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Bubble dynamics in time-periodic straining flows 
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The dynamics and breakup of a bubble in an axisymmetric, time-periodic straining 
flow has been investigated via analysis of an approximate dynamic model and also 
by time-dependent numerical solutions of the full fluid mechanics problem. The 
analyses reveal that in the neighbourhood of a stable steady solution, an O ( t )  time- 
dependent change of bubble shape can be obtained from an O(e)  resonant forcing. 
Furthermore, the probability of bubble breakup at subcritical Weber numbers can 
be maximized by choosing an optimal forcing frequency for a fixed forcing 
amp1 i tude . 

1. Introduction 
One of the outstanding unsolved problems in multiphage flow theory is the 

conditions for bubble breakup at high Reynolds number. Most existing literature 
suggests the existence of a critical Weber number, based upon dimensional analysis, 
that is invariant to the details of the flow. However, recent theoretical studies of 
bubble deformation in steady uniaxial and biaxial straining flow have shown that the 
concept ofa  single, universal critical Weber number is inadequate. At the very least, 
the critical Weber number depends strongly on the flow type, and on the Reynolds 
number. Furthermore, for simple step changes in the magnitude of the velocity 
gradient, theoretical studies also demonstrated a sensitivity of the breakup criteria 
to the initial bubble shape (and, thereby, by inference, to the flow history). 

In the present paper, we continue our investigation of bubble deformation and 
breakup at  high Reynolds number, by considering the dynamic response of the 
bubble shape to time-periodic perturbations of a uniaxial straining flow. The steady- 
flow version of this problem has previously been studied by many investigators, 
including Miksis (1981), Ryskin & Leal (1984) and Kang & Leal (1987, 1988). As a 
result, the dynamics of changes in bubble shape starting from a variety of initial 
conditions, as well as the properties of steady-state solutions, including instabilities 
and limit points, are all fairly well understood. This work is reviewed briefly in 93. 
Of particular relevance to the present study is the phase-plane portrait of changes of 
bubble shape, which demonstrates the existence of a homoclinic orbit (or separatrix) 
in the inviscid limit, which separates stable oscillatory solutions from unstable 
solutions that correspond to exponential stretching in the principal strain direction. 
This suggests that the bubble shape will be susceptible to a transition from regular 
to  chaotic behaviour upon introduction of a time-dependeRt modulation of the 
uniaxial straining flow. 
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FIGURE 1. A bubble in a time-periodic uniaxial straining flow. 

In the present paper, we consider a single-frequency, time-periodic straining flow. 
This problem may be viewed as a first qualitative model for investigation of bubble 
dynamics in more complicated flows such as the motion through a wavy channel, or 
in a stirred tank, or near the propellor of a ship, and so on. As we shall see, the 
analysis reveals the existence of a resonant amplification in the magnitude of shape 
oscillations at a critical forcing frequency, as well as the possibility of bubble breakup 
via chaotic oscillations of shape a t  subcritical Weber numbers. 

The main part of this paper consists of the analysis of a simple low-dimensional 
dynamical model for changes in bubble shape that has been devised on the basis of 
known results for the steady straining flow problems. However, at the end of the 
paper, we also present exact time-dependent numerical solutions for the full fluid 
mechanics problem to corroborate the conclusions from the model analysis. It is also 
noted that the dynamical model is directly applicable to time-dependent oscillations 
in the radius of a spherical bubble in a time-periodic pressure field, and to the 
dynamics of changes in the shape of an inviscid drop subjected to small periodic 
perturbations of a uniform electric field. 

2. Problem statement 
We consider an incompressible gas bubble of volume $xu3, which is undergoing 

deformations of shape in the presence of a time-periodic, axisymmetric uniaxial 
extensional flow of a fluid with density p and viscosity /I as sketched in figure 1. The 
surface of the bubble is described by the shape function, r = f = R(B,t), and is 
characterized completely by a uniform surface tension y.  The undisturbed flow far 
from the bubble is given by 

1 0  
u'=  E - r ' ,  E = E ( t ) ( O  -$  :), 1 E > 0 ,  (1) 

0 0 -5 

where E( t )  is the time-periodic principal strain rate (e.g. E( t )  = E,-E, cosot). 
Important parameters for this problem include, in addition to o and E,/E, ,  the 
dimensionl&s numbers 

(P3h 
Y P 2 / P  

, s=-, W E ,  a)2 a w, = 

where W, is the Weber number for the case of constant strain rate and S is the ratio 
of the surface-tension-based timescale and the viscous-diffusion timescale. 
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FIGURE 2. A schematic representation of known results for bubble dynamics in a steady, uniaxial 
straining flow ; the existence of steady solutions, phase portraits, and eigenvalues from linear 
stability analysis. 

3. Review of bubble dynamics in steady straining flows 
Before going on to the main subject, let us start with a discussion of the bubble 

dynamics in steady straining flows (E = 0) ,  which is the base flow problem for the 
time-periodic straining flows that are considered in the remainder of the paper. For 
discussion in this and the following sections, we adopt a scalar measure of 
deformation, x, which is defined as 

5 = (Rp,t),P,(cose)) = R(o,t)P2(cose)sined~. (2) l 
The known results for the steady flow problem are summarized in Agure 2, where 

we plot x versus Weber number for both ,u = 0 and ,u > 0. The first contribution to 
this problem was made by Miksis (1981), who used the boundary-integral technique 
in conjunction with Newton's method to predict steady-state shapes for the potential 
flow limit. As shown in figure 2(a ) ,  Miksis showed that there exist multiple steady 
solutions for a certain Weber-number range, and no steady solutiona for W beyond 
a maximum critical value, We. Later Ryskin & Leal (1984) obtained the stable branch 
(emanating from the spherical steady state) for a number of non-zero-viscosity cases 
by using a finite-difference technique coupled with boundary-fitted orthogonal 
mapping. 

Analytical results were first obtained in an earlier paper of this seriea, Kang & Leal 
(1988), using the domain perturbation technique. The most important results were 
the stability characteristics also shown in figure 2, based upon the assumption that 
the steady shape is approximately spherical. In particular, for ,u = 0, the eigenvalues, 
corresponding to perturbations about the lower (' stable ') steady solution branch, 
were shown to be strictly imaginary and decreasing in magnitude as W is increased 
until they become zero at a certain Weber number (shown by full unsteady numerical 
solutions - Kang & Leal (1987) - to correspond precisely to the limit point, We, 
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predicted by Miksis (1981)). Beyond this (i.e. for larger x) on the upper solution 
branch, the eigenvalues for p = 0 are real (one positive and one negative), and the 
steady-state solutions are unstable. For ,u > 0, on the other hand, the eigenvalues for 
small Won the lower solution branch are complex with negative real parts, indicating 
stability via a decaying oscillatory solution mode. Then for larger W on the same 
branch, the eigenvalues are both real and negative, again indicating stability but via 
a monotonic decay, until finally a t  W = W,, one eigenvalue becomes zero and then 
increasingly positive for larger x, thus indicating again that the upper solution 
branch is unstable. As we shall see later, the fact that the frequency for p = 0 
decreases and becomes zero a t  the limit point implies extremely important 
consequences for the bubble dynamics. Since the two eigenvalues for the disturbance 
equation near the steady state become zero simultaneously, we have a so-called 
codimension-2 bifurcation point, and this means that all of the possible, qualitative 
dynamical features near the critical point in parameter space can be deduced via the 
universal unfolding theory (e.g. Guckenheimer & Holmes 1983). 

