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Abstract

We present a computational model of human texture segmenta-
tion and argue for its utility in machine vision. Major theories due
to Julesz and Beck attribute preattentive texture segmentation to
differences in first-order statistics of stimulus features such as ori-
entation, size and brightness of constituent elements. An alterna-
tive approach seeks to exploit psychophysically observed spatial
frequency channels and neurophysiologically observed blob, bar-
and edge-sensitive mechanisms, and perform simple computations
on the outputs of these to find texture boundaries. Previous mod-
els in this framework have been incompletely specified; our model
is precisely stated and applicable to arbitrary grey scale textures.
We claim that the respounses of two types of mechanisms are nec-
essary and sufficient: (a) center-surround mechanisms of various
widths, and () oriented mechanisms of various widths and ori-
entations which are even-synunetric about their axes. Simulation
data on a number of texture pairs is presented.

1 Introduction

The two primary problems in texture perception-texture classi-
fication and texture segmentation have received considerable at-
tention in both human and machine vision. For surveys of the
research in machine vision we refer the reader to Haralick [17],
Van Gool. Dewaele and Oosterlinck [27] and Kube {21). In human
vision. the leading theories of texture perception are due to Beck
and Julesz [7.19.2.3]. They attribute preattentive texture segmen-
tation to differences in first-order statistics of stimulus features
such as orientation. size and brightness of constitnent elements.
Additionally Julesz's texton theory [7.19] considers such features
as terminators and intersections, and Beck[2.3] attributes a major
role to emergent structures from grouping operations. Experimen-
tal results critical of these theories have appeared [13,16,6,4].
Research in texture perception has suffered from a major
difficnlty- vision researchers seem unable to agree on a mathemat-
ically precise definition of texture. This is obviously troubling
for machine vision-if one does not know what is to be the in-
put and output of an algorithm, how does one decide that the
algorithm is effective? In section 2, we argue that machine tex-
ture segmentation should replicate human hahavior; one can then
use psychophysical data to provide the input/output characteri-
zation. The rest of the paper is devoted to developing a compu-
tational model of human texture segmentation which is, by this
definition. automatically a solution to the corresponding machine
vision problem. In section 3 we review psychophysical and electro-
physiological evidence on phase-sensitive mechanisms in primary
visual cortex V1. In section 4, we present our model of texture
segmentation which is based on finding differences in the pooled
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responses of these mechanisms. The important question then is
one of precisely specifying the class of detectors used in human tex-
ture perception. We interpret the results of a set of psychophysical
experiments on phase discrimination to answer this question. We
claim that the responses of two types of mechanisms are neces-
sary and sufficient: (a) center-surround mechanisms of various
widths, and (b) oriented mechanisms of various widths and orien-
tations which are even-symmetric about their axes. In section 5,
we present arguments which suggest that odd-synunetric mecha-
nisms are not used in human texture perception. Simulation data
on a number of texture pairs is presented in Section 6.

2 Why machines should imitate human
texture perception

Both texture recognition and segmentation have been hard prob-
lems in machine vision for a long time. Oune major problem has
been the lack of an adequate definition of texture and objective cri-
teria of success at a task involving texture perception. This is not
the case for many other machine vision tasks. To take two exam-
ples, the stereo correspondence problem and the 3--D ob ject recog-
nition problein can be defined mathematically without reference
to luman abilities and one can certainly imagine machine vision
systems which outperform humans. In texture segmentation the
problem is the following-we wish to ignore ‘inessential’ variation
and find the ‘semantically meaningful® boundaries e.g. between
grass and gravel or between leopard skin and tree leaves. What
is ‘inessential’ and what is ‘semantically meaningful’ is difficult
to state in mathematical terms independent of the environments
typically encountered and the tasks that need to be performed.
Consider one possible approach in terms of a pliysical variable we
intuitively think of as related to texture: spatialifrequency mea-
sured in cycles/degree subtended at the retina. We might try to
define a particular range to correspond to texture. However we
realize that a bird like a falcon or an eagle needs to be (and is !)
much more sensitive to higher spatial frequencies than a hwman.
What is inessential variation to a human is semantically mean-
ingful for the bird. A specification of inessential variation by an
absolute frequency range is clearly inappropriate.

