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Abstract

Rapid advances are being made toward optically cooling a single mode of a micro-mechanical sys-

tem to its quantum ground state and observing quantum behavior at macroscopic scales. Reaching

this regime in room-temperature environments requires a stringent condition on the mechanical

quality factor Qm and frequency fm, Qmfm&kBTbath/h, which so far has been marginally satisfied

only in a small number of systems. Here we propose and analyze a new class of systems that should

enable unprecedented Q-frequency products. The technique is based upon using optical forces to

“trap” and stiffen the motion of a tethered mechanical structure, thereby freeing the resultant

mechanical frequencies and decoherence rates from underlying material properties.
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The coupling of a high-Q mode of a micro-mechanical oscillator to an optical cavity has

emerged as a promising route toward observing quantum behavior at macroscopic scales [1].

This opto-mechanical interaction is being used, for example, to optically cool a mechanical

mode toward its quantum ground state [1]. Ground-state cooling requires that the product

of the quality factor Qm and frequency fm of the mechanical mode exceed kBTbath/h, where

h is Planck’s constant. For a room-temperature bath, this condition is marginally satisfied

only in a small number of current experiments [2]. The ratio hQmfm/kBTbath also determines

the quantum coherence time of the system relative to the mechanical period. Significant

improvements to Q-frequency products are thus critical for schemes to prepare and detect

non-classical states of motion [3, 4]. Mechanical systems exhibiting extremely high quality

factors also offer novel opportunities for precision measurement and force detection [5, 6].

In this Letter, we propose a class of systems that should enable unprecedented Q-

frequency products. The approach is based upon optically “trapping” a tethered membrane

with low natural mechanical frequency in the anti-node of a strong optical standing wave (see

Fig. 1a) [7]. While there are many possible realizations, here we focus on a pendulum ge-

ometry, where a relatively large disk is supported by a single thin tether. The dielectric

disk is attracted to the anti-node of the field, leading to an optical stiffening of its flexural

modes. Under realistic conditions, the re-normalized mode frequencies can be significantly

enhanced over the values expected under material stresses alone. Of particular interest is

the “center-of-mass” (CM) mode, where the disk oscillates in the optical potential with

negligible flexural motion. We show that this motion exhibits an extremely large ratio of

potential energy stored in the optical field to strain energy, Uopt/Umech. This can yield a

correspondingly large increase in the Q-frequency product over a conventional mechanical

system due to the suppression of dissipation through internal friction.

Our approach to achieving long coherence times builds upon previous proposals, which

suggested that the highly isolated CM mode of an optically levitated nanosphere [8, 9] can

enable quantum opto-mechanics in room-temperature environments [10, 11]. Compared to

the nanosphere, our approach has two significant advantages. First, the nanosphere scat-

ters light omni-directionally, leading to motional heating via photon recoil. Suppression of

recoil heating to reach the quantum regime requires spheres with sub-wavelength volumes,

V/λ3�1 [10]. In contrast, the planar membrane primarily couples the counter-propagating

components of the trapping beam, strongly reducing recoil heating even for large systems.
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Second, these membranes can be fabricated using well-established techniques that already

yield excellent mechanical and optical properties in a number of experiments [2, 12]. Our

proposal thus shows how the ideas of optical levitation can be brought to bear upon “conven-

tional” and practically deployable mechanical systems to yield remarkable coherence times.

We begin by considering the mechanical modes of a free, thin circular membrane with

thickness d and radius a in the absence of any tethers. In equilibrium, the membrane is

situated at z = 0, in the anti-node of an optical standing wave E(z) ∝ cos kz (see Fig. 1a).

The optical field polarizes the dielectric disk, yielding a gradient force trap around z = 0.

Absent any internal forces, the optical field traps a thin membrane (d� λ) with a restoring

frequency given by ωopt(r) =
(

2k2I(r)(ε−1)
ρc

)1/2

, where r is the radial coordinate. Here I(r) is

the beam intensity profile (assumed to be rotationally symmetric) in the direction transverse

to z, k = 2π/λ is the optical wavevector, ρ is the mass density, and ε is the dielectric constant.

Now including the internal stresses, the mechanical displacement field from equilibrium,

ζ(x, y), obeys
∂2ζ

∂t2
= −ω2

opt(r)ζ −
Ed2

12ρ(1− σ2)
∇4ζ, (1)

subject to free boundary conditions [13] (also see Appendix). E, σ denote the Young’s

modulus and Poisson’s ratio, respectively. Here and in the following, ∇2 is understood

to be the Laplacian in the transverse plane. Due to the rotational symmetry, we seek

solutions of the form ζ(x, y) = f(r) cos mθ e−iωmt. The spatial modes are indexed by the

number of nodal diameters and circles, (m,n) (see Fig. 1b). For our numerical results we

take material parameters E = 270 GPa, σ = 0.25, ρ = 2.7 g/cm3, ε = 4 corresponding

to stoichiometric silicon nitride [2], and an operating wavelength of λ = 1 µm. For a

free disk without optical forces, the fundamental (2, 0) flexural mode has natural frequency

ω
(2,0)
m,nat/2π≈0.25 d

a2

√
E

ρ(1−σ2)
, or ω

(2,0)
m,nat/2π≈1.3 MHz for a disk of dimensions a = 10 µm,

d = 50 nm. There is also a trivial solution corresponding to the CM or (0, 0) mode with

constant f(r) and zero frequency.