4. Model equation for the dynamics of changes in bubble shape in time- 
periodic straining ilows 

As already stated in the introduction, the main topic of the present paper is the 
dynamic response of a deformable bubble to a time-periodic, axisymmetric straining 
flow. The most desirable analytic approach is, of course, a rigorous solution of the full 
problem, but that is not a practical alternative. On the other hand, one can solve the 
exact problem numerically over a considerable range of the parameter space, and this 
is a practical goal, especially in view of the axisymmetry of the problem. The 
limitation of a purely numerical approach is the necessity of solving a very large 
number of special cases to  obtain a general understanding (note that the problem is 
characterized by four parameters, W,,S, and the amplitude and frequency of the 
periodic contribution to the strain rate, as well as the initial bubble shape and 
rate of change of shape). Thus, we first consider a dynamical model to explore the 
qualitative characteristics of the bubble response to a time-periodic strain rate. 
Although approximate (ad hoc), this model is consistent with known results for small- 
amplitude shape oscillations in a quiescent fluid, due to  Lamb (1932), and for 
deformation in a steady straining flow, as described in the previous section. 
Furthermore, it is consistent with the expected dynamical model derived via the 
universal unfolding theory for the local behaviour near a critical point a t  which both 
eigenvalues vanish (i.e. a double-zero-eigenvalue critical point). Thus, it is guaranteed 
to  exhibit the correct (qualitative) dynamical features, at least in the vicinity of the 
critical point. Nevertheless, the model is approximate and ad hoc, and we therefore 
also obtain a limited number of exact numerical solutions of the full Navier-Stokes 
equations, in order to  corroborate the model predictions. 

We begin by seeking a low-dimensional model equation to describe the dynamics 
of bubble deformation in a time-dependent straining flow. For this purpose, we use 
the scalar measure of deformation x, as defined in (Z), which is known from previous 
atudies to provide a qualitatively correct description of deformation in steady 
axisymmetric straining flows. The variable x is a measure of the magnitude of the Pz 
mode of deformation, which is likely to provide a useful measure of deformation only 
when the deformed shape is axisymmetric (or nearly axisymmetric). Obviously, x is 
zero when the bubble is spherical. Increasing values of 2 can be viewed as a measure 
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of increasing bubble elongation along the symmetry axis, relative to the case of a 
sphere. 

As discussed in $3, there are several analytical results for the corresponding steady 
flow problem which should be reflected in the model, dynamical equation. In 
particular, for the case of Ix/,Iil < 1, and W = 0, Lamb (1932) derived the following 
equation to describe shape oscillations in a quiescent, viscous fluid : 

5 + ( 4 0 S ) i + 1 2 ~  = 0, (3) 

where X is a dimensionless number that is proportional to the viscosity (see the 
definition below (1)). Recently, Kang & Leal (1988) extended this result to non-zero 
Weber numbers using a direct integration of the normal stress balance over the 
bubble surface. The steady-state small-deformation solution, for the case of constant 
Weber number W (W 2 0 ) ,  was also obtained ,by Kang & Leal (1988) in the form 

67x-755x2+0(x3) = w (4) 

and this accounts for the existance of a limit point at a critical value of W ,  and two 
steady solutions for smaller W. 

Finally, we include the time-dependency of the strain rate, as given by ( l ) ,  by 
assuming that the Weber number is a periodic function of time in the form, 

W(t)  = w, - w, cos wt. 

x = f(x, i, s, W(t))  

( 5 )  

(6) 

Then, to achieve a dynamical model in the form 

that reflects all of the qualitative features of (3)-(5), we combine these equations in 
the ad hoc form 

X = KW, - (ax- bx2) - p' i  - 8' cos wt, 

where , p'=40S, #=KW,. 
12 x 755 

67 
K = g ,  a = 1 2 ,  b =  

The above equation can be simplified further by rescaling the variables as 

where we have introduced a small parameter B to take account of the effects of small- 
amplitude time-periodic forcing and small viscosity, in which we have our primary 
interests. On dropping tildes, for simplicity, the model equation in rescaled form is 

(7) 

Now it is quite easy to show that the model equation (7) has the correct qualitative 
features at least for the cases of constant Weber number (€8 = 0). First, we can see 
that it has two steady-state solutions for w < 1, but no solution for w > 1. For w < 
1, the two steady solutions are x, = 1 &- (1 - w)'. Secondly, the steady solutions have 
the same stability characteristics as shown in figure 2. In particular, the eigenvalues 
for small disturbances near the steady-state solution x, are 

X = w - (21: -x2) - €(p i  + 8 cos wt).  

Therefore, if ,LL = 0, we have two pure imaginary eigenvalues for x, < 1, and two real 
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eigenvalues with different signs for x, > 1. If ,u > 0, we have two complex eigenvalues 
with negative real parts for 0 < x, < 1 - - Q ( E , u ) ~ ,  two negative real eigenvalues for 
1 - Q ( C , ~ ) ~  < xs < 1 ,  and one negative and one positive real eigenvalue for x, > 1. 
Hereafter, we denote the two steady-state solutions by xu, and x,, depending on their 
stability . 

5. Unfolding of the double-zero-eigenvalue critical point 
It is evident, from the above discussion, that the simple dynamical model, given 

by (7), exhibits all of the known qualitative features for small-amplitude bubble 
deformation in a steady straining flow. However, the more important question for 
present purposes is whether it faithfully reproduces the dynamic response of the 
bubble in a time-dependent flow. One way to answer this question is via detailed 
comparisons between model predictions and exact numerical solutions of the 
Navier-Stokes equations for the full problem of a deformable bubble in the time- 
periodic straining flow, given by (1) .  Such comparisons will be reported a t  the end of 
this paper. Here, however, we take a different tack. In  particular, knowing that the 
full fluid mechanics problem exhibits a double-zero eigenvalue a t  the critical point, 
we can use the general unfolding theory for such a critical point to determine the 
form of the two-parameter dynamical model that  exhibits the most general possible 
dynamical response, at least in the vicinity of the critical point. Thus, by comparison 
with (7) ,  we can determine whether the form of our ad hoc model is sufficiently 
general to capture the expected dynamical response in the vicinity of a double-zero- 
eigenvalue critical point. Of course, the unfolding theory can only yield the expected 
form for the dynamical model near the critical point, and cannot yield any 
information about the coefficients of the various terms. For this, we must rely on the 
physically-based model equation, and on comparisons with solutions (numerical) of 
the exact problem. 

A detailed discussion of the general unfolding theory for examination of dynamical 
behaviour in the vicinity of critical points is available elsewhere (cf. Guckenheimer 
& Holmes). Here, we limit our discussion to the special case of the two-parameter 
unfolding of a double-zero-eigenvalue critical point. 

Let us start or discussion by identifying two variables x, and x2 as x1 = x-x,, and 
x2 = x,, where x, is the measure of steady-state deformation a t  the critical point. 
Then, in general, the dynamics a t  the double-zero-eigenvalue critical point can be 
expressed in the form 

(?) = 6 ~)(~~)+~(lX~I~IX2l~. (8) 

Now, however, it is known from normal form theory that there exists a smooth 
transformation x1 = f(zl, z2) and x2 = g(zl, z2), which can transform (8) into the form 

Physically, z1 in (9) can be considered as another suitable measure of deformation 
from the steady-state value. Finally, for the system (9), Takens (1974) proved that 
the local topological characteristic of any solution is completely determined by 
the linear and quadratic terms, i.e. by the truncated equation 
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provided that a =!= 0. In other words, for non-vanishing a(a =I= 0), the system (10) 
describes all possible dynamical behaviour at a double-zero-eigenvalue critical point. 
Finally, if a + 0, suitable scaling can reduce (10) further to the form 

Now, we are interested in the dynamics near the critical point in the parameter 
space, for which the unfolding theory applies. For the two-parameter unfolding of 
(1 l), we have one of two possible cases : either 

i1 = z,, 2,  =p1zl+p,z2+z~+bz,z ,  (12) 

or i, = z,, i, = p1 +p,z ,+~~+bz , z , ,  (13) 

where p, and pCa are parameters that are zero a t  the critical point. Thus, all possible 
dynamical features in the vicinity of a codimension-2, double-zero-eigenvalue critical 
point can be described by one of the forms (12) or (13). If there is no damping (pz = 
0) ,  the dynamical system for many physical situations is Hamiltonian. In that case, 
the coefficient b in (12) or (13) vanishes for pz = 0. Although the form (12) can be 
written in the form (13) by defining 5, = zl+&xl, the result is 

b =  z,, 2, = , iZ1+ , i i2Z2+~+b51z2 ,  (14) 

where p, = -$,!A: < 0. Thus, the coefficient ,iil is strictly negative (or zero), whereas p1 
in (13) may be either positive or negative. In fact, the forms (12) and (13) both 
correspond to important physical problems (see Q8), and it is useful to discuss both 
briefly, though our focus will be on the system (13) because it is directly relevant to 
the problem that is addressed by the present paper. 

