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Abstract. Rapid advances are being made toward optically cooling a single
mode of a micro-mechanical system to its quantum ground state and observing
the quantum behavior at macroscopic scales. Reaching this regime in room-
temperature environments requires a stringent condition on the mechanical
quality factor Qm and frequency fm, Qm fm & kBTbath/h, which so far has been
marginally satisfied only in a small number of systems. Here we propose and
analyze a new class of systems that should enable one to obtain unprecedented
Q-frequency products. The technique is based on the use of optical forces to
‘trap’ and stiffen the motion of a tethered mechanical structure, thereby freeing
the resulting mechanical frequencies and decoherence rates from the underlying
material properties.
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The coupling of a high-Q mode of a micro-mechanical oscillator to an optical cavity has
emerged as a promising route toward observing quantum behavior at macroscopic scales [1].
This opto-mechanical interaction is being used, for example, to optically cool a mechanical
mode toward its quantum ground state [1–3]. Ground-state cooling requires that the product of
the quality factor Qm and the frequency fm of the mechanical mode exceed kBTbath/h, where h
is Planck’s constant. For a room-temperature bath, this condition is marginally satisfied only in a
small number of current experiments [4]. The ratio hQm fm/kBTbath also determines the quantum
coherence time of the system relative to the mechanical period. Significant increases in this
ratio beyond that required for ground state cooling are thus critical to prepare and detect non-
classical states of motion in most optomechanical schemes (e.g., as in [5, 6]) or to store quantum
information for long periods of time [7]. Mechanical systems exhibiting extremely high quality
factors also offer novel opportunities for precision measurement and force detection [8, 9]. The
difficulty of improving Q–frequency products, however, is highlighted by the fact that a number
of systems [10, 11] already exhibit quality factors that are approaching fundamental material
limits [12, 13].

In this paper, we propose a class of systems that should enable one to obtain unprecedented
Q–frequency products. The approach is based on optically ‘trapping’ a tethered membrane
with low natural mechanical frequency in the anti-node of a strong optical standing wave (see
figure 1(a)) [14]. While there are many possible realizations, here we focus on a pendulum
geometry where a relatively large disc is supported by a single thin tether. The dielectric disc
is attracted to the anti-node of the field, leading to an optical stiffening of its flexural modes.
Under realistic conditions, the re-normalized mode frequencies can be significantly enhanced
over the values expected under material stresses alone. Of particular interest is the ‘center-of-
mass’ (CM) mode, where the disc oscillates in the optical potential with negligible flexural
motion. We show that this motion exhibits an extremely large ratio of potential energy stored in
the optical field to strain energy, Uopt/Umech. This is important because the optical potential is
‘lossless’, and the result is a correspondingly large increase in the Q–frequency product over a
conventional mechanical system due to the dilution of internal friction.

Our approach to achieving long coherence times builds on previous proposals, which
suggested that the highly isolated CM mode of an optically levitated nanosphere [15, 16] can
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Figure 1. Illustration of a tethered membrane and its mode shapes. (a) Side
view of a membrane supported by a single tether inside a Fabry–Perot cavity.
The membrane has radius a and thickness d, while the tether has length L and
a square cross-section of width b. It is trapped in the anti-node of a standing
optical field with transverse intensity profile I (r) at the membrane location.
(b) Displacement fields of a few selected membrane modes (in arbitrary units)
for zero trapping intensity. The black outline indicates the equilibrium position.
(m, n) denote the number of nodal diameters and circles, respectively. The
system dimensions are given by a = 10 µm, b = d = 50 nm and L = 50 µm.

enable quantum opto-mechanics in room-temperature environments [17, 18]. Compared to the
nanosphere, our approach has two significant advantages. Firstly, the nanosphere scatters light
omni-directionally, leading to motional heating via photon recoil. Suppression of recoil heating
to reach the quantum regime requires spheres with sub-wavelength volumes, V/λ3

� 1 [17].
In contrast, the planar membrane primarily couples the counter-propagating components of
the trapping beam, strongly reducing recoil heating even for large systems. Secondly, these
membranes can be fabricated using well-established techniques that have already yielded
excellent mechanical and optical properties in a number of experiments [4, 19]. Our proposal
thus shows how the ideas of optical levitation can be brought to bear upon ‘conventional’ and
practically deployable mechanical systems to yield remarkable coherence times.

This paper is organized as follows. In section 1, we develop a model for the optical forces
acting on thin membranes trapped in free space, and identify the ratio of optical energy to strain
energy (Uopt/Umech) as a relevant figure of merit for enhancing Q–frequency products. We then
apply these results to one particular form of dissipation, thermoelastic damping. Under realistic
conditions, we show that Q–frequency product enhancements of three orders of magnitude are
possible, limited by practical dimensions of the system and trapping beam. In section 2, we
modify our analysis to account for trapping in a Fabry–Perot cavity. In particular, the diffraction
of the optical field around the membrane causes a distortion of the cavity mode, and the optical
forces must be calculated self-consistently. Scattering of the field also gives rise to photon recoil
heating, an additional source of decoherence of the mechanical motion. We find that tapering or
apodizing the edges of the membrane can significantly reduce photon scattering and is crucial
for achieving long quantum coherence times. In section 3, the advantages of our scheme over
other optical spring or trapping proposals are discussed. We conclude the paper in section 4.
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1. Enhancing quality factors through optical trapping

We begin by considering the mechanical modes of a free, thin circular membrane with thickness
d and radius a in the absence of any tethers. In equilibrium, the membrane is situated at z = 0,
in the anti-node of an optical standing wave E(z) ∝ cos kz (see figure 1(a)). The optical field
polarizes the dielectric disc, yielding a gradient force trap around z = 0. In the absence of any
internal forces, the optical field traps a thin membrane (d � λ) with a restoring frequency given
by ωopt(r) = (2k2 I (r)(ε−1)

