A Caltech Library Service

Analysis of the Fully Developed Chute Flow of Granular Materials

Ahn, Hojin and Brennen, Christopher E. and Sabersky, Rolf H. (1992) Analysis of the Fully Developed Chute Flow of Granular Materials. Journal of Applied Mechanics, 59 (1). pp. 109-119. ISSN 0021-8936.

See Usage Policy.


Use this Persistent URL to link to this item:


Existing constitutive relations and governing equations have been used to solve for fully developed chute flows of granular materials. In particular, the results of Lun et al. (1984) have been employed and the boundary value problem has been formulated with two parameters (the coefficient of restitution between particles, and the chute inclination), and three boundary values at the chute base wall, namely the values of solid fraction, granular temperature, and mean velocity at the wall. The boundary value problem has been numerically solved by the "shooting method." The results show the significant role played by granular conduction in determining the rpofiles of granular temperature, solid fraction, and mean velocity in chute flows. These analytical results are also compared with experimental measurements of velocity fluctuation, solid fraction, and mean velocity made by Ahn et al. (1989), and with the computer simulations by Campbell and Brennen (1985b).

Item Type:Article
Additional Information:Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 17, 1989; final revision, Nov. 29, 1990.
Issue or Number:1
Record Number:CaltechAUTHORS:AHNjam92
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:32
Deposited By: Christopher Brennen
Deposited On:13 Aug 2004
Last Modified:02 Oct 2019 22:16

Repository Staff Only: item control page