The system (12) has the special property that one of the two possible steady 
solutions is the trivial state ( z ,  = z, = 0) for all values of p, and p,, while a second 
steady solution is z1 = - p l ,  z ,  = 0. Thus, the critical point for (12) is a transcritical 
bifurcation point for variable p, with fixed p,. Two steady solutions exist for all p1 and 
p,, but there is an exchange of stability from one branch to the other at  the critical 
point (p, = p, = 0). A number of important problems involving bubbles and drops 
exhibits this type of qualitative behaviour (see $8). For example, the dynamical 
equation for an inviscid, charged drop near the Rayleigh limit, was shown by 
Tsamopoulos, Akylas & Brown (1985) using a singular perturbation analysis to be 
exactly of the form (12) with vanishing b. 

For the system (13), the critical point is a limit point. In particular, there are two 
steady solutions for p, < 0, but no solutions for p1 > 0. The general phase-plane 
portrait of the solutions of (13) as a function of p1 and p, is outlined by Guckenheimer 
& Holmes (1983), and will not be repeated here. The term pzz2 acts as a ‘viscous’ 
damping if p2 < 0. Further, in general, the term bz, z2 plays a role in the existence of 
limit cycles for some regions of the parameter space. In many physical problems, 
however, the dynamics is Hamiltonian in the absence of damping (pz = 0) ,  i.e. b = 
0 when p ,  = 0, and b varies smoothly with p,. In this case, the term bz,z, does not 
have any significant effect on the qualitative dynamics described by (13), and all 
possible dynamical features are captured by the simpler system of equations with the 
term bz, z2 deleted, i.e. 

To see that this is true, we note that the Hopf and homoclinic bifurcation curves that 
generally exist in the (pl,p2) space for the system (13), actually coincide when b goes 

5,  = z,, i, = p,+p,z,+z:. (15) 
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to zero smoothly as p2 +- 0 and correspond to the half-line p, = 0, p, < 0. On the other 
hand, it is known that limit cycles exist only in the region bounded by the Hopf and 
homoclinic bifurcation curves. Taken together, these facts mean that systems with 
the property that b + 0 when pLz +- 0 can only exhibit limit cycles for p2 = 0 (p, < 0). 
Thus, for the physically meaningful case where p2 < 0 (positive viscosity), no limit 
cycles can exist, and in this case the term bzlz2 can be neglected without any effect 
on the qualitative behaviour of the dynamical model (i.e. the simpler model (15) 
suffices to capture all possible dynamical behaviour in the vicinity of the double-zero- 
eigenvalue limit point). 

The critical question, then, is whether the simple ad hoc dynamical model (7) has 
the generic features that are exposed by the unfolding theory described above. Here, 
we restrict our discussion to the constant-strain case (€8 = 0). The linearized version 
of the model (7) has already been shown to have a double-zero eigenvalue at  (w = 
1 , p  = 0) for x, = 1. By defining new variables 

z l = x - l  and z 2 = i l = x  (16) 

i, = z2, i2 = (w- l)-€pz,+z;. (17) 

the model (7) is transformed to the form 

Thus, if we put p l  = w- 1 and pz = -ep, the system (17) is identical to the general 
form (15) that was derived above from the general unfolding theory. It follows that 
the model, although ad hoc, is capable of describing all possible dynamical features 
of the original problem, at  least in the vicinity of the critical point, provided, of 
course, that the description of deformation in terms of the single scalar x is sufficient. 
We believe this is true for the axisymmetric flow problem considered here, and we 
shall provide some corroboration via direct comparison between model prediction 
and exact numerical solutions, as we have already stated. 

Assuming that the model (17) describes the dynamics near a critical point, we can 
construct a qualitative phase-plane portrait, based upon this model and the linear 
stability results, for the bubble dynamics in a steady, uniaxial straining flow. The 
result is sketched in figure 3. We note from these results that bubble breakup is 
possible even at subcritical Weber numbers if the initial conditions are sufficiently far 
from the stable steady solution (represented in figure 3 by the centre point at  x = 
x = 0). On the other hand, for p > 0 (i.e. pz < 0 ) ,  breakup will not occur if the initial 
condition is in the shaded region. The phenomena of bubble breakup at  subcritical 
Weber numbers for an initially deformed shape was first observed from unsteady 
numerical solutions for the full fluid mechanics problem by Kang & Leal (1987). For 
the inviscid, potential flow limit, the stable and unstable regions in phase space are 
separated by the homoclinic orbit (the ‘separatrix ’) which passes through the 
unstable (hyperbolic) fixed point. As W is increased toward W,, the separation 
between the stable (elliptic) and unstable fixed point decreases (and so too does the 
area of ‘stability’ within the homoclinic orbit), until finally at  W = W, they coincide 
and the limiting orbit (only) is cusped. For W > W,, all initial conditions are unstable. 

Although the phase-plane portraits of figure 3 provide a systematic basis to 
explain all of the behaviour that we have seen previously for steady straining flows, 
including the sensitivity of stability to initial conditions etc., the focus here is on the 
bubble response to time-periodic perturbations of the basic straining flow. In this 
framework, the most important feature of our dynamical model is the existence of 
the homoclinic orbit for 6 = 0 (zero viscosity and steady straining flow). This suggests 
that the introduction of a time-periodic modulation of the strain rate will induce a 



Bubble dynamics in time-periodic straining flows 

X I  

X X 

p = o  w < w ,  
XI 

49 
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FIGURE 3. Phase-plane representations of bubble dynamics in a steady, uniaxial straining flow. 

transition from regular to chaotic behaviour. In the following section, we discuss a 
number of interesting dynamical features of the model equation, such as the 
existence of a resonant amplification in the shape oscillation at a critical frequency, 
and the possibility of bubble breakup at  subcritical Weber number via chaotic 
oscillations of shape. Later, in $7 ,  we shall present unsteady numerical solutions for 
the full fluid mechanics problem to corroborate the results from the dynamical model 
analysis. Finally, in the last section, we briefly discuss the applicability of the same 
dynamical model to a number of different physical problems that involve time- 
dependent deformations of a bubble (or drop). 

6. Analyais of the dynamical model equation 
Let us begin this section by representing the model equation in a standard form. 

We define y = xu,-x, q = y ,  and p = y, where xu, represents the unstable steady- 
state solution for the unperturbed system ( E  = 0). Then, (7)  can be expressed as 

q = p ,  

p = w;q-q~-E(/Lp-8cosWt), 

where w i  = 2(1 -w$. For the unperturbed case ( E  = 0), the system (18) is a 
Hamiltonian system with a saddle point at  the origin and a centre (or elliptic point) 
at q = w i  (in the Poimar6 map, they are fixed points). The frequency of oscillation 
near the centre is wo. 

