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ABSTRACT 

A method for the Monte Carlo simulation, by digital computer, of 

the evolution of a call iding and coagulating population of suspended 

particles is described. Call ision mechanisms studied both separately 

and in combination are: Brownian motion of the particles, and laminar 

and isotropic turbulent shearing motions of the suspending fluid. 

Steady state distributions are obtained by adding unit size particles 

at a constant rate and removing all particles once they reach a pre-set 

maximum volume. The resulting size distributions are found to agree with 

those obtained by dimensional analysis (Hunt, 1982). 



1. INTRODUCTION 

In many fluid systems with a continuous size distribution of 

suspended particles the primary mechanism for the production of larger 

particles from smaller particles, over much of the size range, is 

coagulation, the process of call ision and coalesence of particles. 

These coagulating particles can be solid or 1 iquid with the suspending 

medium gaseous or 1 iquid, for example: atmospheric aerosols, cloud 

water droplets, colloidal su s pensions in water or emulsions of one 

1 iquid or another. The computations described in this paper are 

primarily concerned with suspensions of solid particles in water but 

the techniques used have general applications. 

In describing the dynamics of continuous size distributions it is 

convenient to introduce the particle size distribution, n(v), defined by 

dN = n(v)dv 

so that dN is the number of particles per fluid volume whose sizes 

(volumes) lie in the range v to v+dv. The collision rate, per unit volume 

of fluid, of particles of volumes v. and v . is given by the product of 
I J 

their respective concentrations and a call ision function, B(v . ,v.), 
I J 

representing the geometry a nd dynamics of the call ision mechanism, so that 

coli ision rate= S(v.,v . )n{v.)n(v.)dv.dv. 
I J I J I J 

Then the change with time of the particle size distribution is 

g iven by the general dynamic equation (GDE) 

an(v) 
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Here I (v) is a source of particles (through condensation, for example) 

and S(v) ~: is a particle sink resulting from particles sedimenting in 

the z direction at their Stokes• settling velocity, S(v). If we restrict 

attention to size ranges where the source term is negligible, and to 

homogeneous situations (so that spatial derivatives may be neglected) 

then (1) reduces to the coagulation equation 

v 00 

'dna~v) = i Js(v 1 ,v-v 1 )n(v 1 )n(v-v 1 )dv 1
- Js(v,v 1 )n(v)n(v 1 )dv 1 (2) 

0 0 

The two terms on the right-hand side of (2) represent; respectively, the 

rate of gain of particles of volume v by coagulation of pairs of smaller 

particles, conserving volume, and the loss of particles, v, due to their 

coagulation with particles of all sizes. 

In writing equation (2) it is assumed that the suspension is completely 

mixed and that correlations between particles induced by the coagulation 

process can be ignored. For example, as particles of a given size 

coalesce, a local reduction in their number occurs, so fewer particles 

of this size remain for further coalescence. Such spatial inhomogeneities, 

which can be expressed as conditional probabilities for the collision of 

two particles (Gillespie, 1972) are ignored in (2) whose solution, thus, 

may not include all possible histories of particle growth. 

A variety of techniques have been used to investigate equations (1) 

and (2) and an extensive 1 iterature has resulted (see Pruppacher and 

Klett, 1978 for a recent account). In this study we present a Monte 

Carlo method for the direct simulation of the precesses of collision 

and colescence of particles. Unlike the direct numerical solutions of 

equation (2), such as developed by Gelbard, Tambour and Seinfeld (1980), 
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the technique avoids approximations involved in writing (2). It also 

does not require analytic forms of the collision functions S (except 

for when Brownian motion is the collision mechanism, see Appendix A). 

Direct comparison of the results of the Monte Carlo simulation method 

and numerical integrations of (2) should therefore prove useful. 

Furthermore, in addition to predicting the average particle size spectrum 

the simulation method provides information on higher moments of properties 

of the suspension, thereby enabling estimates of the uncertainty . of 

the size spectrum. 