ρc )1/2, where r is the radial coordinate. Here I (r) is the beam intensity
profile (assumed to be rotationally symmetric) in the direction transverse to z, k = 2π/λ is the
optical wavevector, ρ is the mass density and ε is the dielectric constant. Now including the
internal stresses, the mechanical displacement field from equilibrium, ζ(x, y), obeys

∂2ζ

∂t2
= −ω2

opt(r)ζ −
Ed2

12ρ(1 − σ 2)
∇

4ζ, (1)

subject to free boundary conditions [20] (also see appendix A). E, σ denote Young’s modulus
and Poisson’s ratio, respectively. Here and in the following, ∇

2 is understood to be the
Laplacian in the transverse plane. Due to the rotational symmetry, we seek solutions of the
form ζ(x, y) = f (r) cos mθ e−iωmt . The spatial modes are indexed by the number of nodal
diameters and circles, (m, n) (see figure 1(b)). For our numerical results, we take material
parameters E = 270 GPa, σ = 0.25, ρ = 2.7 g cm−3, ε = 4 corresponding to stoichiometric
silicon nitride [4], and an operating wavelength of λ = 1 µm. For a free disc without optical

forces, the fundamental (2, 0) flexural mode has natural frequency ω
(2,0)
m,nat/2π ≈ 0.25 d

a2

√
E

ρ(1−σ 2)
,

or ω
(2,0)
m,nat/2π ≈ 1.3 MHz for a disc of dimensions a = 10 µm, d = 50 nm. There is also a trivial

solution corresponding to the CM or (0, 0) mode with constant f (r) and zero frequency.
For a uniform intensity, I (r) = I0, the natural radial functions f (m,n)

nat (r) remain eigenmodes
of equation (1), but with re-normalized mechanical frequencies given by ω(m,n)

m (I0) =√
ω2

opt(I0) + (ω
(m,n)
m,nat)

2. Thus, the CM mode is now a nontrivial solution with frequency ωCM
m =

ωopt, but still retains a uniform spatial profile. The frequencies of all the flexural modes increase
as well, with the CM mode remaining the lowest in frequency (see figure 2(a)).

The absence of energy stored in internal strains for the CM motion has the important
implication of eliminating dissipation due to internal friction. Instead, the energy is stored in
an optical potential that contributes no losses (but can contribute a recoil heating force, as
described later). So far, we have neglected the tether and have assumed a spatially uniform
trapping intensity (i.e. infinite beam waist), whereas taking these factors into account prevents
complete suppression of internal strain. To quantify how finite strain energy influences the
mechanical quality factor, we consider the effect of thermoelastic damping on our system. We
focus on thermoelastic damping, because (i) it can be analytically modeled [12, 20], (ii) it is
a fundamental limit even for perfectly fabricated devices [12] and (iii) a number of micro-
mechanical systems are approaching this limit [10, 11].

Thermoelastic damping arises because realistic materials have a nonzero coefficient
of thermal expansion. The flexural motion creates local volume changes that then lead to
temperature gradients and heat flow. Mechanical energy must be expended to drive this
heat flow, leading to a finite Qm. We make two simplifying assumptions to the general
thermoelastic equations [12, 20], which are well justified in our system. Firstly, we assume
that the thermoelastic coupling is weak, so that the spatial modes determined by equation (1)
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Figure 2. Frequencies of the mechanical normal modes. (a) Mode frequencies
of a free circular disc trapped in an optical standing plane wave as a function
of beam intensity. The disc has a thickness and a radius of d = 50 nm and
a = 10 µm, respectively, and material properties corresponding to stoichiometric
silicon nitride. (b) Mode frequencies of a rigid membrane suspended by a
single tether, as a function of the optical restoring frequency ωopt acting on the
membrane. The tether has a length of L = 50 µm and a square cross-section
of b = 50 nm on each side, while the ratio of the membrane to tether mass is
given by M/m t = 125. Away from degeneracies, the mode spectrum consists of
a CM mode with frequency ∼ωopt and discrete tether modes with frequencies
ωn (n = 1, 2, 3, . . .). Avoided crossings occur near degeneracies ωopt ∼ ωn (see
the inset). (c) Mode frequencies for a realistic tethered system, as a function of
peak trapping beam intensity. The disc and tether have dimensions identical to
those in (a) and (b), while the beam waist is w = 35 µm. The gray points indicate
tether modes. The red (O), green (◦), blue ( �) and black (4) points denote the
CM, (1, 0), (2, 0) and (0, 1) membrane modes, respectively.

are not altered to lowest order. Secondly, the strains vary most rapidly along the thin direction
of the disc, and thus we ignore the relatively small transverse temperature gradients. The
temperature field is given by T (x, y, z, t) = Tbath + 1T (x, y, z, t), where 1T satisfies the driven
heat equation (

cV
∂

∂t
− κth

∂2

∂z2

)
1T =

EαTbathz

3(1 − 2σ)

∂

∂t
∇

2ζ (2)

with boundary conditions ∂1T/∂z = 0 at z = ±d/2. Here cV is the heat capacity per unit
volume, κth is the thermal conductivity and α is the volumetric thermal expansion coefficient (we
take cV = 2 J cm−3 K, κth = 20 W m K and α = 4.8 × 10−6 K−1 for SiN). The work done in
driving the heat flow over one cycle is

1W ≈ −
κth

Tbath

∫ 2π/ωm

0
dt

∫
d3r1T (r)(∂21T/∂z2), (3)

and the thermoelastically limited quality factor is Qm,th = 2π(Uopt + Umech)/1W , where Uopt

and Umech are the energies stored in the optical field and strains, respectively. To good
approximation, one finds that the thermoelastically limited Q–frequency product is given
by Qm,th fm =