For a uniform intensity, I(r) = I0, the natural radial functions f
(m,n)
nat (r) remain eigen-

modes of Eq. (A3), but with re-normalized mechanical frequencies given by ω
(m,n)
m (I0) =√

ω2
opt(I0) + (ω

(m,n)
m,nat)

2. Thus, the CM mode is now a non-trivial solution with frequency

ωCM
m = ωopt, but still retains a uniform spatial profile. The frequencies of all the flexural

modes increase as well, with the CM mode remaining the lowest in frequency (see Fig. 2a).

The absence of energy stored in internal strains for the CM motion has the important
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implication of eliminating dissipation due to internal friction. Instead, the energy is stored

in an optical potential that contributes no losses (but can contribute a recoil heating force, as

described later). To quantify this, we consider the influence of thermoelastic damping on our

system. We focus on thermoelastic damping because a) it can be analytically modelled [13,

14], b) it is a fundamental limit even for “perfect” devices [14], and c) a number of micro-

mechanical systems are approaching this limit [15, 16]. We emphasize, however, that our

conclusions are qualitatively correct for any internal dissipative process.

Thermoelastic damping arises because realistic materials have a non-zero coefficient of

thermal expansion. The flexural motion creates local volume changes that then lead to

temperature gradients and heat flow. Mechanical energy must be expended to drive this

heat flow, leading to a finite Qm. We make two simplifying assumptions to the general

thermoelastic equations [13, 14], which are well-justified in our system. First, we assume

that the thermoelastic coupling is weak, so that the spatial modes determined by Eq. (A3)

are not altered to lowest order. Second, the strains vary most rapidly along the thin direction

of the disk, and thus we ignore the relatively small transverse temperature gradients. The

temperature field is given by T (x, y, z, t) = Tbath + ∆T (x, y, z, t), where ∆T satisfies the

driven heat equation (
cV

∂

∂t
− κth

∂2

∂z2

)
∆T =

EαTbathz

3(1− 2σ)

∂

∂t
∇2ζ (2)

with boundary conditions ∂∆T/∂z = 0 at z = ±d/2. Here cV is the heat capacity per

unit volume, κth is the thermal conductivity, and α is the volumetric thermal expansion

coefficient (we take cV = 2 J/cm3·K, κth = 20 W/m·K, α = 4.8×10−6 K−1 for SiN). The

work done in driving the heat flow over one cycle is

∆W ≈ − κth

Tbath

∫ 2π/ωm

0

dt

∫
d3r∆T (r)(∂2∆T/∂z2), (3)

and the thermoelastically limited quality factor is Qm,th = 2π(Uopt + Umech)/∆W , where

Uopt and Umech are the energies stored in the optical field and strains, respectively. To good

approximation, one finds that the thermoelastically limited Q-frequency product is given by

Qm,thfm = 45κth

πEd2Tbathα2
1−σ
1+σ

(1 +Uopt/Umech) (see Appendix). Thus the storage of energy in the

optical field leads directly to an enhancement of the Q-frequency product. As a useful com-

parison, in the absence of optical trapping, an unstressed stoichiometric SiN film of thickness

d = 50 nm would have a Q-frequency product limited to Qm,thfm≈4×1013 Hz at room tem-

perature, which only marginally exceeds the fundamental limit kBTbath/h≈6×1012 Hz needed
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for ground-state cooling. The Q-frequency product is also proportional to the number of

coherent oscillations that the system can undergo before a single phonon is exchanged with

the thermal bath, N
(osc)
th = Qm,thfmh/(2πkBTbath) (N

(osc)
th ∼1 for the conventional membrane

described above). A large value is critical to preparing and observing quantum superposition

or entangled states [3, 4].

We now examine thermoelastic damping of our free disk. Clearly, if ωopt(r) is spatially

uniform, the CM mode has no internal strains and experiences zero thermoelastic dissipa-

tion. A finite beam waist creates inhomogeneous optical forces that internal stresses must

compensate for, which mixes CM and internal motion together (we still refer to this mixed

mode as the “CM”). The mixing becomes significant when the variation in ωopt(r) across the

disk overtakes the natural rigidity of the system (as characterized by the natural fundamen-

tal frequency), and can be avoided by using sufficiently large beam waists or low intensities.

In this regime, significant enhancements to the Q-frequency product should result.

These effects are illustrated in Fig. 3a. For concreteness, we assume that the trapping

beam has a Gaussian profile with waist w, I(r) = I0e
−2r2/w2

(for now, we ignore possible

corrections due to distortion as the beam diffracts around the disk). In Fig. 3a, we plot the

ratio Uopt/Umech for the CM mode as a function of its frequency, which is varied through the

peak intensity I0. We use the same disk dimensions as before and a waist of w = 35 µm. The

energy ratio monotonically decreases, reflecting the increased inhomogeneity in the optical

potential. In the inset, a complementary process is illustrated, where the beam waist w is

varied, while the peak intensity I0 is fixed such that ωopt(I0)/2π = 1 MHz. The energy ratio

increases indefinitely with w/a and approaches infinity in the plane-wave limit.

We now consider the realistic pendulum geometry shown in Fig. 1a, where the tether

provides an extremely weak restoring force for the “CM” motion of the disk. We first

present a simplified analysis that isolates the role of the tether on the mode spectrum and

Q-frequency product. Specifically, we treat the membrane as a perfectly rigid point particle

of mass M , which experiences an optical restoring force with frequency ωopt, while internal

stresses alone act on the tether. Then, for a tether of length L whose long axis is situated

along x, the displacement field φ(x, t) (where 0 ≤ x ≤ L) satisfies the beam equation [13],

∂2φ

∂t2
= −Eb

2

12ρ

∂4φ

∂x4
. (4)

Here b denotes the width of the tether (assumed to be square in cross-section). The beam is
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clamped at x = 0, φ(0, t) = ∂xφ(0, t) = 0, while at x = L the boundary conditions are given

by ∂2
xφ(L, t) = 0 and M∂2

t φ(L, t) = −Mω2
optφ(L, t) + Eb4∂3

xφ(L, t)/12. The last equation

describes the acceleration of the membrane due to optical restoring forces and the shear

force imparted by the tether.