Now we are interested in cases where E =k 0. If E 4 1 and ,u = 0, almost all of the 
closed curves in the unperturbed Poincar6 map are preserved according to the KAM 
theorem. Especially, this is the case near the elliptic fixed point, so let us start our 
discussion with the regular closed orbital motion near this point. 

6.1. Regular motion near the centre 
In this section we analyse the dynamical behaviour of (18) near the elliptic fixed 
point via classical perturbation techniques, and compare the results with numerically 
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constructed Poincar6 maps. To do this, we shift the centre of (18) to the origin by 
introducing u = q - w i ,  so that (18) becomes 

ii+(E,u)zi+w;u+u2 = Ef3COswt. (19) 

In (19), we note that wo is the intrinsic frequency of the unperturbed system near the 
elliptic fixed point and w is the frequency of the time-periodic forcing. If w is far 
enough from wo, no interesting result is expected at least up to the leading order of 
approximation (i.e. the O(E) forcing yields only a O(E)  output for u). Thus, our main 
emphasis is given to the resonant case. 

6.1.1. Resonant case (w = w,) 

If w equals w,, the linear approximation of (19) based upon the assumption that 
u = O(E),  does not have a bounded solution for ,u = 0. Therefore, it  is quite interesting 
to see if a bounded periodic solution for (19) can actually exist. To this end, the two- 
timing method (cf. Kevorkian & Cole 1981) provides a powerful tool, and the leading- 
order solution is found to be (for simplicity, we assume that 6 = 1 for the following 
analyses) 

u(t) - dR(r )  cos (wt - q 5 ( ~ ) ) ,  

where r = &, and R(T) ,  $ ( T )  satisfy the set of equations 

sin# dq5 5R8 cos$ _ -  - -$.(e;,u)R+-, R - = - + -  dR 
dr  20 dr  12w3 2w 

The fixed point of (21) is determined from 

(&p) wR = sin q5, 

For ,u = 0, we can easily show that 
Hamiltonian system with Hamiltonian 

the pair of equations 

5R3 602 = -cos$. 

the long-timescale problem (21) is a 

_- 5R4 

and that it has a fixed point at (R,  q5) = (@o2)$,n). If we define X = R cosq5 and Y = 
R sin q5, then the solutions of (21) for ,u = 0 form closed orbits near the fixed point 
( - (gwZ) i ,  0) in the (X, Y)-plane. If ,u > 0, on the other hand, the fixed point 
determined by (22) is a stable attractor in the (X, Y)-plane, which indicates that the 
asymptotic behaviour of the solution (20) for ,u > 0 is 

u+e;R,cos(wt-$,) as t + m ,  

where (R,,#m) is the solution of (22) for p > 0. This equation shows that the long- 
time stable attractor corresponds to a limit cycle in the phase plane. Thus, this kind 
of resonant excitation may be used to generate a stable limit cycle for the non-zero- 
viscosity case. 

One of the useful features of the two-timing solution is that it provides the 
Poincark map directly. For example, the Poincare map for (19) is simply obtained by 
substituting t = nT in (20), where T is the period of time-periodic forcing, i.e. T = 
2 ~ 1 ~ .  In terms of original variables, q and p ,  the Poincark map is given by 

(24a) 

(24b) 

q(nT) ( = u(nT) + w:) - dR(r,) cos ( q 5 ( ~ , ) )  + w;, 

p ( n T )  (=  zi(nT)) - dwR(r,) sin ($(r f l ) ) ,  
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FIGURE 4. (a) A Poincare' map and ( b )  a phase-plane flow for resonant forcing 
( 0 ~ , = ~ = 1 , ~ = 0 . 0 3 , 6 = l , p = O ) .  

where 7, = cnT.  Since q = &X+ w2 and p = &Y, if ,u = 0 the Poincar6 map for (19) 
also has closed curves near the fixed point, and if p > 0 the fixed point is a stable 
attractor that corresponds to a limit cycle in the phase plane. 

The solution (20) is one of the most important results in the present paper. First 
of all, we see that the resonant interaction produces an O(d)  output from the O ( E )  
forcing. To demonstrate the resonance effect, one example of the numerically 
constructed Poincar6 maps for the model system (19) is presented in figure 4. As 
predicted from the perturbation analysis, the fixed point is shifted to the left by an 
amount ef(b2)f  and there are closed orbits near the fixed point, which corresponds to 
the fact that p = 0. The lower part of figure 4(a) is one specific closed curve in the 
Poincark map, and the figure 4 ( b )  is the corresponding trajectory in the phase plane 
(which demonstrates the bandwidth of the actual motion about the closed trajectory 
of the Poincare map). 
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6.1.2. n = 2 resonant caSe (w = 2w0) 

As mentioned earlier, if w is far from wo,  no particularly interesting results are 
expected near the centre, at  least up to the leading-order approximation of the 
solution. In fact, the leading-order solution is simply 

8 
u - €Rc0s(w0t-$)+-- -  cos wt, 

w: - w2 

where R and $ are constants that must be determined from the initial conditions. 
Thus, an O ( E )  response is obtained from the O ( E )  forcing. However, if we consider the 
next-order term, it is clear that there is again a multiple timescale response for the 
cases w - 2w0 and w - h0. In particular for these cases, the nonlinear term in (19) 
produces secular terms that must be suppressed in order to have bounded solutions 
at the second order of approximation. Since the w = 20, case exhibits interesting 
behaviour, we briefly consider it below. 

In the case w = 2w0, we must have R = 0 in order to suppress the secular term at 
second order if R is assumed to be constant. However, with R = 0 there is no way for 
the solution (25) to fit arbitrary initial conditions. Therefore we allow a long- 
timescale variation of R and $ (i.e. the solution again exhibits a two-timescale 
structure can be analysed via the two-timing method). In fact, (25) is modified for 
the case w = 2w0 to the form 

8 
u - €R(r) cos (wo t-$(r))  - 2 c o s  (Zw, t ) ,  (26) 

3w0 

where 7 = st. The functions R(7) and $(7 )  can be shown to satisfy the dynamical 
equations dR Rsin2$ d$ cos2$ 

dr  6wi ' dr 6 4  ' 
-- - _ _ ~  _ -  

As expected, (27) has a fixed point at  R = 0, which can be easily seen to be a saddle 
point in the (R cos $, R sin #)-plane. Along the curves $ = in and in, d $ / d ~  = 0 and 
dR1d.r > 0, which means they are unstable manifolds. But along $ = in and in, 
d $ / d ~  = 0 and dR/d7 < 0, i.e. they are stable manifolds. We shall see later (figure 10) 
that the numerically constructed Poincard map also exhibits a transition from an 
elliptic fixed point (or centre) for w x wo to a saddle-node fixed point for w = 2w0. One 
point worth emphasizing, however, is that the strong resonance associated with the 
case w = wo does not occur for w = 2w,. Here, the O(s)  force yields only an O ( E )  
response. 

As in $6.1 .l, we can construct the Poincard map near the centre of the unperturbed 
system by using the two-timing solution (26) and (27). In the Poincar6 map we have 

q(nT) (-l)"ewoR(rn)sin ( $ ( 7 n ) ) >  

where T = 2111~ = x/w, ,  and 7, = mT. 

6.1.3. Boundedness of the regular region and the effect of the amplitude change of the 
tirne-periodic forcing 

As we can see in figure 4, the regular region near the elliptic centre is bounded by 
a chaotic region, where many dots of the Poincar6 map are distributed in a more or 
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FIGURE 5. The effect 
/ 

of the forcing amplitude on the Poinear6 map (o,, = o = 1 
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., 8 = 1, p = 0). 

less random manner. In the following section, we shall discuss chaotic bubble motion 
and breakup in time-periodic straining flows. Here we discuss the effect of changes 
in the amplitude of the time-periodic forcing on the size of the regular region. 