We choose to define the problem of texture segmentation hy
machine to be the task of replicating human behavior at this
task: find exactly those boundaries preattentively extracted by
human observers. This should be useful for most machine vi-
sion applications: autonomous navigation by approximately hu-
man size robots in natural environments is an obvious example.
We realize that there are applications like textile or tree bark clas-
sification where machines could potentially perform better than
humans with appropriate definitions of ‘inessential” or ‘semanti-
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Figure 1: Four receptive field profiles. Even-syminetric (top), and
odd-symmetric (bottom). -

cally meaningful’ variation. However replicating human behavior
seens to us to be the best way of coming np with a task indepen-
dent definition. Note that we have avoided giving a definition of
texture; we only defined texture boundaries. We offer a suggestion
due to Kube [21]: Texture is spatial variation in image irradiance
that occurs within the segments of a desired image segmentation.

3 Even-symmetric and odd-symmetric
mechanisms

The idea that the early visual system contains a range of chan-
nels sensitive to different spatial frequencies is due to Campbell
and Robson {10] and has received considerable support from psy-
chopliysical and neurophysiological data. While some earlier stud-
ies were suggestive. phase discrimination experiments by Field and
Nachmias [15] provide strong evidence for a further elaboration:
there are in fact 4 distinct classes of detectors whose receptive
field profiles are shown in Figure 1. Bar-selective detectors are
even-symmetric (a) and (b) and respond strongly to appropri-
ately placed bright and dark bars respectively. Edge-selective de-
tectors (c) and (d) are odd-symumetric and respond preferentially
to left and right step edges, respectively. Note that the names bar
and edge detectors are primarily for mnemonic value and each
mechanism may respond to other stimuli; also there may be more
secondary lobes than shown in the figure. Field and Nachmias
presented observers with two compound gratings composed of a
fundamental (F) and second harmonic (2F) added in two phases
differing by 180 degrees. Discrimination thresholds for several
180 phase shifts (for example, 0-180, 45-225, 90-270) were mea-
sured. They explained their results by a model which uses changes
in the responses of even-symmetric mechanisms centered on the
peaks and troughs of F and odd-symmetric mechanisms centered
on the zero-crossings of F. Burr, Morrone and Spinelli {8] studied
compund grating phase discrimination using stimuli composed of
256 harmonic cosine componeuts, smoothly filtered in amplitude.
They exploited the facilitation phenomenon and measured thresh-
olds for discriminating compound gratings from their negatives
(180 phase shift) in the presence of a pedestal and studied how
these varied with pedestal contrast. Again their experimental re-
sults suggested strongly the presence of these 4 mechanisms (and
not ones of intermediate phase). It seems natural to connect these
4 mechanisms to electrophysiologically observed simple cell recep-
tive field profiles [18]. For computational purposes, one can model
the even-symmetric mechanisms as linear convolution with a RF
of type 1(a) followed by half-wave rectification: the positive part
of the response gives the bright bar mechanism and the negative
part of the response gives the dark bar mechanism. The half-wave
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rectification models the biological fact that cortical cells have low
maintained discharge rates and are unable to respond with a de-
crease in firing rate as required by a negative response. Similar
remarks apply for the odd-symmetric mechanisms.