It is straightforward to solve for the system eigenmodes (see Appendix) and the re-

sults are summarized here. For large mass ratios between the membrane and tether,

M/mt→∞, the modes usually consist of a CM mode for the membrane with frequency

ωCM
m ≈

√
ω2
p + ω2

opt and a set of discrete tether modes with frequencies ωn ≈
(

(n+1/4)π
βL

)2

,

where β = (12ρ/Eb2)1/4. The CM mode spectrum is understood as a low-frequency “pendu-

lum” mode (with natural frequency ωp ≈
√
Eb4/4ML3, where ωp�ωopt, ωn for our systems

of interest) whose frequency can be strongly re-normalized by the optical force, while the

tether mode spectrum results from the heavy membrane essentially acting as a second clamp.

This description holds except near degeneracies ωopt≈ωn, where coupling between the tether

and membrane motions yields an avoided crossing whose width decreases with increasing

mass ratio M/mt. This result is illustrated in Fig. 2b, for a mass ratio of M/mt = 125 (cor-

responding to the disk size considered earlier attached to a tether of length L = 50 µm and

width b = 50 nm). In Fig. 3b, we plot the energy ratios Uopt/Umech for the CM motion as

a function of ωopt. Here, the strain energy is completely attributable to the tether, as we

take the membrane to be a rigid object. The energy ratio is dramatically reduced near the

avoided crossings, while away from these crossings, the energy ratio plateaus to a value near

Uopt/Umech∼8M/mt (see Appendix).

For a realistic tethered system (as in Fig. 1b) where the membrane is not perfectly rigid,

mode mixing between the tether and membrane and mixing between the CM and internal

membrane motion will occur simultaneously. We have numerically solved the full stress-

strain equations for such a system using COMSOL, a commercial finite-element simulation

package. A characteristic mode spectrum is plotted in Fig. 2c as a function of the peak

trapping intensity I0, for parameters a = 10 µm, L = 50 µm, d = b = 50 nm, and

w = 35 µm. Away from avoided crossings, the modes can clearly be characterized as

tether modes (gray points) or membrane modes (color). For our particular choice of beam

waist size, the tethers themselves experience optical restoring forces, leading to a slight

optical stiffening of tether modes that have displacements along the optical propagation

axis. Comparing the membrane modes, the CM mode lies lower in frequency than the
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flexural modes, as in the case of a free disk. A nearly degenerate torsional (1, 0) mode also

exists, which in principle should have no opto-mechanical coupling to the cavity field and

can be ignored (see Appendix).

In Fig. 3c, we plot the energy ratio Uopt/Umech for the CM mode of our tethered structure

as a function of its frequency. The features displayed here are clearly a combination of

those appearing in the limiting cases of a free disk and a rigid disk attached to a tether.

In particular, large plateaus in Uopt/Umech appear away from avoided crossings with tether

modes. The plateau heights are higher than the limit Uopt/Umech∼8M/mt predicted by the

simple model, since the tether experiences an optical spring force as well. The decrease in the

plateau heights with increasing CM frequency is associated with increased mixing between

pure CM and internal membrane motion. For the realistic geometry considered here, an

enhancement in the Q-frequency product on the order of ∼103 compared to a conventional

system can be realized at a frequency of ωm/2π∼1 MHz. For a thermoelastically limited

system, this corresponds to a coherence time of N
(osc)
th ∼103.

Thus far, we have assumed that the trapping beam has a Gaussian profile. For cavity

opto-mechanics [1], it will be necessary to trap the membrane within a Fabry-Perot cavity,

as illustrated in Fig. 1a. For example, here, a relatively strong beam could be used for trap-

ping, while a second, weaker beam with a non-zero intensity gradient at the trap position

would facilitate cooling of the CM motion or quantum state transfer processes [10, 11]. The

membrane scatters and diffracts the cavity light, which introduces two important effects.

First, the mode will no longer be Gaussian, and the new optical mode accommodated by

the cavity mirrors and the corresponding optical forces must be determined. Second, photon

scattering out of the cavity reduces cavity finesse, and the associated random momentum

kicks (“photon recoil”) imparted on the membrane lead to additional decoherence. We have

performed detailed simulations of the modified cavity fields and coupled them to the equa-

tion of motion (A3) for the membrane (see Appendix). We find that for realistic cavity

geometries, a value of N
(osc)
tot ∼103 in a room-temperature environment can still be obtained,

taking into account both thermoelastic processes and recoil heating. Remarkably, the co-

herence time of this system is comparable to that of a much smaller levitated nanosphere of

radius r∼25 nm [10], or a conventional 1 MHz oscillator with Qm exceeding 108 at a bath

temperature of 1 K.

We emphasize that our approach to reaching the quantum regime is fundamentally dif-
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ferent than other “optical spring” proposals based upon optical backaction forces [17, 18].

In the latter case, the linear coupling of the mechanical displacement to the intra-cavity

intensity can yield a dynamic optical spring effect. This effect, however, is accompanied by

significant Raman scattering of the optical pump field, which causes phonons to be rapidly

removed and added to the system. While this does not preclude ground state cooling [18], a

more detailed analysis (see Appendix) shows that it imposes severe limitations on the quan-

tum coherence time and makes it difficult to prepare, e.g., quantum superposition states.