For the case of resonant forcing (o = w, = l) ,  three Poincar6 maps are given in 
figure ~(u-c) for E = 0.03, 0.045, and 0.06 with other parameters fixed (6 = l , y  = 0). 
As expected, the regular region shrinks in size as the forcing amplitude increases. 
Thus, some initial conditions may be in the chaotic region for larger forcing 
amplitudes, while the same initial conditions are in the regular region for smaller 
amplitudes. For example, let us consider the point (q, p )  = (1 ,O)  that is the centre for 
the unperturbed case (E:  = 0). In  the case E = 0.03, the point (1,O) is in the regular 
region and the point is mapped to the points on the closed curve that includes the 
point ( 1 , O )  (figure 5a) .  When E is increased to 0.045, the point ( 1 , O )  is in the 
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FIGTIRE 6. Period of the system (21) for ,u = 0 as a function of initial condition (lo, 0). 

transitional structure that is between the regular and the chaotic regions (figure 5b). 
Finally, for E = 0.06, the point ( 1 , O )  is in the chaotic region, and the point is mapped 
to other points in the chaotic region in a non-regular manner up to a certain iteration, 
until eventually the point is mapped to  the breakup region that lies outside the 
separatrix of the undisturbed system (see the detailed discussion in the following 
section). 

In figure 5, we can also see several islands in the Poincar6 maps that are closed 
curves around k-periodic points (11-periodic points for e = 0.03, and 9-periodic 
points for 8 = 0.045). In  order to understand how such a large number of periodic 
points are obtained, let us look at the system of equations (21). For ,u = 0, (21) is a 
Hamiltonian system and its solutions form closed curves near the fixed point. Now 
let us denote the period in 7 of the orbit in the phase plane, (6,  q )  = (R(7) cos$9,(7), 
R(T) sin $ ( T ) ) ,  by T,. The period of the closed orbit (T,) starting at (to, 0) (E0 > - (v)~) is 
plotted in figure 6 for the case when w = wo = 1. If a certain point on the closed orbit 
in the (f,s)-plane corresponds to a k-periodic point in the Poincar6 map, then one 
cycle in the ( f ,~) -p lane  corresponds to exactly one cycle in the Poinear6 map (see 
equation (24)). However, for each cycle, it takes a period T, in terms of 7 in the ( E ,  
?)-plane, while it takes a period kT in terms o f t  in the Poincar6 map (because it is 
a k-periodic point). Furthermore, since we have 7 = $t,  the relation between T, and 
the period of forcing T is given by 

Therefore 

For example, k = 11 is obtained from T, = 6.67 for the case w = 1, and E = 0.03, while 
k = 9 is obtained from T, = 7.15 for w = 1, and E = 0.045. From figure 6, we can see 
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6 = 0  S Z O  

FIQURE 7. A schematic representation of a homoclinic tangle and the relationship to bubble 
breakup. 

that  T, decreases monotonically from 8.18 to 6.15 as CI, increases from 0 to 1. Here 
we should note that the values 6.67 and 7.15 are in the monotonically decreasing 
range of 8.18 > T, > 6.05. Since T, is decreasing monotonically, the angular velocity 
near the k-periodic points is higher for larger go, and lower for smaller lo. The 
difference in the angular velocity makes a closed curve in the Poinear6 maps. 

6.2.  Chaotic bubble motion and breakup 
Chaotic motion resulting from homoclinic orbit tangling for a perturbed two- 
dimensional map is well explained elsewhere (cf. Guckenheimer & Holmes 1983 or 
Wiggins 1988), so here we touch only on the effect of time-periodic forcing on bubble 
breakup in terms of homoclinic tangling. 

Let us consider figure 7 (a ) ,  which shows that the homoclinic orbit breaks into an 
unstable manifold (denoted by W,(p)) and a stable manifold (denoted by W,(p), 
which form a tangle. In  figure 7, the point p is the hyperbolic fixed point and qo is 
the primary intersection point of the unstable and the stable manifolds. For a 
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discussion of bubble breakup in terms of two-dimensional Poincar6 maps, let us first 
summarize some general properties of such maps without any detailed discussion (for 
discussion, see Guckenheimer & Holmes or Wiggins). 

(pl)  A stable (or unstable) manifold cannot intersect itself, but it may intersect an 
unstable (or stable) manifold. 

(p2) If there is an intersection of the unstable and the stable manifolds, then there 
are infinitely many intersections. 

(p3) If the system is Hamiltonian, the map preserves the area, for example, the 
map P:Pk(R)+Pk+l(R)  preserves the area of the region between the stable and 
unstable manifolds. 

Now we can use the boundary of the closed curve (Wu@qo) u W,(qop)) to divide 
the two-dimensional domain into an internal region ((4,) and an external region 
(@J. To understand the significance of qn and gout, let us first consider the 
unperturbed case. In the unperturbed case, the closed curve is the homoclinic orbit 
and bubble breakup is impossible for a bubble that is initially in qn (see figure 2) (i.e. 
bubble breakup is possible only if a bubble is in gout). However, breakup is possible 
for the perturbed case, and we are interested in the possibility of bubble breakup for 
a bubble that is initially in qn. The phenomenon can be well understood on the basis 
of the following three facts. First, if a bubble is initially in the region P(R) it will 
surely break up eventually, because the maps for the following periodic times ( t  = 
kT) are P(R) +P2(R) -+ . . . +Pk(R) + . . . 
andPk(R) will be extended indefinitely as k+ m (by (p2) and (p3)). Second, the only 
possible way for a bubble from the inside region to be transported to the outside 
region is via the map R + P(R), and the way to transport a bubble from outside to 
inside is via the map S+P(S).  Therefore, the most important information for the 
exchange eficiency between $, and gut is the areas of the regions P ( R )  and P(S) .  
Third, the transportation within 4, is done by the map 

... - + P m ( R )  + ... + P 1 ( B )  +R.  

Here we must note that as m+ 00 the structure of P m ( R )  becomes extremely 
complicated, because by (p2) and (p3), P-"(R) should be extended indefinitely, and 
by (pi)  the extended P-"(R) must lie entirely inside the region surrounded by the 
stable manifold (Ws(p)). This means that the chaotic region becomes subdivided, at 
an increasingly fine scale, between points that arrive within the region R after (or 
prior to) m periods, and points that do not. Although an exact determination of the 
fate of some arbitrary given initial point is possible in principle via numerical 
integration of the dynamical equations, if the goal of theory is to understand the 
overall rate of bubble breakup, we should attempt to develop a probabilistic 
description of the breakup of bubbles that are initially in $,. As suggested by the 
qualitative sketch in figure 7 b,  the probability of breakup in the steady inviscid flow 
(,LA = 0, B = 0) is unity if the initial point lies outside the separatrix, but zero if it lies 
inside. On the other hand, when E + 0, the phase plane is subdivided into three zones : 
one inside the remaining regular region (which is much reduced in size) where 
P,(z --f CO) = 0 ;  one outside the chaotic zone where P,(x+ m) = 1 ; and the third within 
the chaotic region where 0 < P,(s+ m) < 1. The last statement must be understood 
as an averaged probability for all points within the chaotic zone; the probability of 
breakup for any specific point is either zero or one, but points with probability zero 
and one may lie arbitrarily close to one another in this region. The case ,u > 0, 
sketched in figure 7(c),  will be discussed shortly. 
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First, however, let us attempt to estimate the probability that a bubble that is 
initially in the region 9i&, will be pumped out to Bout after n-iterations. The basic idea 
is the same as the detailed treatment of Rom-Kedar (1988) for transport of a tracer 
in two-dimensional maps. Although her treatment is rigorous, it requires a great deal 
of computation to get any information. Therefore, we attempt to estimate the 
probability in a very simple approximate manner in order to gain qualitative insight 
into the effect of time-periodic forcing on bubble breakup. Let us first introduce some 
notation : 

I = area of the region a ; 
X = area of the region 8; 

C = area of the chaotic region in 4, ; 
R = area of the region R, 

and the following assumptions : 
(a l )  The region qn consists of the disjoint regular and chaotic regions, i.e. $, = 

(a2) If a bubble is initially in the regular region, the bubble never breaks up. 
(a3) At  each iteration, the probability that a bubble is pumped out to the region 

9?&t is assumed to have the same value for all points in Bcha ; in other words, we are 
interested in the area-averaged probability over the region @&a. 