45κth
π Ed2Tbathα2

1−σ

1+σ
(1 + Uopt/Umech) (see appendix B). Thus, the storage of energy

in the optical field leads directly to an enhancement of the Q–frequency product. As a
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Figure 3. The ratio Uopt/Umech of optical energy to strain energy for the CM
mode of different systems: (a) an optically trapped free disc as a function of
its frequency ωm/2π . Here the beam waist is fixed at w = 35 µm and the trap
intensity is varied to yield the corresponding ωm. Inset: the trap intensity is fixed
such that ωm/2π = 1 MHz in the plane wave limit while w/a is varied. (b) A
rigid membrane suspended by a single tether, as a function of the CM frequency.
(c) A realistic tethered structure, obtained by finite-element simulations. The
system dimensions for these plots are identical to those in figure 2, namely,
a = 10 µm, L = 50 µm and d = b = 50 nm.

useful comparison, in the absence of optical trapping, an unstressed stoichiometric SiN
film of thickness d = 50 nm would have a Q–frequency product limited to Qm,th fm ≈

4 × 1013 Hz at room temperature, which only marginally exceeds the fundamental limit
kBTbath/h ≈ 6 × 1012 Hz needed for ground-state cooling. The Q–frequency product is also
proportional to the number of coherent oscillations that the system can undergo before a single
phonon is exchanged with the thermal bath, N (osc)

th = Qm,th fmh/(2πkBTbath) (N (osc)
th ∼ 1 for the

conventional membrane described above). A large value is critical for preparing and observing
quantum superposition or entangled states [5, 6].

We now examine thermoelastic damping of our free disc. Clearly, if ωopt(r) is spatially
uniform, the CM mode has no internal strains and experiences zero thermoelastic dissipation. A
finite beam waist creates inhomogeneous optical forces that internal stresses must compensate
for, which mixes CM and internal motion together (we still refer to this mixed mode as the
‘CM’). The mixing becomes significant when the variation in ωopt(r) across the disc overtakes
the natural rigidity of the system (as characterized by the natural fundamental frequency),
and can be avoided by using sufficiently large beam waists or low intensities. In this regime,
significant enhancements to the Q–frequency product should result.

These effects are illustrated in figure 3(a). For concreteness, we assume that the trapping
beam has a Gaussian profile with waist w, I (r) = I0 e−2r2/w2

(for now, we ignore possible
corrections due to distortion as the beam diffracts around the disc). In figure 3(a), we plot the
ratio Uopt/Umech for the CM mode as a function of its frequency, which is varied through the peak
intensity I0. We use the same disc dimensions as before and a waist of w = 35 µm. The energy
ratio monotonically decreases, reflecting the increased inhomogeneity in the optical potential.
In the inset, a complementary process is illustrated, where the beam waist w is varied, while the
peak intensity I0 is fixed such that ωopt(I0)/2π = 1 MHz. The energy ratio increases indefinitely
with w/a and approaches infinity in the plane-wave limit.
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We now consider the realistic pendulum geometry shown in figure 1(a), where the tether
provides an extremely weak restoring force for the ‘CM’ motion of the disc. We first present
a simplified analysis that isolates the role of the tether in the mode spectrum and Q–frequency
product. Specifically, we treat the membrane as a perfectly rigid point particle of mass M , which
experiences an optical restoring force with frequency ωopt, while internal stresses alone act on
the tether. Then, for a tether of length L whose long axis is situated along x , the displacement
field φ(x, t) (where 06 x 6 L) satisfies the beam equation [20]

∂2φ

∂t2
= −

Eb2

12ρ

∂4φ

∂x4
. (4)

Here b denotes the width of the tether (assumed to be square in cross-section). The beam is
clamped at x = 0, φ(0, t) = ∂xφ(0, t) = 0, while at x = L the boundary conditions are given
by ∂2

x φ(L , t) = 0 and M∂2
t φ(L , t) = −Mω2

optφ(L , t) + Eb4∂3
x φ(L , t)/12. The last equation

describes the acceleration of the membrane due to optical restoring forces and the shear force
imparted by the tether.

It is straightforward to solve for the system eigenmodes and the results are summarized
here. For large mass ratios between the membrane and tether, M/m t → ∞, the modes usually

consist of a CM mode for the membrane with frequency ωCM
m ≈

√
ω2

p + ω2
opt and a set of

discrete tether modes with frequencies ωn ≈ (
(n+1/4)π

βL )2, where β = (12ρ/Eb2)1/4. The CM
mode spectrum is understood as a low-frequency ‘pendulum’ mode (with natural frequency
ωp ≈

√
Eb4/4M L3, where ωp � ωopt, ωn for our systems of interest) whose frequency can

be strongly re-normalized by the optical force, while the tether mode spectrum results from
the heavy membrane essentially acting as a second clamp. This description holds except near
degeneracies ωopt ≈ ωn, where coupling between the tether and membrane motions yields
an avoided crossing whose width decreases with increasing mass ratio M/m t. This result is
illustrated in figure 2(b), for a mass ratio of M/m t = 125 (corresponding to the disc size
considered earlier attached to a tether of length L = 50 µm and width b = 50 nm). In figure 3(b),
we plot the energy ratios Uopt/Umech for the CM motion as a function of ωopt. Here, the strain
energy is completely attributable to the tether, as we take the membrane to be a rigid object.
The energy ratio is dramatically reduced near the avoided crossings, while away from these
crossings, the energy ratio plateaus to a value near Uopt/Umech ∼ 8M/m t.

For a realistic tethered system (as in figure 1(a)) where the membrane is not perfectly
rigid, mode mixing between the tether and membrane and mixing between the CM and internal
membrane motion will occur simultaneously. We have numerically solved the full stress–strain
equations for such a system using COMSOL, a commercial finite-element simulation package.
A characteristic mode spectrum is plotted in figure 2(c) as a function of the peak trapping
intensity I0, for parameters a = 10 µm, L = 50 µm, d = b = 50 nm and w = 35 µm. Away from
avoided crossings, the modes can clearly be characterized as tether modes (gray points) or
membrane modes (color). For our particular choice of beam waist size, the tethers themselves
experience optical restoring forces, leading to a slight optical stiffening of tether modes that
have displacements along the optical propagation axis. Comparing the membrane modes, the
CM mode lies lower in frequency than the flexural modes, as in the case of a free disc. A nearly
degenerate torsional (1, 0) mode also exists, which in principle should have no opto-mechanical
coupling to the cavity field and can be ignored.