In contrast, in our scheme, the phonons are truly long-lived excitations. Furthermore, re-

gardless of the trapping scheme used, our analysis properly captures the role that strong,

spatially non-uniform optical forces have in mixing internal motion, which is neglected in

lowest-order opto-mechanical models but relevant to most flexural systems (see Appendix).

Although we have focused on thermoelastic losses in the above calculations, we expect

similar improvements for any other internal damping mechanism. The key idea is that it

is possible to circumvent natural material limits of damping by storing energy in a lossless

optical field rather than the internal strain. By making the ratio of these energies large,

Uopt/Umech�1, any internal losses can be suppressed by a corresponding degree. This fun-

damental observation allows one to design a novel class of mechanical systems that can

be fabricated and deployed using conventional techniques, yet yield Q-frequency products

that are several orders of magnitude higher than previous systems. We believe that this

work will stimulate further investigation into the relationship between optical forces and

material dissipation in a number of systems where the mechanical motion can be strongly

renormalized by light [18, 19]. Furthermore, we anticipate that such studies will open up in-

teresting possibilities for quantum manipulation of mechanical systems in room-temperature

environments.
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Appendix A: Equation of motion for a free disk

Here we derive the equation of motion for a thin non-uniform disk of thickness d(r),

which has a reflection symmetry around z = 0 (such that the surface of the plate is located

at z = ±d(r)/2). We are interested in the situation where the thickness is much less than

the characteristic transverse size (e.g., the radius a of a circular disk), such that its degree

of freedom along the thin direction can be effectively eliminated and the flexural motion

can be described by a two-dimensional displacement field ζ(x, y). The equation of motion

for ζ(x, y) can be obtained by a generalization of the derivation for a uniform disk given in

Ref. [13]. Specifically, the energy associated with the displacement field ζ(x, y) is given by

Umech =
E

24(1− σ2)

∫
dx dy d(x, y)3

[
(ζxx + ζyy)

2 + 2(1− σ)
(
(ζxy)

2 − ζxxζyy
)]
. (A1)

Here E, σ are the Young’s modulus and Poisson’s ratio, respectively, while ζxx = ∂2ζ
∂x2 , etc. To

derive the equilibrium field ζ(x, y) under some external normal pressure P (x, y), we employ

the variational principle to minimize the system energy. Under small variations δζ, and

following some algebra, the variation in Umech can be written as the sum of an integral over

the transverse area of the disk and two integrals over the circumference or edge of the disk,

δUmech =

∫
dx dy Z1δζ +

∮
dl Z2

∂δζ

∂n
+

∮
dl Z3δζ. (A2)

Here Zi are complicated expressions involving ζ and d(r) whose forms are given below, while

n denotes the normal to the edge of the disk. The integral over the disk area yields the

equilibrium equation of the disk, Z1 = P (x, y), or the dynamical equation can be obtained

by replacing P (x, y)→ − ρd(r)∂
2ζ
∂t2

. Doing so, and including the effect of external optical

forces, one finds

∂2ζ

∂t2
= −ω2

opt(r)ζ −
E

12ρ(1− σ2)d(r)

(
∇2
(
g(r)∇2ζ

)
− (1− σ) (ζyygxx + ζxxgyy − 2ζxygxy)

)
.

(A3)

Here we have defined g(r) = d(r)3, and ∇2 is understood to be the Laplacian in the trans-

verse plane. As described in the main text, ωopt(r) =
(

2k2I(r)(ε−1)
ρc

)1/2

. For a disk with free

boundary conditions at the edge, the quantities δζ and ∂δζ/∂n are arbitrary on the bound-

ary, so the coefficients Z2,3 should vanish, yielding the two boundary conditions. Defining n

and l to be the normal and tangential directions to the edge of the disk, and θ as the local
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angle between x and n, these boundary conditions become

0 =
∂

∂n

(
g∇2ζ

)
+ (1− σ)

[
∂

∂l
(−gζxy cos 2θ + (g/2) sin 2θ(ζxx − ζyy))

+ cos θ(ζyygx − ζxygy) + sin θ(ζxxgy − ζxygx)] ,

0 = ∇2ζ + (1− σ)
(
2ζxy sin θ cos θ − ζyy cos2 θ − ζxx sin2 θ

)
. (A4)

Appendix B: Thermoelastic damping

We begin with Eqs. (2) and (3) in the main text that describe thermoelastic damping,(
cV

∂

∂t
− κth

∂2

∂z2

)
∆T =

EαTbathz

3(1− 2σ)

∂

∂t
∇2ζ (B1)

and

∆W ≈ − κth

Tbath

∫ 2π/ωm

0

dt

∫
d3r∆T (r)(∂2∆T/∂z2). (B2)

The first equation describes the driven heat equation along the thin direction of the mem-

brane, with boundary conditions ∂∆T/∂z = 0 at z = ±d(r)/2. Here cV is the heat capacity

per unit volume, κth is the thermal conductivity, and α is the volumetric thermal expansion

coefficient (we take cV = 2 J/cm3·K, κth = 20 W/m·K, α = 4.8×10−6 K−1 for SiN). The

second equation describes the amount of work done in driving the heat flow over one cycle

for a particular mechanical eigenmode. Solving Eq. (B1) and substituting into Eq. (B2),

one finds

∆W ≈ πωmα
2E2d5Tbath

1080κth(1− σ)2

∫
dx dy (∇2ζ)2. (B3)

Let us now compare this quantity with the total strain energy Umech given in Eq. (A1).