(a4) We restrict our attention to the Hamiltonian system. 
Now, let us introduce notation for several conditional probabilities : 

%eg '%!ha and $eg %ha = #. 

Pout, n = Pr{(q(nT), HnT)) E gout I (do ) ,  ~ ( 0 ) )  E 

Pcha,O = pr{(q(o) ,~(o) )E%ha I (q(o)?p(o))E$n}, 

&cha,n = Pr{(dnT), p(nT))Egch& t (do) ,p(o))E%ha).  

In other words, Pout,n is the probability that a point initially in $, is in gout a t  
iteration n (which is equivalent to being pumped out before or at the nth iteration 
because once a point is pumped out it never returns to $, again), Pcha,O is the 
probability that a point initially in qn is also in 9tcha, and &cha,n is the probability 
that a point initially in gecha remains in gCha at iteration n. Then, we can easily see 
that by the assumption (a2) 

Also, from the assumption (a3), we can see that 

'out, n = 'cha, O( '  -&chi%, n). 

Finally, if the initial distribution is assumed to be uniform in $,,, then by the 
assumption (al) 

Therefore the final expression for Po,,, 
'chs,O = '1'. 

is 

Pout,n = ;{i-('-;J}. 

It is quite interesting to see the effect of variations of the areas of the regions R and 
gCha. First we can see that the probability of bubble breakup is increased as the area 
of the region R increases, i.e. 
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In  order to see the effect of the size of the chaotic region, let us represent (28) in the 
alternative form 

Po,,, = R/I( 1 +z+z2 + . . , + zn-l), 

where x = 1 -R/C. Since x > 0 and ax/aC > 0, aPout, ,JaC > 0, i.e. the probability of 
bubble breakup increases as the area of the chaotic region increases. 

For the case of p = 0, the Poincare' map of (18) always has a homoclinic tangle, but 
if p > 0 a homoclinic tangle (i.e. chaotic bubble motion) is not always possible. In 
order to have a homoclinic tangle, the ratio of the amplitude of forcing to the 
viscosity must exceed a certain critical value, which is a function of the forcing 
frequency. The situation is presented schematically in figure 7 ( c ) .  For E = 0, the 
stable fixed point is an attractor, and the stable and unstable manifolds that emanate 
from the hyperbolic fixed point do not intersect. Thus, when a weak time-periodic 
perturbation is added to the straining flow, the stable and unstable manifolds are 
distorted but they still do not intersect and the motion remains regular throughout 
the phase plane. However, as the amplitude of the perturbation increases, it is 
possible that the distorted unstable and stable manifolds eventually may intersect. 
If this happens, then by the property (p2), there will be infinitely many intersections 
and a homoclinic tangle occurs (i.e. the bubble motion becomes chaotic in the 
corresponding regions of the phase plane). 

The condition for the chaotic bubble motion (or equivalently the existence of a 
homoclinic tangle) for e 4 1 can be obtained analytically via the Melnikov function 
(cf. Guckenheimer & Holmes). The Melnikov function essentially provides a measure 
of the separation between the stable and unstable manifolds in the phase plane. 
Hence, when the Melnikov function equals zero, the stable and unstable manifolds 
intersect. The condition for existence of a homoclinic tangle, obtained from setting 
the Melnikov function equal to zero, is 

In  general, an increase of the viscosity p produces a stronger attractor, and thus 
increases the separation between stable and unstable manifolds, while an  increase in 
the amplitude of the periodic forcing results in increased deformation of the 
manifolds and an increasing tendency toward intersection. The balance between 
these two effects is a very strong function of the forcing frequency as shown in (31). 
The limiting forms of R,(w) in (31) are 

as w +  00 Ro(w) cc exp - , (3 
asw-tO 

1 
R0(w) K - .  

0 

Therefore, in both extremes R,(w) -+ co. The minimum required forcing amplitude to  
produce chaotic motions occurs a t  the minimum of R,(w),  i.e. a t  

1 . 9 1 5 ~ ~  
@opt = ~. 

In figure 8, R,(w) is plotted for wo = 1 and we can see that R,(w) (and hence the 
critical forcing amplitude 8) is a very strong function of o. For example, there is 
several orders-of-magnitude difference in the required forcing amplitudes between 
the cases w = 1 and w = 5. 

n 
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FIGURE 8. The condition for existence of a homoclinic tangle for ,u > 0. 

The function Ro(w) can also be a good qualitative indicator of the exchange 
efficiency that we have considered by the maps R + P(R) and S -+ P(S).  As discussed 
following (31), Ro(w) can be thought of qualitatively as a measure of the difficulty in 
deforming the stable and unstable manifolds. Therefore,we can expect less 
deformation (i.e. smaller regions R and S )  as R,(w) increases for fixed 6 and p which 
satisfy the inequality (31). In  order to  see the effect of a change in the forcing 
frequency, the homoclinic tangles for several frequencies are shown in figure 9 for 
fixed values of wo, E ,  6 and /.I = 0. It should be noted that the area P(R) decreases 
drastically as w increases from 1 .  The effect of the forcing frequency can also be 
examined from another point of view. I n  figure 10, the areas of the regular region (the 
region where the probability of bubble breakup is zero) are compared for different 
forcing frequencies with the intrinsic frequency wo = 1.  As we can see in figure 10, the 
area of the regular region has a minimum near the resonant frequency, i.e. w w wo. 
It should be noted in this regard that the case w = 0 in figure 10 has a smaller E by 
a factor of almost two compared to  the other cases considered. 

6.3. Summary of the model analysis 
So far we have considered bubble dynamics in time-periodic straining flows via 
dynamic model analysis, and we have found the following facts. 

(i) Near the stable steady solutions, an O(d)  dynamical output can be obtained 
from an O ( E )  forcing by resonant amplification for o - wo. 

(ii) With other parameters fixed, the probability of bubble breakup at subcritical 
Weber numbers via chaotic oscillations of shape can be maximized by choosing the 
optimal forcing frequency, which is found to be close to the intrinsic frequency of the 
unperturbed system. 

3 FL41 218 
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FIGURE 9. The effect of forcing frequency on a homoclinic tangle for wo = 1, 8 = 0.05, S = 1, 
,lL = 0. 

7. Numerical results for the full fluid mechanisms problem 
I n  this section, we present a limited number of numerical results for the full fluid 

mechanics problem which corroborate the qualitative conclusions derived from the 
model analysis. In  particular, we have calculated the dynamics of changes in bubble 
shape for time-periodic straining flows, using the numerical technique developed by 
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FIQURE 10. The effect of forcing frequency on the area of the region of regular motion for 8 = 1 
and p = 0. 

Kang & Leal (1987). In our analysis, the effect of a time-periodic strain rate is 
characterized by a time-dependent Weber number that is defined by 

2p(Ea)2 a 
W(t)  = 

Y 

From (32), we can see that a time-periodic Weber number is obtained if the strain 
rate is time-periodic. However, that is not the only possibility. We may also consider 

3-2 
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the ‘imaginary’ situation of a time-periodic variation of surface tension. We can 
anticipate that the results will be similar to time-dependent changes in strain rate. 
The dynamic model in $4 includes a time-periodic Weber number only, but cannot 
exhibit any difference between the two cases of time variations in E or y .  Therefore, 
it is interesting to see if the same qualitative dynamical behaviour is obtained for 
these two cases when calculated from numerical solutions of the full fluid mechanics 
problem. 