In figure 3(c), we plot the energy ratio Uopt/Umech for the CM mode of our tethered structure
as a function of its frequency. The features displayed here are clearly a combination of those
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appearing in the limiting cases of a free disc and a rigid disc attached to a tether. In particular,
large plateaus in Uopt/Umech appear away from avoided crossings with tether modes. The plateau
heights can be higher than the limit Uopt/Umech ∼ 8M/m t predicted by the simple model, since
the tether experiences an optical spring force as well. The decrease in the plateau heights
with increasing CM frequency is associated with increased mixing between pure CM and
internal membrane motion. For the realistic geometry considered here, an enhancement in the
Q–frequency product of the order of ∼103 compared to a conventional system can be realized
at a frequency of ωm/2π ∼ 1 MHz. For a thermoelastically limited system, this corresponds to
a coherence time of N (osc)

th ∼ 103.
Although we have focused on thermoelastic processes, which can be exactly modeled, we

emphasize that our conclusions are qualitatively correct for any internal dissipative process. For
example, a number of other mechanical systems phenomenologically suffer from frequency-
independent dissipation, which may be due to effects such as tunneling in amorphous solids [13]
or surface mechanisms [21]. Such systems can be characterized by a complex, frequency-
independent Young’s modulus E = Er + iEi , where the imaginary component accounts for
dissipation of strain energy. In this case, the quality factor in the presence of optical trapping
behaves like Qm,E = (Er/Ei)(1 + Uopt/Umech), again indicating the importance of storing energy
in the lossless optical potential.

2. A membrane in a cavity: modification of modes and recoil heating

So far, we have assumed that the trapping beam has a Gaussian profile. For cavity opto-
mechanics [1], it will be necessary to trap the membrane within a Fabry–Perot cavity, as
illustrated in figure 1(a). For example, here, a relatively strong beam could be used for trapping,
while a second, weaker beam with a nonzero intensity gradient at the trap position would
facilitate cooling of the CM motion or quantum state transfer processes [17, 18]. The membrane
scatters and diffracts the cavity light, which introduces two important effects. Firstly, the mode
will no longer be Gaussian, and the new optical mode accommodated by the cavity mirrors
and the corresponding optical forces must be determined. Secondly, photon scattering out of
the cavity reduces cavity finesse, and the associated random momentum kicks (‘photon recoil’)
imparted on the membrane lead to additional decoherence.

To quantify these effects, we begin by calculating the cavity modes in the presence of the
membrane using a modified Fox–Li propagation technique [22]. Here, the electric field is treated
within the scalar paraxial approximation, and thus it is completely described by its transverse
profile E(x, y). This approximation is justified by noting that the disc should primarily diffract
light at small angles θ . (ka)−1 around the z-axis, where k = 2π/λ is the optical wavevector.
Within this approximation, free propagation over a distance z is accounted for by a phase shift
in the Fourier transform of the field profile, Ẽ(kx , ky)→eikz−i(k2

x +k2
y)z/(2k) Ẽ(kx , ky). In our case,

we are interested in systems with rotational symmetry, and thus the transforms are implemented
through the quasi-discrete Hankel transform described in [23]. Reflection off a circular mirror
with radius of curvature Rc and reflectance Rm is characterized by the real-space transformation

E(x, y)→
√

Rm E(x, y) exp
(

2i k(Rc −
√

R2
c − (x2 + y2))

)
. Similarly, at the membrane location,

the wave front can undergo reflection and transmission. In the case of an infinite dielectric
membrane of uniform thickness d , the Fresnel equations yielding the thickness-dependent
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reflection and transmission coefficients r(d), t (d) can be exactly solved. Following the Fox–Li
technique, for a finite-size membrane or a membrane of non-uniform thickness, we apply these
expressions to approximate the scattering amplitude and phase shift locally. For example, a field
E(x, y) incident on the membrane undergoes the transformation E(x, y) → t (d(x, y))E(x, y)

upon transmission. Note that an initial wave front incident on the membrane thus splits into two
wave fronts (a reflected and a transmitted field), and we keep track of the multiple scattered
fields to all orders to calculate the field buildup or cavity eigenmodes. In contrast, the original
technique of [22] only accounts for transmission. Thus, our approach properly captures the
effects of the reflected amplitude and back-scattered angle. Furthermore, our modified technique
reveals specifically at what frequencies resonances should occur.

We now discuss the effect of the membrane on the cavity finesse. To speed up calculations
(taking advantage of the rotational symmetry) and given the relatively small size of the tether,
only the central disc is treated here. As realistic parameters, we consider a membrane placed
symmetrically in the center of an optical cavity of length L = 1.99 cm with spherical mirrors
having radii of curvature Rc = 1 cm and perfect reflectivity (such that we can identify the
contribution κmem to the cavity linewidth due to scattering from the membrane). The transverse
extent of the spherical mirror surfaces is rm = 0.95 mm, i.e. all portions of the beam front with
x2 + y2 > r 2

m are scattered out and set to zero upon reflection at the mirror. Accounting for
a realistic mirror extent is important in determining the scattering rate, as a fully enclosing
mirror would be a closed system and would exhibit no losses. An empty cavity in this
configuration yields a Gaussian mode of waist w0 ≈ 15 µm in the center. In figure 4(a), we plot
the membrane-limited cavity finesse Fmem ≡ πc/κmemL for a membrane of uniform thickness
d = 30 nm and varying radius a (black circles). Clearly, cavity losses are negligible when
the nominal waist is small compared to the disc radius, w0/a . 1. In the regime w0/a & 1,
however, the finesse rapidly drops, which is attributable to scattering by the hard edges of
the disc. This effect is strongly reduced by ‘softening’ or apodizing the disc edge [24]. In
figure 4(a) (red circles), we also plot the finesse for a membrane whose thickness d(r) =

d0(1 − (r/a)2)2 tapers down to zero at the edge, where d0 = 30 nm is the maximum thickness.
Remarkably, the apodization can improve the cavity finesse by several orders of magnitude.
The modification of the cavity modes by the membrane is illustrated in figure 4(b), where
we plot the transverse profile at the membrane position for some representative apodized disc
sizes.