For simplicity, here we specialize to the case where the disk has a uniform thickness d, such

that

Umech =
Ed3

24(1− σ2)

∫
dx dy

[
(∇2ζ)2 + 2(1− σ)

(
(ζxy)

2 − ζxxζyy
)]
. (B4)

Note that ∆W and Umech have similar forms, as both involve an integral over the membrane

area of the quantity (∇2ζ)2. The strain energy contains a second term, however, whose

relative importance we characterize now. The second term can in fact be re-written as a

line integral around the circumference of the membrane,∫
dx dy (ζxy)

2 − ζxxζyy =

∮
dx ζxyζx −

∮
dy ζyyζx. (B5)
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This boundary integral vanishes identically for certain types of shapes or boundary con-

ditions, such as a clamped membrane. For our free disk, this boundary term does not

identically vanish, but numerically we can confirm that the boundary contribution is

small relative to the total strain energy. To good approximation then, we can write

Umech ≈ Ed3

24(1−σ2)

∫
dx dy (∇2ζ)2. This leads to the expression for the thermoelastically lim-

ited Q-frequency product given in the main text,

Qm,thfm =
45κth

πEd2Tbathα2

1− σ
1 + σ

(
1 +

Uopt

Umech

)
. (B6)

Appendix C: Rigid membrane attached to tether

Here, we derive in detail the properties of a rigid membrane of mass M attached to a

single tether. As described in the main text, the tether has a length L (oriented along the x-

axis) and a square cross-section of width b. The displacement field φ(x, t) (where 0 ≤ x ≤ L)

satisfies the beam equation [13],

∂2φ

∂t2
= −Eb

2

12ρ

∂4φ

∂x4
. (C1)

The beam is clamped at x = 0, φ(0, t) = ∂xφ(0, t) = 0, while at x = L the boundary

conditions are given by ∂xxφ(L, t) = 0 and the force equation of the membrane attached

there, M∂2
t φ(L, t) = −Mω2

optφ(L, t) + Eb4∂xxxφ(L, t)/12. The last equation describes the

acceleration of the membrane due to optical restoring forces and the shear force imparted

by the tether.

The boundary conditions at x = 0 require that the general solutions of Eq. (C1) take the

form

φ(x) = c1(sin kz − sinh kz) + c2(cos kz − cosh kz), (C2)

where the dispersion relation is given by ω = (k/β)2 and β = (12ρ/Eb2)1/4. The two

boundary conditions at x = L can be written in matrix form as Q(c1 c2)T = 0, and the

corresponding equation for the eigenfrequencies, det Q = 0, reads

M(ω2 − ω2
opt)(cos γ sinh γ − sin γ cosh γ) +

Eb4β3ω3/2

12
(1 + cos γ cosh γ) = 0, (C3)

where γ = βL
√
ω. With no optical forces (ωopt = 0) and large membrane to tether mass ratio

M/mt�1, the solutions to the above mode equation consist of a low-frequency “pendulum

11



mode” with frequency ωp ≈
√
Eb4/4ML3 and a set of discrete tether oscillation modes

with frequencies ωn, which approximately satisfy the relation cos γ sinh γ − sin γ cosh γ = 0.

For sufficiently large n (i.e., large enough γ), the natural tether frequencies asymptotically

approach ωn = (πn+π/4)2/(βL)2. With optical forces, a power series expansion of Eq. (C3)

reveals that the pendulum mode frequency becomes re-normalized to the value ωCM
m =√

ω2
p + ω2

opt, which can be associated with the CM mode.

Generically, for sufficiently large optical forces ωopt � ωp, a large membrane mass

M means that the eigenvalue condition of Eq. (C3) is approximately satisfied when

M(ω2 − ω2
opt)(cos γ sinh γ − sin γ cosh γ) ≈ 0, which means that the solutions typi-

cally consist of a single CM mode with frequency ωm≈ωopt or tether modes satisfying

cos γ sinh γ − sin γ cosh γ ≈ 0. When both conditions are satisfied simultaneously (e.g.,

near a degeneracy point), the second term of Eq. (C3) must be taken into account, which

yields avoided crossings that mix the tether and CM modes together.

We now consider the ratio of energy stored in the optical field to the strain energy,

Uopt/Umech, for the CM motion away from an avoided crossing. The energy stored in the

optical field for this system is simply given by Uopt = (1/2)Mω2
optφ(L)2, while the strain

energy in the beam is given by [13]

Umech =
Eb4

24

∫ L

0

dx (φxx)
2. (C4)

It can readily be shown that for frequencies where γ�1, the spatial modes are given to good

approximation by

φ(x)≈c1

(
sin kx− cos kx+ e−kx

)
. (C5)

Then, when the CM mode is positioned halfway in between two tether modes (say

at a frequency ωCM
m ≈(πn + 3π/4)2/(βL)2), evaluation of the stored energies yields

Uopt/Umech∼8M/mt.

Appendix D: Dynamic optical spring

An increase in the frequency of a mechanical mode can also be achieved through a dy-

namic backaction effect in an opto-mechanical system [17, 18], as opposed to the “static”

optical potential considered in our work. We briefly describe the dynamic effect and com-

pare the two mechanisms here. Specifically, we consider a mechanical degree of freedom
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whose displacement is linearly coupled to the optical cavity frequency. The corresponding

Hamiltonian for such a system in a rotating frame is [20, 21]

Hint =
p̂2

2m
+

1

2
mω2

mẑ
2 − ~δâ†â− ~ω′ẑâ†â− ~ΩL(â+ â†). (D1)

Here â is the annihilation operator for the optical mode, ẑ, p̂ are the position and momen-

tum operators corresponding to the mechanical resonator, ωm is the natural mechanical

frequency, δ = ωL − ω0 is the frequency detuning between an external pump field driving

the optical cavity and the optical resonance frequency ω0 (when the mechanical resonator

is in equilibrium), ΩL is the driving amplitude, and ω′ is the optical cavity frequency shift

per unit mechanical displacement. In addition to the Hamiltonian terms, the optical cavity

is assumed to have losses characterized by a linewidth κ.