4 A model of human texture segmenta-
tion

Several researchers [6,14,9,4,26] have suggested a role for spatial
frequency chanuels, neurophysiological blob/bar/edge detectors,
and pooled respouses in texture perception. However, it is fair to
say that a model precise enough to be implemented and tested
(and perhaps falsified !) on grey scale textures has not yet been
given. We offer such a model. The image I(x,y) is convolved
with a bauk of linear filters F; followed by half-wave rectification
to give a set of "neural’ responses I?f(.r,y) and R7(r,y). A tex-
ture T} can be preattentively discriminated from T, if and only
if one of these 'neural’ responses, say R}, after spatial pooling is
sufficiently’ different for T; and T,. Spatial pooling here means
the computation of the average response over each textured re-
gion. I?.?L and R; should be viewed as convenient approximations
of the true cortical neural responses g(R7) and g(R;7) where g
is a nonlinear function of the type observed electrophysiologically
[1]. Two noteworthy points here: (a)A nounlinear stage is essen-
tial: spatially pooled responses of linear filters cannot discriminate
between textures with identical second-order statistics and hence
identical power spectra. Aud we know that humans can discrim-
inate some textures with identical second-order statistics preat-
tentively [20]. A generalization of this observation to n™ order
statistics may be found in Kube [21]. (b) Half-wave rectification
is a natural nonlinearity as stated in the previous paragraph, and
it is necessary. Full wave rectification [6] will not permit us to
discriminate a texture consisting of bright bars on a grey back-
ground from a texture cousisting of identical size, contrast dark
bars on a grev background if one uses filters F; with zero-mean
response profiles.

To completely specify the model. all that remains is the choice
of filters F;. Two classes of filters seem natural choices:(1) radi-
ally symmetric center-surround filters of the difference of gaussian
type ( Figure 2.a-b), and (2) directionally tuned filters of differ-
ing orientation and widths with an even-symmetric cross section
perpendicular to their axes ( Figure 2¢ ). The first kind are sug-
gested by our ahility to segment texture pairs consisting of bars
of differing width and orientation. The second kind are needed to
discriminate texture pairs composed of micropatterns containing
the same oriented line segments, such as triangles and K's. or X''s
and L's. Later in this paper we present simulation results, includ-
ing examples from Gurnsey and Browse [16] which were sources of
great difficulty for Julesz's texton theory. For now. let us examine
wletler orientationally-tuned odd-symmetric mechanisms (as in
l.c and 1.d ) are needed or used. We suggest not, and present two
arguments for this claim in the next section

5 Odd-symmetric mechanisms not used

The first argument is based on some experimental results of
Rentschler, Hubner aud Caelli {22] on the discrimination of tex-
tures composed of micropatterns which were compound Gabor
signals. Textures composed of mirror-image compound Gabor



Figure 2: The point-spread functions of sowe of the filters used in
our simulation. The filters were designed after Ref. 24 summing
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(a) DOG? - Linear combination of three circular concentric gaus-
sian functions. a-G(0.0, g4, 04 ) +0-G(0,0,0p,05) +¢-G(0,0, 0, 0¢)
with variance o, : ap : 0. in a ratio of 0.62 : 1 : 1.6 and
a : b : c :in a ratio of 1 -2 : 1. (b) DOG1 - Lin-
ear combination of two circular concentric gaussian functions,
- G(0,0,04,0,) + b - G(0,0,04,0;), with variance o, : a, in a
ratio of 1 : 1.6 and coefficients @ : b in a ratio of 1 : —1. (c)
DOOG2? - Linear combination of three offset identical gaussian
functions a-G(0.Ya,0,,0,)+b-G(0, yp, 0,0y} +¢-G(0, yc, 05, 0,)
The offsets are y, = —y. = ay, yp = 0; the coefficients a : b : ¢
are in a ratio of —1: 2 : -1 for the filter with axis of symunetry
along the x direction. The other filters of the class are obtained
by rotation about the centre of the middle gaussian. Six different
orientations were used in all experiments. o, was varied between
1 and 10 pixels , and the ratio g, : a, was varied hetween 2 and
4.

gaussian functions G(xo.¥%0.0,.0y) =
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Figure 3: Two texture pairs composed of odd-symmetric ( left )
and even-symmetric ( right ) micropatterns. The micropatterns
in the left texture pair are y-mirror-symmetric; the micropatterns
in the right texture pair are xy-mirror-symmetric. Segmentation
is preattentive for the right texture pair but not for the left one.