We find the CM eigenmodes of the apodized disc using equation (A.3), which is a
generalization of equation (1) to a disc of non-uniform thickness. The optical potential ωopt(r) is
now evaluated using the modified cavity mode profiles. The thermoelastic limit is subsequently
calculated using equations (2) and (3). In figure 4(c), the number of oscillations N (osc)

th due to
thermoelastic damping is plotted (in black). Here the circulating intra-cavity power is chosen
such that the CM frequency is fixed at ωm/2π = 0.5 MHz.

We next consider the effect of photon recoil heating. We assume that each scattered photon
contributes the maximum possible momentum kick of h̄k along the z-axis, giving rise to a
momentum diffusion process d〈p2

z 〉/dt = (h̄k)2 Rsc [17], where Rsc is the photon scattering
rate. Converting this expression into a jump rate, it can be shown that the number of coherent
oscillations before a jump in the phonon number can be written as

N (osc)
sc =

1

2π

V

Vc

ω0

κ

ω2
m

k2 Imax/ρc
. (5)
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Figure 4. Effects of optical scattering from a membrane inside a cavity.
(a) Membrane-limited finesse Fmem of a Fabry–Perot cavity with a membrane
in the middle. The black circles correspond to a flat membrane of uniform
thickness d = 30 nm, while the red circles correspond to an apodized membrane
with maximum thickness d0 = 30 nm. The finesse is plotted as a function of
the ratio of the empty-cavity beam waist w0 to the membrane radius a. The
cavity parameters are chosen such that w0 = 15 µm. (b) Intensity profiles (in
arbitrary units) of cavity mode in the presence of an apodized membrane.
The intensity profile is evaluated halfway between the two cavity mirrors. The
cavity and membrane parameters are provided in the main text. The blue and
red curves correspond to disc radii a = w0 and a = 2.5w0, respectively, while
the dashed black curve is the Gaussian intensity profile for an empty cavity.
(c) The number of coherent oscillations of the CM motion of an apodized disc
due to thermoelastic damping (N (osc)

th , black cirlces) and recoil heating (N (osc)
sc ,

red circles), as a function of disc radius and for fixed w0 = 15 µm. Also plotted
is the total number of coherent oscillations (N (osc)

tot , blue dashed curve), which is
given by the sum in parallel of the individual contributions.

Here Imax is the maximum cavity intensity (which in general does not need to be at the center of
the membrane due to mode distortion), ω0 = ck, V is the volume of the disc and Vc is the cavity
mode volume. Assuming that the cavity mode is not significantly distorted and that the beam
waist w0 & a such that the entire membrane experiences the optical force, one can approximate

ω2
m

k2 Imax/ρc ∼ 1 and Vc ∼ πw2
0 L/4. In this case, the number of coherent oscillations scales roughly

as N (osc)
sc ∼

kV
w2

0
Fmem. Note that this result is purely geometric in nature and also scales directly

with the cavity finesse (which itself depends on V ). In figure 4(c), we plot N (osc)
sc for the

apodized disc (in red). Combining the effects of thermoelastic damping and recoil heating, the
total number of coherent oscillations is given by N (osc)

tot = (N (osc)−1
sc + N (osc)−1

th )−1 (blue curve).
It can be seen that an apodized disc of radius r ∼ 9 µm can support a coherence time of
N (osc)

tot ∼ 2000 in a room-temperature environment. Remarkably, the coherence time of this
system is comparable to that of a much smaller levitated nanosphere of radius r ∼ 25 nm [17],
or a conventional 1 MHz oscillator with Qm exceeding 108 at a bath temperature of 1 K.
In appendix D, we provide an example set of parameters for this system, demonstrating that
it can be cooled to the quantum ground state.

Our analysis so far presents the limitations imposed on the system due to the trapping mode.
If a separate mode at a nearby frequency is used for optomechanical coupling and cooling, one
should expect similar effects (e.g. finesse limitation and mode distortion) for this secondary
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mode as well. We note, however, that it should also be possible to separately optimize the
parameters such as finesse, beam waist and effective cavity length for the two modes by using
significantly different wavelengths or compound cavity geometries.

3. Comparison of optical trapping schemes

We emphasize that our approach to reach the quantum regime, which relies upon achieving
ultrahigh-Q factors, is fundamentally different from other ‘optical spring’ proposals based on
optical backaction forces [25, 26]. In the latter case, the linear coupling of the mechanical
displacement to the intra-cavity intensity can yield a dynamic optical spring effect. This effect,
however, is accompanied by significant Raman scattering of the optical pump field, which
causes phonons to be rapidly removed and added to the system. While this does not preclude
ground state cooling [26], our analysis below demonstrates that it imposes severe limitations
on the quantum coherence time and makes it difficult to prepare, e.g., quantum superposition
states. In contrast, in our scheme, the phonons are truly long-lived excitations.

Specifically, we consider the dynamic optical spring resulting from a mechanical degree
of freedom whose displacement is linearly coupled to the optical cavity frequency. The
corresponding Hamiltonian for such a system in a rotating frame is [27]

Hint =
p̂2

2m
+

1

2
mω2

m ẑ2
− h̄δâ†â − h̄ω′ ẑâ†â − h̄�L(â + â†). (6)

Here â is the annihilation operator for the optical mode, ẑ, p̂ are the position and momentum
operators corresponding to the mechanical resonator, ωm is the natural mechanical frequency,
δ = ωL − ω0 is the frequency detuning between an external pump field driving the optical cavity
and the optical resonance frequency ω0 (when the mechanical resonator is in equilibrium),
�L is the driving amplitude and ω′ is the optical cavity frequency shift per unit mechanical
displacement. In addition to the Hamiltonian terms, the optical cavity is assumed to have losses
characterized by a linewidth κ .