For weak opto-mechanical coupling, it is customary to linearize the optical cavity dy-

namics around the classical steady-state value 〈â〉 = α = iΩL/(κ/2 − iδ) (here we have

incorporated a steady-state shift of the optical resonance frequency into our definition of

the detuning δ), and eliminate the cavity to yield an effective susceptibility χ(ω) of the

mechanical displacement in response to an external force f(ω) [20]. Specifically, one finds

χ(ω)−1 = ω2
m − ω2 +

16ωmδΩ
2
m

4δ2 + (κ− 2iω)2
. (D2)

Here we have defined an effective opto-mechanical driving amplitude Ωm = gα, and

g = ω′zzp = ω′
√

~
2mωm

is the optical cavity frequency shift per unit mechanical zero-point

uncertainty. In the perturbative limit, this expression can be written in terms of the sus-

ceptibility of a simple oscillator with an effective linewidth and frequency that is modified

due to opto-mechanical interactions, χ(ω)−1 ≈ ω2
m,eff − ω2 − iωΓeff. The effective linewidth

and mechanical frequency shift can be interpreted as resulting from optically-induced cool-

ing (or heating) and a dynamic optical spring constant, respectively. In the relevant regime

of large detuning δ�ω, κ, and when the optical spring is dominant compared to the natural

mechanical frequency, the effective mechanical frequency is given by

ωm,eff≈2Ωm

√
ωm
δ
. (D3)

The damping rate is given by

Γeff ≈ Ω2
mκ

ωm
ωm,eff

[
1

(κ/2)2 + (δ + ωm,eff)2
− 1

(κ/2)2 + (δ − ωm,eff)2

]
, (D4)
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which is interpreted as the difference between anti-Stokes and Stokes scattering rates. Note

that for positive detuning δ > 0, the opto-mechanical interaction yields an increase in

the mechanical frequency but an anti-damping force (Γeff < 0). One can achieve simul-

taneous stiffening and cooling by employing multiple beams with different amplitudes and

detunings [18], but for our purposes it is sufficient to consider only the beam that leads to

stiffening.

We wish to consider the ratio of the effective mechanical frequency to the rate of decoher-

ence Γd induced by optical Raman scattering, which is given by the sum of the anti-Stokes

and Stokes scattering rates. In the relevant limit of large detuning and dominant optical

spring effect, one finds
ωm,eff

Γd
≈2δ

κ
. (D5)

This result states that the cavity must be driven very far off resonance in order to yield a

frequency shift that is much larger than the decoherence rate. Operating at large detuning

in turn requires extremely large cavity input powers to get an appreciable optical spring

effect. As an example, we consider the dynamic spring constant for a realistic geometry,

such as a Fabry-Perot cavity of length L = 1 cm and cavity finesse F = 105 (with the cavity

linewidth given by κ = πc/(FL) = 2π×150 kHz for our specific parameters). The optical

driving amplitude is related to the input power Pi through ΩL =
√
κPi/(2~ωL) for perfect in-

coupling efficiency, while the opto-mechanical interaction strength is of order ω′∼ω0/L. The

operating wavelength is taken to be λ = 1 µm. We also assume that the SiN membrane has

a radius of radius a = 10 µm and that it undergoes pure CM motion (such that its effective

motional mass is the same as the physical mass). Then, an input power of Pi∼2 kW is

required if one wants to achieve a number of coherent oscillations N (osc) =
ωm,eff

2πΓd
∼103 and an

effective mechanical frequency of ωm,eff∼2π×1 MHz. This corresponds to an input intensity

of ∼10 W/µm2 for a beam focused to a size comparable to the membrane radius.

In contrast, in our static trapping scheme, a comparable mechanical frequency and co-

herence time can be achieved for an intra-cavity intensity of ∼0.1 W/µm2, and the cavity

can be driven resonantly to facilitate the intra-cavity field buildup. Because the static trap

results in the membrane being trapped at an anti-node, there is no linear opto-mechanical

coupling for the trapping field and the lowest-order opto-mechanical coupling is quadratic in

nature. The decoherence rates caused by anti-Stokes and Stokes scattering in this case (at

frequencies ωL±2ωm) have been calculated in Ref. [22] and are extremely rare for our real-
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istic systems (occurring at a sub-Hz level). In fact, the dominant decoherence mechanism

arising from the trapping beam is due to scattering out of the cavity and the photon recoil

heating imparted on the membrane, as described later.

Appendix E: Modification of opto-mechanical coupling strengths

Our theory of optical trapping of membranes predicts dramatic corrections to the sim-

ple model of opto-mechanical interactions given by Eq. (D1), when the optical restoring

forces (either static or dynamic) become large compared to the natural ridigity of the mem-

brane. In this scenario of strong optical forces, the mechanical mode shape and thus the

opto-mechanical coupling strength g become functions of intensity as well, with g generally

decreasing with larger intensity. The origin of this effect is intuitively seen by considering

a membrane that interacts with a Gaussian cavity mode whose beam waist w is smaller

than the membrane radius a. Then, if the optical restoring forces are large compared to

the membrane stiffness, the optical beam in fact resembles a new boundary condition that

“pins” the region r . w of the membrane into place. This reduces the overlap between the

mechanical displacement field and the optical beam, and thus g.

