

5k = kp-[l + (a/k)(2I+ + I-)] - kp+[l + (a/k)(I+ + 2I-)].
(36)

By inserting Eqs. (32)-(34) into Eq. (22) and into the
analogous equation for e, -, we finally obtain in the paraxial
approximation

I)
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NORMALIZEDWAVELENGTH DETUNING. '

Fig. 2. Power reflectivity R versus normalized wavelength detuning
'I for several values of the nonlinear gain I KIL (after Ref. 11).
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6. SPATIAL COHERENCE OF THE
REFLECTED SIGNAL

In the above considerations, the electric field has been as-
sumed to be perfectly deterministic. However, it is to be
expected that, in practical situations, both the pump and the
signal waves will exhibit some degree of randomness, so that
the description in the above sections concerns only the single
realization of the electric field, which is actually a stochastic
variable. Accordingly, the meaningful quantity is not E, -(r,
0) itself but rather its mutual coherence function r(r, r'),
defined as

r(r, r') = (ES-(r, 0)es-*(r', 0)), (43)

where the angular brackets stand for an ensemble average over
its possible realizations or, in stationary situations, for time
average over an interval that is long compared with the typical
time scale of fluctuations.

In order to be able to evaluate explicitly the expression
appearing in Eq. (43), we assume a simple, nearly collinear
geometry in which the pump, the signal, and the reflected
beams overlap almost completely. Furthermore, we suppose
that the spatial incoherence of the pump waves is associated
with a randomly varying position-dependent phase, that is,
fp+(r, z = 0) = (II)1/2 exp [ip I(r)], fp -(r, z = L) = (I-)1/2
exp[ip -(r)], an assumption apt to represent the behavior of
an amplitude-stabilized laser field. The signal field is written
in the form e 8+(r, 0) = exp[io,(r)]S(r), where 0,(r) repre-
sents both the intrinsic phase fluctuations of the source and
those resulting, for example, from its passage through a ran-
dom medium (the distortions of which are to be corrected by
the phase-conjugation process).

In the paraxial approximation, with a procedure similar to
the one followed in the previous section, it is easy to obtain

EJ-(r, 0) = -i exp[-ia(2I+ + I-)L~exp[i/p+(r) + iop-(r)]
X tan[2a(I+Ia)n/2L]exp[-id,(r)]S*(r) (44)

and

r(r, r') = tan2 [2a(I+I-)1/2 L]
X (exp[iop+(r) + ifp-(r) - if (r)]
X expi-i Sp+(r)-r').-(r')
+ i0,,(r')J)S*(r)S(r/).

If we assume that the signal and the pump fields are gen-
erated by the same laser source and indicate with T(r) the
extra phase fluctuation of the signal resulting from its passage
through a random medium, then, supposing that all the mu-
tual time delays of the various beams are short compared with
the coherence time of the source, we can write op+(r) =

~(r) -- 0(r), fS(r) = / (r) + i!(r). Since 0(r) and 'I'(r) are
statistically independent, we finally obtain

F(r, r') = tan2[2an72(I+Ij)1/2L](exp[io(r) - i0(r')I)L
X (exp[iI(r') - iOF(r)])MS*(r)S(r%), (46)

where (...)L and (. . .)M indicate the averaging operations
over the fluctuations of the laser source and of the random
medium, respectively, crossed by the signal before impinging
upon the nonlinear medium in which phase conjugation takes
place.

Equation (46) implies that r(r, r') goes to zero whenever
r - r'l exceeds the smallest value between the transverse

coherence length of the laser and the typical correlation scale
of the random medium. This length sets the largest
transverse dimension of the signal beam over which a good-
fidelity phase conjugation can be achieved.

APPENDIX A

After multiplying both sides of Eqs. (6a) and (6b) by E(t, a;
r)exp[-i(O3 - k)z] and E(t, a; r)exp[i(o3 - k)z], respectively,
and by integrating over the interval A, we obtain, on the
left-hand sides,

if d#E(t, a; r)exp[r-i(f3 - k)z]dcA(t, a; z)/dz

= (O/Oz) *f d E(t, a; r)exp[i(F - k)z]c (c , a; z)

± i Jf d#(/3:-k)E(t, a; r)exp[wi(3 -k)z]c+(t, a; z),

(Al)

which, taking advantage of the expansion

t- k = (k2 - 42)1/2 - k k - 2/2k +...
= _42/2k +. . ..

can be written in the form

(c9/0z)e~A F (i/2) fr d4(Q2/k)E(4, a; r)

X exp[Fi(O3 - k)z]c'(t, a; z) +... =

X (+/0z)f8a, : (i/2k)Vr2EsG + . . . = L, AE,-.

(A2)

(A3)
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