signals were found indistingnishable even when the individual mi-
cropatterns were easily discriminated. However. there was no dif-
ficulty in discriminating textures composed of non-mirror-image
compound Gabor signals. A simplified version of the phenomenon
(using differences of offset Ganssians [28] to construct simple odd
and even micropatterns) is seen in figure 3 where the right tex-
ture is easily segmented and the left one is not. While they in-
terpreted their data differently, we attribute the failure to dis-
criminate textures of mirror-image compound Gabor signals to a
lack of utilization of odd-svmmetric filters. First some definitions:
micropatterns Af; and Af; are said to be y-mirror-symmetric (y-
ms) if M(z) My(—7) and ay-mirror-symmetric (ry-ms) if
M(z) = —M,(—z). Examples of y-ms pairs arc Figures 2a.
2c¢ in Ref. 19, and the two micropatterns in our Figure 3(left):
Figure 3(right) contains a ry-ms pair. Cousider any two y-ms
patterns Af;, Af;. Clearly the means of their positive parts ALY,
I\I;' are identical; so are the means of their negative parts Al .
My . Pooled values after (or before!) halfwave rectification can-
not distinguish them. Since y-mirrer-symmetry is invariant under
scaling with any (possibly nonlincar) function and under convo-
lution with even-symmetric kernels. the two patterns are not dis-
tingnishable using pooled responses R*, R~ of even filters. As
y-mirror-symmetry is not invariant under convolution with odd-
symietric kernels, pooled responses of such filters (possibly after
a nonlinearity) could be used for discrimination. In other words.
to seguient a texture composed of M, from one composed of M,
using pooled responses, we must rely on odd-symmetric mecha-
nisms. Interestingly, for a ry-ms pair, the situation is reversed:
only even-symmetric mechanisms are useful. (To establish this.
note that convolving a xy-ms pair with an odd kernel makes it a
y-ms pair.) Now that we have identified textnre pairs whose dis-
crimination must rely on exactly one of the two symmetry classes



of mechanisms, deciding which of these are used in texture per-
ception becomes an empirical question. Cleasly odd-symmetric
mechanisws are not utilized; even-symmetric are.

The second argument is based on data on how our ability to
discriminate textures scales with eccentricity of viewing direc-
tion (from fovea to periphery). Saarinen, Rovamo and Virsu {24]
showed on a number of textures that if the stimuli were M-scaled
(scaled to make them equally visible at all eccentricities, a magnifi-
cation approximately the inverse of the density of retinal ganglion
cells as a function of eccentricity), then texture discrimination was
equally possible at all eccentricities. Bennett and Banks [5] car-
ried out compound grating phase discrimination experiments at
a range of eccentricities. They found that the data could be ex-
plained by assmning that the sensitivity of even-symmetric mech-
anisms is constaut, but that of the odd-symmetric mechanisms
falls dramatically with eccentricity. This accounts, in their opim-
ion, for the reduced ability to encode phase peripherally. They
also used their model to account for Rentschler and Treutwein's
[23] data on phase discrimination in the periphery. This decline
in seusitivity of the odd-symmetric mechanisms seems to suggest
that they are not utilized in texture segmentation in an essem-
tial way-if they were our ability to discriminate textures should
decline at a similar rate.

6 Simulation Results

Our choice of frequency and orientation tuning parameters of
these filters was guided by psychophysics (contrast semsitivity
functions) and electrophysiological data on macaque V1 neurons
from DeValois, Albrecht and Thorell [12]. For the shape of these
filters we used radial or directional gaussian derivatives as sug-
gested by Young [28] which have been found to give excellent fits
to cortical RF data. (This choice is not critical-we could have
used Gabor filters instead.) We tested our model on a large num-
ber of texture pairs culled from the extensive literature on texture
segmentation. For each discriminable pair, we were able to find
one or more discriminating filters in the class described. Figure 4
displays some examples. Note that the parameters of these filters
correspond plausibly to those of neurons in V1.

Wahile it seems to have greater explanatory power than the Beck
and Julesz models. our model should be viewed primarily as a
first-order approximation.
linearities arising from the cross—channel inhibition in V1 which
has been documented both physiologically and psychophysically
[25,11]. Also in this paper we have not precisely specified how tex-
ture boundaries are computed from the neural response profiles.
These are topics of ongoing investigation.

For example, we have ignored non-
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