This effect is illustrated in Fig. 4 for a free SiN membrane of thickness d = 30 nm and

a = 25 µm, interacting with a beam of waist w = 15 µm. In this calculation the membrane

is statically trapped, although a similar effect would occur for sufficiently large dynamical

backaction forces as well. In Fig. 4a, we calculate the opto-mechanical coupling strength

g (to another cavity mode with the same beam waist but which exhibits an intensity gradient

at the membrane position) as a function of the CM frequency, which is varied through the

intensity of the trapping beam. The value of g is calculated using the expression [2]

g ∝ zzp

∫
dx dy e−2(x2+y2)/w2

ζ(x, y)/max|ζ|. (E1)

In Fig. 4a, we have normalized the obtained value of g with the value g0 if the motion were

purely CM, where the displacement field ζ is constant. At larger frequencies, g dramatically

decreases, reflecting the “pinning” effect that the optical force has on the center of the

membrane. This is also directly seen in Fig. 4b, where we plot the displacement field ζ(x, y)

for a CM frequency ωm/2π = 300 kHz. Incidentally, Eq. (E1) also makes it apparent that

the torsional (1, 0) membrane mode described in the main text has zero opto-mechanical
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coupling, due to the odd versus even reflection symmetries of the torsional mode and cavity

mode, respectively.

Appendix F: Tethered membrane inside a Fabry-Perot cavity

The membrane should be trapped within a Fabry-Perot cavity in order to enable optical

cooling and reach the quantum regime [20, 21]. The membrane diffracts and scatters the

cavity light, which introduces two important effects. First, the optical mode will no longer

be Gaussian, and the new optical mode accommodated by the mirrors and the corresponding

optical forces must be determined. Second, scattering out of the cavity reduces the cavity

finesse, and the associated photon recoil acts as a stochastic force that heats the membrane

motion. To calculate the cavity modes in the presence of the membrane, we use a modified

Fox-Li propagation technique [23], as briefly described below.

Specifically, the electric field is treated within the scalar paraxial approximation, and thus

it is completely described by its transverse profile E(x, y). This approximation is justified

by noting that the disk should primarily diffract light at small angles θ.(ka)−1 around the

z-axis, where k = 2π/λ is the optical wavevector. Within this approximation, free propa-

gation over a distance z is accounted for by a phase shift in the Fourier transform of the

field profile, Ẽ(kx, ky)→eikz−i(k
2
x+k2

y)z/(2k)Ẽ(kx, ky). In our case, we are interested in systems

with rotational symmetry, and thus the transforms are implemented through the quasi-

discrete Hankel transform described in Ref. [24]. Reflection off of a circular mirror with

radius of curvature Rc and reflectance Rm is characterized by the real-space transforma-

tion E(x, y)→
√
RmE(x, y) exp

(
2ik(Rc −

√
R2
c − (x2 + y2))

)
. Similarly, at the membrane

location, the wave front experiences reflection and transmission amplitudes r(x, y), t(x, y),

respectively, which multiply the incident real-space wave front there. For the case of a non-

uniform disk, we approximate r(x, y), t(x, y) with the formulas for an infinite thin dielectric

sheet of uniform thickness, replacing the uniform thickness d→d(x, y) with the local thick-

ness. Note that an initial wave front incident on the membrane thus splits into two wave

fronts (a reflected and transmitted field), and we keep track of the multiple scattered fields

to all orders in order to calculate the field buildup or cavity eigenmodes. In contrast, the

original technique of Ref. [23] only accounts for transmission. Thus, our approach properly

captures the effects of the reflected amplitude and back-scattered angle. Furthermore, our
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modified technique reveals specifically at what frequencies resonances should occur.

We now discuss the effect of the membrane on the cavity finesse. As realistic parameters,

we consider a membrane placed symmetrically in the center of an optical cavity of length

L = 1.99 cm with spherical mirrors having radii of curvature Rc = 1 cm and perfect

reflectivity (such that the entire cavity linewidth κ is attributable to scattering from the

membrane). The transverse extent of the spherical mirror surfaces is rm = 0.95 mm, i.e.,

all portions of the beam front with x2 + y2 > r2
m are scattered out and set to zero upon

reflection at the mirror. An empty cavity in this configuration yields a Gaussian mode of

waist w0≈15 µm in the center. In Fig. 5a, we plot the membrane-limited cavity finesse

Fmem ≡ πc/κL for a membrane of uniform thickness d = 30 nm and varying radius a (black

circles). Clearly, cavity losses are negligible when the nominal waist is small compared to

the disk radius, w0/a.1. In the regime w0/a&1, however, the finesse rapidly drops, which

is attributable to scattering by the hard edges of the disk. This effect is strongly reduced by

“softening” or apodizing the disk edge [25]. In Fig. 5a (red circles), we also plot the finesse

for a membrane whose thickness d(r) = d0(1 − (r/a)2)2 tapers down to zero at the edge,

where d0 = 30 nm is the maximum thickness. Remarkably, the apodization can improve the

cavity finesse by several orders of magnitude. The modification of the cavity modes by the

membrane is illustrated in Fig. 5b, where we plot the transverse profile at the membrane

position for some representative apodized disk sizes.