In order to confirm the appropriateness of the method and verify 

the techniques used, it was considered sensible first to ignore particle 

interactions such as those due to hydrodynamic and interfacial forces. 

Clearly, this is unrealistic and only defensible as a first step toward 

a more sophisticated model. However, there seemed 1 ittle point in 

proceeding to this enhanced model if the simulation method would not 

reproduce the results of Hunt and Friedlander which were derived in the 

absence of interparticle forces. A more complex model including also 

the simulation of differential settling induced collisions is the 

subject of a subsequent paper. 

For particles to coagulate two processes are required: (a) a 

mechanism to develop relative motion of the particles through the fluid 

which will bring them into close proximity, and (b) short-range inter­

facial forces actin~ between the particles to bring about their 

coalescence. Relative motion of particles in a fluid can be due to one 

or a combination of the following: 
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1. Brownian or thermal motion. 

2. Laminar or turbulent fluid shear or straining. 

3. Particle inertia in turbulent flows. 

4. Differential sedimentation of different size particles. 

If hydrodynamic and interfacial forces between particles are 

ignored, relatively simple analytic estimates fo r S are available for 

each of these call ision mechanisms acting independently and these are 

summarized in Table 1. The table also includes the dimensional parameters 

that characterize the mechanisms and determine, in any given situation, 

the characteristic size of particles that they affect. 

Note that all the coil ision functions depend on properties of the 

suspending fluid, the structure of its velocity field, and the size of 

the particles. However, only the functions for the final two coli ision 

mechanisms depend on a physical property of the particles: the 

difference between their density and that of the fluid. If the particle 

density excess ratio (pp- pf)/pf is small then sedimentation and inertia 

will only be important for larger particles. In a turbulent flow 

sedimentation will dominate inertial effects unless the characteristic 

acceleration ( E 3 /v ) ~ is comparable with g, the gravitational acce leration. 

In this paper wil will be concerned only with the first two coil i s ion 

mechanisms. 

For a coagulating system more than one collision mechanism can be 

important for a given size range of particles. However, if there is a 

particle size subrange in which the coagulation is dominated by only 

one collision mechanism, and this subrange is in a state of dynamic 

equilibrium, then the theo ry of Friedlander (1960a,b) and Hunt (1982) 

predicts the local size distrubiton given a constant flux of mass 
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through the particle size distributon. Aside from ignoring interparticle 

forces, the theory depends on two basic hypotheses: an equilibrium size 

distribution being established and non-interference of particles of a 

size characteristic of one coli ision ; mechanism with those of another 

coli ision mechanism. 

Hunt 1 s (1982) experimental results generally support the predic­

tions of the theory for Brownian motion and laminar shear but are 

limited by uncertainty over the effects of the unsteadiness in the 

experiments due to particle sedimentation and loss from the system. 

In the present work these limitations are overcome by performing a 

computer 11experiment 11 in which particle call isions are directly 

simulated by Monte Carlo techniques. The size evolution of a population 

of part i cles is followed. This allows the effects of each call is ion 

mechanism to be evaluated independently, and, by combining mechanisms, 

the hypothesis of non-interference of characteristic particle sizes to 

be tested. Call ision rates as well as the approach to and the final 

form of an equilibrium size distribution are studied. The method 

could also be used to study the 11aging 11 of an initially fixed number 

of particles as they call ide and grow. 

Monte Carlo simulations have been used by Nowakowski and Sitarski 

(1981) to model the call ision function for Brownian coagulation of 

aerosol particles and by Husar (1971) and Gartrell and Friedlander (1975) 

to find solutions to the coagulation equation (2). In this paper we 

first briefly describe Hunt 1 s theory and experimental results. Subse­

quent sections describe in detail the s imulation techniques used t o model 

Brownian, laminar s hear and turbul ent shear induced coagulation and the 

results obtained. The results are then compared with previ ous expe r iments 
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and theory, and the success of the method evaluated. 