For weak opto-mechanical coupling, it is customary to linearize the optical cavity dynamics
around the classical steady-state value 〈â〉 = α = i �L/(κ/2 − i δ) (here we have incorporated a
steady-state shift of the optical resonance frequency into our definition of the detuning δ), and
eliminate the cavity to yield an effective susceptibility χ(ω) of the mechanical displacement in
response to an external force f (ω) [27]. Specifically, one finds that

χ(ω)−1
= ω2

m − ω2 +
16ωmδ�2

m

4δ2 + (κ − 2iω)2
. (7)

Here we have defined an effective opto-mechanical driving amplitude �m = gα, and g =

ω′zzp = ω′

√
h̄

2mωm
is the optical cavity frequency shift per unit mechanical zero-point uncertainty.

In the perturbative limit, this expression can be written in terms of the susceptibility of a simple
oscillator with an effective linewidth and frequency that is modified due to opto-mechanical
interactions, χ(ω)−1

≈ ω2
m,eff − ω2

− i ω0eff. The effective linewidth and mechanical frequency
shift can be interpreted as resulting from optically induced cooling (or heating) and a dynamic
optical spring constant, respectively. In the relevant regime of large detuning δ � ω, κ , and
when the optical spring is dominant compared to the natural mechanical frequency, the effective
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mechanical frequency is given by [27, 28]

ωm,eff ≈ 2�m

√
ωm

δ
. (8)

The damping rate is given by

0eff ≈ �2
mκ

ωm

ωm,eff

[
1

(κ/2)2 + (δ + ωm,eff)2
−

1

(κ/2)2 + (δ − ωm,eff)2

]
, (9)

which is interpreted as the difference between anti-Stokes and Stokes scattering rates. Note that
for positive detuning δ > 0, the opto-mechanical interaction yields an increase in the mechanical
frequency but an anti-damping force (0eff < 0). One can achieve simultaneous stiffening and
cooling by employing multiple beams with different amplitudes and detunings [26], but for our
purposes it is sufficient to consider only the beam that leads to stiffening.

We wish to consider the ratio of the effective mechanical frequency to the rate of
decoherence 0d induced by optical Raman scattering, which is given by the sum (and not
difference) of the anti-Stokes and Stokes scattering rates. This is an important point—although
the removal and addition of a phonon by two Raman scattering events has no net effect in
terms of energy, it does destroy quantum coherence. In the relevant limit of large detuning and
dominant optical spring effect, one finds that

ωm,eff

0d
≈

2δ

κ
. (10)

This result states that the cavity must be driven very far off resonance in order to yield a
frequency shift that is much larger than the decoherence rate. Operating at large detuning
in turn requires extremely large cavity input powers to get an appreciable optical spring
effect. As an example, we consider the dynamic spring constant for a realistic geometry,
such as a Fabry–Perot cavity of length L = 1 cm and cavity finesse F = 105 (with the cavity
linewidth given by κ = πc/(FL) = 2π×150 kHz for our specific parameters). The optical
driving amplitude is related to the input power Pi through �L =

√
κ Pi/(2h̄ωL) for perfect in-

coupling efficiency, while the opto-mechanical interaction strength is of order ω′
∼ ω0/L . The

operating wavelength is taken to be λ = 1 µm. We also assume that the SiN membrane has a
radius a = 10 µm and that it undergoes pure CM motion (such that its effective motional mass
is the same as the physical mass). Then, an input power of Pi ∼ 2 kW is required if one wants to
achieve the number of coherent oscillations of N (osc)

=
ωm,eff

2π0d
∼103 and an effective mechanical

frequency of ωm,eff ∼ 2π×1 MHz. This corresponds to an input intensity of ∼10 W µm−2 for a
beam focused to a size comparable to the membrane radius.

In contrast, in our static trapping scheme, a comparable mechanical frequency and
coherence time can be achieved for an intra-cavity intensity of ∼0.1 W µm−2, and the cavity can
be driven resonantly to facilitate the intra-cavity field buildup. Because the static trap results in
the membrane being trapped at an anti-node, there is no linear opto-mechanical coupling for the
trapping field and the lowest-order opto-mechanical coupling is quadratic in nature. The anti-
Stokes and Stokes scattering rates in this case (at frequencies ωL ± 2ωm) have been calculated
in [29] and are extremely rare for our realistic systems (occurring at a sub-Hz level), leading to
negligible decoherence.

Furthermore, regardless of the trapping scheme used, our analysis properly captures the
role that strong, spatially non-uniform optical forces have in mixing internal motion, which is
neglected in lowest-order opto-mechanical models but is relevant to most flexural systems. In
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the case of the dynamic optical spring, for example, our model shows that the opto-mechanical
coupling strength g decreases significantly at the large intensities needed to observe strong
optical spring effects (see appendix C).

We also point out the proposal in [30] that is qualitatively similar to ours, which involves the
optical levitation of a macroscopic mirror using dipole forces. We believe that their conclusion
of the feasibility of levitating such a macroscopic system is based on a number of erroneous
assumptions. Specifically, their expression for the trapping force is derived from the optical
polarizability of a sub-wavelength particle. In this regime, both the trapping force and mass
increase linearly with the volume of the particle, and thus the CM oscillation frequency remains
size independent for a fixed intensity. However, for objects greater than a wavelength, the
ratio of trapping force to mass decreases (inversely with thickness, for the case of a planar
structure [31]), and thus the authors of [30] greatly underestimate the power requirements for
trapping a macroscopic mirror. In contrast, our membranes remain thin along the trapping axis,
which allows for sub-wavelength formulae to hold. Furthermore, their calculation of the recoil
heating rate only accounts for scattering from thermal density fluctuations (this mechanism
is important for guided modes in a low-loss fiber) [32]. However, this ignores the large
scattering cross-section of the externally illuminated dielectric object. Indeed, it has been shown
previously that wavelength-scale particles already suffer severe decoherence times (N (osc)

sc ∼ 1)
due to this effect [17]. This mechanism is suppressed in our scheme because of our planar
geometry and the use of a cavity mode to trap, which enables the cavity mirrors to re-capture
much of the scattered light.