We find the CM eigenmodes of the apodized disk by using Eq. (A3), where the optical

potential ωopt(r) is now evaluated using the modified cavity mode profiles. The thermoelastic

limit is subsequently calculated using Eqs. (2) and (3) in the main text. In Fig. 5c, the

number of oscillations N
(osc)
th due to thermoelastic damping is plotted (in black). Here the

circulating intra-cavity power is chosen such that the CM frequency is fixed at ωm/2π =

0.5 MHz. We next consider the effect of photon recoil heating. We assume that each

scattered photon contributes the maximum possible momentum kick of ~k along the z-axis,

giving rise to a momentum diffusion process d〈p2
z〉/dt = (~k)2Rsc [10], where Rsc is the

photon scattering rate. Converting this expression into a jump rate, it can be shown that

the number of coherent oscillations before a jump in the phonon number can be written as

N (osc)
sc =

1

2π

V

Vc

ω0

κ

ω2
m

k2Imax/ρc
. (F1)

Here Imax is the maximum cavity intensity (which in general does not need to be at the
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center of the membrane due to mode distortion), ω0 = ck, V is the volume of the disk,

and Vc is the cavity mode volume. Assuming that the cavity mode is not significantly

distorted and that the beam waist w0&a such that the entire membrane experiences the

optical force, one can approximate ω2
m

k2Imax/ρc
∼1 and Vc∼πw2

0L/4. In this case the number

of coherent oscillations scales roughly as N
(osc)
sc ∼kV

w2
0
Fmem. Note that this result is purely

geometric in nature and also scales directly with the cavity finesse (which itself depends

on V ). In Fig. 5c, we plot N
(osc)
sc for the apodized disk (in red). Combining the effects

of thermoelastic damping and recoil heating, the total number of coherent oscillations is

given by N
(osc)
tot = (N

(osc)−1
sc + N

(osc)−1
th )−1 (blue curve). It can be seen that an apodized

disk of radius r∼9 µm can support a coherence time of N
(osc)
tot ∼2000 in a room temperature

environment.
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FIG. 1: a) Side view of a membrane supported by a single tether inside a Fabry-Perot cavity. The

membrane has radius a and thickness d, while the tether has length L and a square cross-section of

width b. It is trapped in the anti-node of a standing optical field with transverse intensity profile

I(r) at the membrane location. b) Displacement fields of a few selected membrane modes (in

arbitrary units), for zero trapping intensity. The black outline indicates the equilibrium position.

(m,n) denote the number of nodal diameters and circles, respectively. The system dimensions are

given by a = 10 µm, b = d = 50 nm, and L = 50 µm.
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FIG. 2: a) Normal mode frequencies of a free circular disk trapped in an optical standing plane

wave, as a function of beam intensity. The disk has a thickness and radius of d = 50 nm and

a = 10 µm, respectively, and material properties corresponding to stoichiometric silicon nitride. b)

Normal mode frequencies of a rigid membrane suspended by a single tether, as a function of the

optical restoring frequency ωopt acting on the membrane. The tether has length L = 50 µm and

a square cross-section of b = 50 nm on each side, while the ratio of membrane to tether mass is

given by M/mt = 125. Away from degeneracies, the mode spectrum consists of a CM mode with

frequency ∼ωopt and discrete tether modes with frequencies ωn (n = 1, 2, 3, ...). Avoided crossings

occur near degeneracies ωopt∼ωn (see inset). c) Normal mode frequencies for a realistic tethered

system, as a function of peak trapping beam intensity. The disk and tether have dimensions

identical to those in a) and b), while the beam waist is w = 35 µm. The gray points indicate tether

modes. The red (5), green (©), blue (�), and black (4) points denote the CM, (1,0), (2,0), and

(0,1) membrane modes, respectively.
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a) b) c)

FIG. 3: Ratio Uopt/Umech of optical to strain energy for the CM mode of different systems: a)

an optically trapped free disk as a function of its frequency ωm/2π. Here the beam waist is fixed

at w = 35 µm and the trap intensity is varied to yield the corresponding ωm. Inset: the trap

intensity is fixed such that ωm/2π = 1 MHz in the plane wave limit while w/a is varied. b) a

rigid membrane suspended by a single tether, as a function of the CM frequency. c) a realistic

tethered structure, obtained by finite-element simulations. The system dimensions for these plots

are identical to those in Fig. 2, namely, a = 10 µm, L = 50 µm, d = b = 50 nm.

a) b)

FIG. 4: a) Opto-mechanical coupling strength g of a trapped free disk as a function of CM frequency.

The coupling strength is normalized by the value corresponding to rigid (pure CM) motion g0. A

decrease in g for increasing frequency is caused by the non-uniform optical force pinning the center

of the disk in place. The dimensions for this simulation are d = 30 nm, a = 25 µm, and w = 15 µm.

b) Displacement field ζ(x, y) (in arbitrary units) for a free disk of the same dimensions, for a trap

frequency of ωm/2π = 300 kHz. The displacement field clearly illustrates the pinning effect created

by the optical forces.
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a) b) c)

FIG. 5: a) Membrane-limited finesse Fmem of a Fabry-Perot cavity with a membrane in the middle.

The black circles correspond to a flat membrane of uniform thickness d = 30 nm, while the red

circles correspond to an apodized membrane with maximum thickness d0 = 30 nm. The finesse is

plotted as a function of the ratio of the empty-cavity beam waist w0 to the membrane radius a.

The cavity parameters are chosen such that w0 = 15 µm. b) Intensity profiles (in arbitrary units)

of cavity mode in the presence of an apodized membrane. The intensity profile is evaluated halfway

between the two cavity mirrors. The cavity and membrane parameters are provided in the main

text. The blue and red curves correspond to disk radii a = w0 and a = 2.5w0, respectively, while

the dashed black curve is the Gaussian intensity profile for an empty cavity. c) The number of

coherent oscillations of the CM motion of an apodized disk due to thermoelastic damping (N
(osc)
th ,

black cirlces) and recoil heating (N
(osc)
sc , red circles), as a function of disk radius and for fixed

w0 = 15 µm. Also plotted is the total number of coherent oscillations (N
(osc)
tot , blue dashed curve),

which is given by the sum in parallel of the individual contributions.
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