If the strain rate and surface tension are constant, of course, the dynamics is 
exactly the same for all combinations of strain rate and surface tension that yield the 
same Weber number, at least in the case of potential flow. However, this is not the 
case for a time-dependent strain rate or surface tension. The boundary conditions for 
these two problems are a little different. Therefore, we analyse the two cases 
separately for the same initial conditions to  see if the difference in the boundary 
conditions result in any fundamentally different dynamical behaviour. 

7.1. The case of y(t)  = y( t+T) and E = 0 
For the case of a constant strain rate and time-periodic variations of surface tension, 
i t  is convenient to use the following characteristic scales : 

1, = a, t ,  = E-I, U, = Ea. 

Then the Navier-Stokes equation for axisymmetric problems in terms of the 
boundary-fitted orthogonal coordinate system ( 6 , ~ )  is given by 

where h, and h, are the scale factors, and 

We assume, for convenience, that  the coordinate mapping is defined with 6 = 1 
corresponding to the interface, and with 7 = 0 and 17 = 1 being the symmetry axes. 
For boundary conditions, we require a t  the gas-liquid interface (6 = 1)  

corresponding to the kinematic condition. I n  (35), F is a function that describes the 
bubble shape as F ( x ,  t )  = 0 and u5 is the inward normal velocity. I n  addition, the 
vorticity a t  the bubble surface is given by 

corresponding to the condition of zero tangential stress (where K(,) is the normal 
curvature of the interface in the 7-direction and u, is the tangential velocity). 
Finally, the normal stress contributions due to  pressure and viscous forces, on the 
one hand, and the capillary force, on the other, are required to balance 
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FIGURE 1 1 .  Time-dependent numerical solutions of the full fluid mechanics problem for resonant 
forcing of different amplitudes (the case of the time-periodic variation of surface tension) 

In (37), is the normal curvature in the $-direction, W is the (dimensionless) Weber 
number, and r c .  is the total normal stress, which includes both static and dynamic 
pressure and viscous stress contributions. The far-field boundary condition for the 
uniaxial straining flow is given as 

$-$xa2, W + O  as [ + o  ( ( X * + C ~ ) ; + C O ) .  (38) 

The dimensionless parameters in (33) and (37) are defined as 

2 p ( E ~ ) ~  a a 
Y ( t )  P 

W(t)  = , R =  

From the above equations, we can see that the effect of a time-period variation of 
surface tension is represented by W(t)  in the normal stress condition (37). In our 
numerical experiments for time-periodic variations of surface tension, the Weber 
number for the case of potential flow (p = 0) was varied as 

W(t )  = W0(1+€COSWt),  

where W, = 2, w = 2, and e = 0.25,0.375,0.5. For the potential flow limit (p = 0 ) ,  the 
unperturbed system has a critical Weber number of 2.76, and the intrinsic frequency 
(w,) is 2 a t  W = 2 (see Kang & Leal 1987). The forcing frequency was chosen as w = 
2 to induce a resonance. As we can see in figure 11,  three different types of bubble 
behaviour are observed as the amplitude of the time-periodic forcing increases. There 
is a regular (two-timescale) motion for e = 0.25 (figure l la) ,  a non-regular (possibly 
chaotic) motion that leads to breakup for e = 0.375 (figure 11 b ) ,  and an early stage 
bubble breakup for e = 0.5 (figure l l c ) .  The three different behaviours may be 
explained in the context of the model analysis. The region of regular motion in the 
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FIGURE 12. Consecutive bubble deformations for the case of W =  2fcos2t  in figure l l c ) .  
(Time interval between images, At = 0.1.) 

Poincad map shrinks as the forcing amplitude increases (see figure 5 ) .  Therefore, 
some initial points can be in the regular region for smaller forcing, while the same 
points are in the chaotic region for larger forcing. It is also worth noting that the 
regular motion for e = 0.25 can be best described by two different timescales as 
predicted by the two-timing method for the model analysis. I n  figure 12, consecutive 
bubble deformations are shown for the case of W = 2 + cos 2t. As we can see clearly, 
a resonant forcing with sufficient strength induces an early stage bubble breakup. A 
more detailed explanation of the dynamical results from the numerical experiment 
will be given in the next subsection for the more realistic case of a time-periodic 
strain rate. 

Now, let us turn to the numerical results for our main topic of this paper, the effect 
of time-periodic straining flow on the bubble dynamics. For this case, we define E,  
as a representative (e.g. time-average) characteristic strain rate, and non- 
dimensionalize using a the following characteristic scales : 

7.2. The case of E(t )  = E ( t + T )  and = 0 

I ,  = a, U,  = E,a. 

If we define the Weber number and the Reynolds number as 

then the governing equations and boundary conditions are the same as the case in 
57.1, except for the normal stress condition 

and the boundary condition a t  infinity 

In  contrast to  the previous section, the time variation of the Weber number appears 
in the far-field boundary condition rather than the normal stress condition. 
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FIGURE 13. Time-dependent numerical solutions of the full fluid mechanics problem for 
resonant forcing of different amplitudes (the case of the time-periodic strain rate). 

The results of numerical experiments for the potential flow case (p = 0) are 
presented in figure 13. The Weber numbers in the experiment were varied as 

W(t )  = W,( 1 + 6 cos wt)  

where W, = 2,  w = 2, and E = 0.125,0.1875,0.25. The same values for W, and w are 
chosen as for the case of a time-periodic variation of surface tension, but smaller 
values of E are used for this case. As we can see in figure 13, three quite distinctive 
bubble dynamics are observed as E increases. 

At s=0.125 (figure 13a), the bubble dynamics can be well described by two 
different timescales, i.e. a short-timescale oscillation is imbedded in the long- 
timescale variation. Especially, it is worth noting that the time intervals between 
extrema are quite even, and are very close to the period of forcing. As we increase 
E to 0.1875 (figure 13b), the dynamical behaviour is quite different from the E = 0.125 
case. It seems quite irregular and the time intervals between the extrema are much 
larger than the forcing period. Further, after several irregular oscillations, the bubble 
is extended indefinitely. This behaviour can be best understood in terms of 
homoclinic tangling. As explained in $6.2, the initial condition is in a certain lobe (a 
lobe is a region like R in figure 7 a )  and it is mapped to the other lobes according to 
the lobe dynamics. Eventually the bubble state is pumped out to the exterior region 
(of breakup) by the map R -+ P(R)  in our model analysis, after which it is extended 
indefinitely, which leads to bubble breakup. The fundamental difference between this 
case and the regular case for E = 0.125 is that the same initial condition is in the 
regular region for E = 0.125, where the lobes formed by the homoclinic tangle do not 
penetrate (see figure 9a).  Therefore if the initial condition is in the regular region, 
there is no mechanism to map the state to the breakup region. However, as we 
increase the forcing amplitude, the region covered by the lobes (i.e. the chaotic region 
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FIGURE 14. The effect of the forcing frequency on the bubble dynamics in a time-periodic 
strain flow (numerical solution for the full fluid mechanics problem). 

in our model discussion) increases, and the same initial condition can be in the 
chaotic region for larger forcing amplitude. As we further increase the amplitude to 
E = 0.25 (figure 13c), we observe an early stage breakup. This fact can be again well 
understood in terms of the lobe dynamics. The increase of the forcing amplitude 
results in thicker and larger lobes, as discussed in $5.2, and this increases the 
likelihood of transfer from R -+ P(R) after a small number of periods. 

From the results of the two sets of numerical experiments described above, we see 
that the detailed bubble dynamics in the time-periodic-straining case is of course 
different from the case of time-periodic variations of the surface tension. However, 
the qualitative features are the same for both cases, and well explained by the simple 
model analysis. 