4. Conclusion and outlook

We have described a technique that allows the ideas of optical levitation to be applied
to conventional, scalable mechanical systems, yielding Q–frequency products significantly
higher than what material properties would nominally dictate. Although we have focused on
thermoelastic losses in the above calculations, we expect similar improvements for any other
internal damping mechanism. The key idea is that it is possible to circumvent natural material
limits of damping by storing energy in a lossless optical field rather than the internal strain. By
making the ratio of these energies large, Uopt/Umech � 1, any internal losses can be suppressed
by a corresponding degree. This fundamental observation allows one to design a novel class
of mechanical systems that can be fabricated and deployed using conventional techniques, yet
yield Q–frequency products that are several orders of magnitude higher than previous systems.
We believe that this work will stimulate further investigation into the relationship between
optical forces and material dissipation in a number of systems where the mechanical motion
can be strongly renormalized by light [26, 33]. Furthermore, we anticipate that such studies
will open up interesting possibilities for quantum manipulation of mechanical systems in room-
temperature environments.
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Appendix A. Derivation of the membrane equation

Here we derive the equation of motion for a thin non-uniform disc of thickness d(r), which has a
reflection symmetry around z = 0 (such that the surface of the plate is located at z = ±d(r)/2).
We are interested in the situation where the thickness is much less than the characteristic
transverse size (e.g. the radius a of a circular disc), such that its degree of freedom along the
thin direction can be effectively eliminated and the flexural motion can be described by a two-
dimensional displacement field ζ(x, y). The equation of motion for ζ(x, y) can be obtained
by a generalization of the derivation for a uniform disc given in [20]. Specifically, the energy
associated with the displacement field ζ(x, y) is given by

Umech =
E

24(1 − σ 2)

∫
dx dy d(x, y)3

[(
ζxx + ζyy

)2
+ 2(1 − σ)

(
(ζxy)

2
− ζxxζyy

)]
. (A.1)

Here E, σ are the Young’s modulus and Poisson’s ratio, respectively, while ζxx =
∂2ζ

∂x2 , etc. To
derive the equilibrium field ζ(x, y) under some external normal pressure P(x, y), we employ
the variational principle to minimize the system energy. Under small variations δζ and following
some algebra, the variation in Umech can be written as the sum of an integral over the transverse
area of the disc and two integrals over the circumference or edge of the disc,

δUmech =

∫
dx dy Z1δζ +

∮
dl Z2

∂δζ

∂n
+

∮
dl Z3δζ. (A.2)

Here Z i are complicated expressions involving ζ and d(r) whose forms are given below, while n
denotes the normal to the edge of the disc. The integral over the disc area yields the equilibrium
equation of the disc, Z1 = P(x, y), or the dynamical equation can be obtained by replacing
P(x, y)→ − ρd(r) ∂2ζ

∂t2 . Doing so, and including the effect of external optical forces, one finds
that

∂2ζ

∂t2
= −ω2

opt(r)ζ −
E

12ρ(1 − σ 2)d(r)

[
∇

2
(
g(r)∇2ζ

)
− (1 − σ)

(
ζyygxx + ζxx gyy − 2ζxygxy

)]
.

(A.3)

Here we have defined g(r) = d(r)3, and ∇
2 is understood to be the Laplacian in the transverse

plane. As described in the main text, ωopt(r) = ( 2k2 I (r)(ε−1)

ρc )1/2. For a disc with free boundary
conditions at the edge, the quantities δζ and ∂δζ/∂n are arbitrary on the boundary, so the
coefficients Z2,3 should vanish, yielding the two boundary conditions. Defining n and l to be
the normal and tangential directions to the edge of the disc, and θ as the local angle between x
and n, these boundary conditions become

0 =
∂

∂n

(
g∇

2ζ
)

+ (1 − σ)

[
∂

∂l

(
−gζxy cos 2θ + (g/2) sin 2θ(ζxx − ζyy)

)
+ cos θ(ζyygx − ζxygy) + sin θ(ζxx gy − ζxygx)

]
, (A.4)

0 = ∇
2ζ + (1 − σ)

(
2ζxy sin θ cos θ − ζyy cos2 θ − ζxx sin2 θ

)
.
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Appendix B. Thermoelastic damping

Solving equation (2) and substituting into equation (3), one finds that

1W ≈
πωmα2 E2d5Tbath

1080κth(1 − σ)2

∫
dx dy (∇2ζ )2. (B.1)

Let us now compare this quantity with the total strain energy Umech given in equation (A.1).
For simplicity, here we specialize to the case where the disc has a uniform thickness d, such that

Umech =
Ed3

24(1 − σ 2)

∫
dx dy

[
(∇2ζ )2 + 2(1 − σ)

(
(ζxy)

2
− ζxxζyy

)]
. (B.2)

Note that 1W and Umech have similar forms, as both involve an integral over the membrane
area of the quantity (∇2ζ )2. The strain energy contains a second term, however, whose relative
importance we characterize now. The second term can in fact be re-written as a line integral
around the circumference of the membrane,∫

dx dy (ζxy)
2
− ζxxζyy =

∮
dx ζxyζx −

∮
dy ζyyζx . (B.3)

This boundary integral vanishes identically for certain types of shapes or boundary
conditions, such as a clamped membrane. For our free disc, this boundary term does
not identically vanish, but numerically we can confirm that the boundary contribution is
small relative to the total strain energy. To a good approximation then we can write
Umech ≈

Ed3

24(1−σ 2)

∫
dx dy (∇2ζ )2. This leads to the expression for the thermoelastically limited

Q–frequency product given in the main text,

Qm,th fm =
45κth

π Ed2Tbathα2

1 − σ

1 + σ

(
1 +

Uopt

Umech

)
. (B.4)

Appendix C. Modification of opto-mechanical coupling strengths

Our theory of optical trapping of membranes predicts dramatic corrections to the simple model
of opto-mechanical interactions given by equation (6), when the optical restoring forces (either
static or dynamic) become large compared to the natural ridigity of the membrane. In this
scenario of strong optical forces, the mechanical mode shape and thus the opto-mechanical
coupling strength g become functions of intensity as well, with g generally decreasing with
larger intensity. The origin of this effect is intuitively seen by considering a membrane that
interacts with a Gaussian cavity mode whose beam waist w is smaller than the membrane radius
a. Then, if the optical restoring forces are large compared to the membrane stiffness, the optical
beam in fact resembles a new boundary condition that ‘pins’ the region r . w of the membrane
into place. This reduces the overlap between the mechanical displacement field and the optical
beam, and thus g.

This effect is illustrated in figure C.1 for a free SiN membrane of thickness d = 30 nm and
a = 25 µm, interacting with a beam of waist w = 15 µm. In this calculation the membrane
is statically trapped, although a similar effect would occur for sufficiently large dynamical
backaction forces as well. In figure C.1(a), we calculate the opto-mechanical coupling strength
g (to another cavity mode that has the same beam waist but exhibits an intensity gradient at the
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a) b)

Figure C.1. Effect of large intensity on opto-mechanical coupling strength.
(a) Opto-mechanical coupling strength g of a trapped free disc as a function of
CM frequency. The coupling strength is normalized by the value corresponding
to rigid (pure CM) motion g0. A decrease in g for increasing frequency is
caused by the non-uniform optical force pinning the center of the disc in place.
The dimensions for this simulation are d = 30 nm, a = 25 µm and w = 15 µm.
(b) Displacement field ζ(x, y) (in arbitrary units) for a free disc of the same
dimensions, for a trap frequency of ωm/2π = 300 kHz. The displacement field
clearly illustrates the pinning effect created by the optical forces.

membrane position) as a function of the CM frequency, which is varied through the intensity of
the trapping beam. The value of g is calculated using the expression [4]

g ∝ zzp

∫
dx dy e−2(x2+y2)/w2

ζ(x, y)/max|ζ |. (C.1)

In figure C.1(a), we have normalized the obtained value of g with the value g0 if the motion were
purely CM, where the displacement field ζ is constant. At larger frequencies, g dramatically
decreases, reflecting the ‘pinning’ effect that the optical force has on the center of the membrane.
This is also directly seen in figure C.1(b), where we plot the displacement field ζ(x, y) for a CM
frequency ωm/2π = 300 kHz.

Appendix D. Quantum opto-mechanics with a tethered membrane

In this section, we show that the membrane trapped inside a Fabry–Perot cavity analyzed in
section 2 can be cooled to the ground state starting from room temperature under realistic
conditions.

To recall, the apodized membrane with radius r = 9 µm is positioned inside a cavity
with nominal beam waist w0 ≈ 15 µm, and we assume that the CM motion is trapped
with a frequency of ωm/(2π) = 0.5 MHz (see table D.1 for a summary of parameters). The
corresponding peak circulating intensity of the trapping field is Imax ≈ 0.04 W µm−2. Such a
configuration yields a scattering-limited cavity finesse of Fmem ∼ 3 × 105. For our following
analysis, we take a more conservative value of F = 105 for the overall cavity finesse (e.g.
the finesse is limited by the cavity mirror transmission). The corresponding cavity linewidth
κ/(2π) = 75 kHz is much smaller than ωm, ensuring that the ‘sideband-resolved regime’ is
reached and efficient optical cooling can take place [27].
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Table D.1. Example cooling parameters for optically trapped membrane.

Total cavity decay κ/2π ,
Opto-mech. coupling Cavity membrane contribution

Cavity length Beam waist strength g/2π finesse F κmem/2π

1.99 cm 15 µm 40 Hz 105 75 and 25 kHz

Mech. frequency Intra-cavity intensities: Background Final phonon Final
ωm/2π trapping, cooling beams gas pressure number 〈n f 〉 temperature Tf

0.5 MHz 4 × 1010 and 2 × 106 W m−2
∼10−10 torr 2.5 × 10−3 4 µK

The membrane is trapped at an anti-node of the ‘primary’ mode used for trapping; however,
as in [17, 18], a secondary optical cavity mode with a maximum intensity gradient at the
membrane position can be used to facilitate linear opto-mechanical coupling and cooling.
The theory of cooling in this configuration has been thoroughly analyzed in previous
work [17, 18, 34], and the results are briefly summarized here. We assume that the circulating
intensity in the secondary mode is a small fraction ξ � 1 compared to that in the primary mode,
so that the trapping (cooling) effect of the secondary (primary) mode is negligible (we take
n = 5 × 10−5 for our analysis). The optical cooling rate effected by the second mode is obtained
from equation (9), with a calculated opto-mechanical coupling strength of g/(2π) = 40 Hz for
our particular geometry. We choose a detuning of δ ≈ −ωm for our secondary or cooling beam,
which maximizes the cooling efficiency in the sideband-resolved regime.

Using these parameters, we find that optical cooling can yield a steady-state phonon
occupation number and temperature of 〈n f 〉 = 2.5 × 10−3 and Tf = 4 µK, respectively, starting
from room temperature. Thus, the ground state of the CM motion can be prepared with
extremely high fidelity. So far in our analysis, we have assumed that re-heating of the CM
motion occurs due to thermoelastic processes and photon recoil. However, it is known that
damping and re-thermalization due to collisions with background gas molecules can be a
major decoherence effect for levitated systems [17, 18]. In the low-pressure regime, where gas
molecules independently collide with the membrane, the energy damping rate for our system
can be derived using the techniques of [35] and is given by γg = 96Pg/(πv̄ρd0), where Pg is the
gas pressure, v̄ is the mean molecular speed, ρ is the mass density of the membrane and d0 is its
maximum thickness. For our system, the effect of the background gas is negligible compared to
other heating sources at pressure levels of Pg ∼ 10−10 torr.
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