So far we have tested the effect of the forcing amplitude. In  the next subsection, 
we test the effect of forcing frequency when the amplitude is fixed. 

7.3. The effect of the variation of the forcing frequency 
From the model analysis, we have seen that the effect of forcing frequency is 
dramatic and there is an optimal frequency for bubble breakup. In  this subsection, 
we shall demonstrate the same effect via numerical results for the full fluid mechanics 
problem. 

From $7.2, we have seen that we can obtain an early stage breakup by using 
resonant forcing W(t) = 2(1+0.25 cos2t), in spite of the fact that the average Weber 
number 2 is much lower than the critical Weber number 2.76 for the constant-strain 
case. Now, it is quite interesting to see what happens if we change the frequency 
while holding the amplitude fixed. I n  the following numerical experiment for a time- 
periodic strain rate, we changed the Weber number according to 

W(t)  = 2(1+0.25cosot), 
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where w = 2,4 ,  and 6. Since w = 2 is the resonant frequency, w = 4 and w = 6 are two 
and three times of the resonant frequency. As we can see in figure 14, the effect of 
time-periodic forcing is reduced drastically as the frequency is increased. The output 
amplitude is much smaller than for the resonant forcing case (in fact, for the resonant 
case we obtained an early stage breakup), and the oscillatory behaviour is quite 
regular. In  the case of w = 4 = 2w0 (figure 14b), we can clearly see that the w = 4 
mode is superposed on the intrinsic w = 2 mode (note that the interval between the 
maxima is very close to 7c = 27c/w0). One more interesting fact is that the primary 
maxima and minima are slowly increasing while the two intermediate extrema are 
slowly decreasing. In  other words, the difference between the primary maximum and 
intermediate maximum increases and the difference between the primary and 
intermediate minimum decreases. This may be explained by the second-order 
resonant effect as we have seen in $6.1.2. The fixed point is a saddle point for the 
long-timescale dynamics for double-frequency forcing. Therefore, if the two maxima 
are near the unstable manifolds and the two minima are near the stable manifolds, 
the long-timescale dynamics will appear exactly as in the numerical results. The 
result for the w = 6 = 3w, (figure 14c) case also exhibits very regular behaviour 
corresponding to a superposition of the dynamics of the w = 2 and w = 6 modes. It 
should be noted that the amplitude is even smaller than the w = 4 case. 

8. Discussion 
From the previous section, although the data presented are limited, we have seen 

that the dynamical features predicted by the simple dynamic model are very 
faithfully reproduced in the numerical experiments for the full fluid mechanics 
problem. This fact may seem surprising a t  first in the sense that the dynamics of a 
very complicated problem in fluid mechanics can be effectively understood by a 
simple nonlinear oscillator model. However, it is not a mystery a t  all. Although the 
detailed local dynamics of the problem is, of course, determined by the details of the 
specific problem, the global dynamical features are more or less determined by the 
presence of the homoclinic orbit in the dynamical solution for the constant-strain- 
rate potential flow problem. In order to have a homoclinic orbit, there must be at 
least one centre and one saddle point in the dynamical solution for a given set of 
parameters, as shown by the stability results in $3. Furthermore, as we have 
discussed in $5, we have a double-zero codimension-2 bifurcation point a t  the limit 
point for the potential flow problem. Then, by the argument in $ 5 ,  the global 
dynamical behaviour must be like our model a t  least near the critical point. The 
above argument may explain why the very simple model can predict the dynamical 
features of the extremely difficult and complicated free boundary problem in fluid 
mechanics. 

As mentioned in $5 for the unfolding theory, the dynamic model considered in the 
present paper is not limited to the problem of bubble dynamics in straining flows. In  
fact, the general form for the two-dimensional model has been derived using the 
unfolding theory based under the following general assumptions : 

(i) The critical point is a limit point for the existence of steady-state solutions and 
its linear stability equation has double-zero eigenvalues. 

(ii) For the non-dissipative case, the system behaviour can be effectively described 
by the Hamiltonian dynamics. 

(iii) The ideal non-dissipative system (e.g. the potential flow problem) is the limit 
for p + 0 of the real problem with non-zero viscosity (i.c. the potential flow problem 
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is a uniformly valid first approximation -this is often true for fluid mechanics 
problems involving zero shear stress-free boundaries, but is not generally true for 
problems involving no-slip boundaries). 

If the above three conditions are satisfied, the dynamics near the critical point for 
a time-periodic (or steady) forcing must be qualitatively similar to the dynamics 
predicted in the previous sections. This includes a number of important problems 
involving the motions of bubbles and drops. Among many examples, we briefly 
discuss the following two problems which show the same behaviour (see the 
references cited for detailed discussions): (i) growth of a spherical gas bubble in 
weakly viscous fluid ; (ii) dynamics of an inviscid drop in a uniform electric field. 

The exact dynamics of the first problem is described by the Rayleigh-Plesset 
equation, in which the measure of deformation is the radius and the driving force is 
the difference between the pressure inside the bubble and the pressure at infinity. The 
Rayleigh-Plesset equation has been studied by many investigators. Among them, 
recently Chang & Chen (1986) applied a normal form bifurcation anaylsis near the 
critical point, and showed explicitly that the dynamics for a constant pressure 
difference near the critical point is described by the dynamical system (13) (or 
equivalently by (12) for the left half-plane of the two-dimensional parameter space). 
Furthermore, they concluded that there is no limit cycle for physically meaningful 
situations, based on an argument that is very similar to that presented here in $5. 
Therefore, if we allow a small time-periodic variation in the pressure driving force, 
we can expect precisely the same qualitative dynamics for the radius R that are 
discussed in the present paper for the deformation variable x. An analysis of some 
aspects of the transition between regular and chaotic behaviour was published 
recently by Smereka, Birnir & Banerjee (1987). 

The second problem was originally considered by Taylor (1964) who showed that 
there is a limit point for the existence of steady-state solutions. To our knowledge, 
no detailed dynamical analysis is yet available for this problem. However, the 
dynamics near the critical point satisfies the three conditions given above, and the 
qualitative behaviour will again correspond to the results obtained here. The reason 
is that in the case of zero viscosity no mechanism plays a role to damp out oscillations 
of shape about the steady-state shape (i.e. eigenvalues of the linear stability problem 
are purely imaginary at  subcritical parameter values). In addition, at  the critical 
point (limit point), two eigenvalues (a pair of conjugate imaginary eigenvalues (from 
the P,(cosO)-mode become zero to satisfy the bifurcation condition. Thus, the 
dynamics near the critical point must be qualitatively the same as the dynamics of 
a bubble in straining flows. 

So far, we have pointed out that a single, simple set of equations describes the 
qualitative dynamics of a drop (or a bubble) in many problems where the underlying 
physics is different for each specific problem. Finally, we want to stress that the 
dynamic analysis in this paper has significant implication for realistic applications. 
In such cases, the driving force for deformation is rarely maintained a t  a constant 
amplitude and frequency, but rather it is usually given by a very complicated time 
function. In the usual analysis of experimental results, reliance has been placed on 
the relevance of some sort of time-averaged magnitude for the force (strain rate, 
electric field strength, pressure difference, etc.). For example, existing criteria for 
bubble breakup in time-dependent flows are based upon the concept of a critical 
‘mean’ value for the Weber number, with the critical value obtained from the 
corresponding steady problem. However, the present analysis implies that a simple- 
minded application of the steady analysis based on a time-averaged value for the 
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forcing is not enough, and that the results from a dynamical analysis should also be 
considered. We are currently considering the generalization of the results in this 
paper to more general time histories, and to detailed analyses for the related physical 
problems that are described above. 

This work was supported by a grant from the office of Naval Research. 
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