2. HUNT 1S WORK 

Friedlander (1960a,b) explained observed regularities in the size 

distributions of atmospheric aerosols by assuming that a state of 

dynamic equilibrium existed between production, coagulation and loss 

through sedimentation of particles. He then employed methods analogous 

to those developed by Kolmogorov for the analysis of turbulence spectra. 

If it is assumed that the size distribution in some subrange depends 

only on the particle volume, v, the constant flux of particle volume 

through the size distribution, E, and a dimensional parameter, C, 

characterizing the sole dominant coagulation mechanism (see Table 1) 

so that 

n(v) = n(v,E,C) 

then the form of n(v) can be determined by dimensional analysis alone. 

This is analogous to postulating an inertial subrange of scales in 

which the turbulent energy spectrum is determined solely by the wave­

number and the flux of energy through the subrange (equal to the rate 

of energy dissipation by viscous stresses at the smallest scales). 

(see, for example Monin and Yaglom, 1975, Ch. 21). 

Hunt (1982) extended these ideas to hydrosols and compared the 

predictions of his theory with both laboratory and field measurements. 

In particular, he performed experiments on Brownian and laminar shear 

induced coagulation. His theory predicts the following size distributions 

for regions dominated by Brownian, shear and differential sedimentation 

coagulation 
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Brownian 

n(v) 

Shear 

n(v) =a (E/G) 1 / 2 v- 2 
sh ' 

Different1al Sedimentation 

n(v) =a (E/K )1/2 v-13/6 
ds ds 

He shows {Hunt 1982, Figure 1) that it is plausible, for a typical 

coagulating hydrosol, that these three mechanisms could dominate in 

regions of successively increasing particle size. 

Hunt 1 s measurements indicated that his system was in a quasi-

dynamic equilibrium where size distributions taken at progressively 

later times were similar in shape but decreasing in magnitude. This 

unsteadiness was due to the overal 1 particle concentration decreasing 

as a result of the larger aggregates settling to the bottom. Hunt 

measured the varying total suspended volume by 1 ight absorbance and 

used the computed rate of volume loss as an estimate for E. He 

explains why this will be an overestimate for the quantity (see Hunt, 

1982, f o r details), but it is still a useful approximation. The 
1 

measured value of E~ can then be used to normalize si ze distributions 

(c.f. equations (3)- (5)) partially correcting for the effects of 

unsteadiness. 

Hunt successfully collapsed much of his data at various times and 

for different expe riments at different shear rates by normalizing the 
1 1 

size distributions not just with E~ , but wi th the ratio (E/G) ~ and 

(3) 

(4) 

( 5) 
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non-dimensional i zing the particle volume with the characteristic 

volume at which particles have both Brownian collisions and shear 

induced call isions at the same rate. This characteristic volume, 

found by putting r. = r . in the expressions for the relevant collision 
I J 

rates in Table 1, is seen to be v = TIKb/(3G), proportional to the ratio 

of the Brownian and shear parameters. 

For some of the particle types tested the normalized volume 

distributions expressed as functions of non-dimensional size provide 

support for the relations (3) and (4) (see in particular Hunt 1982, 

Figure 5). However, as we have already noted, there are some reservations 

about the experiments, complicated as they are by instrumental difficulties 

and uncertainties about the effects of unsteadiness. Also, no one 

single experiment exhibits a size distribution having regions with 

the equilibrium power laws corres ponding to both Brownian and shear 

dominated mechanisms. One of the main aims of the present study, then, 

is to provide support or otherwise for Hunt 1 s results by means of a 

computer 11experiment. 11 This allows a genuine steady state to be set up 

and detailed probing of the interaction between Brown i an and shear 

call i sion mechanisms. 
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3. COMPUTER SIMULATION 

3.1 General Technlque 

The simulation proceeds by tracking the positions and sizes of 

a variable number, N, of spherical particles (typically 50 < N < 600). 

Whenever two particles tollide they are coagulated to form a larger 

(still spherical) particle, conserving particle volume, thereby reducing 

N by one. The population of particles studied therefore consists of 

particles of unit volume, v , and integral multiples, v. = i•v of 
0 I 0 

the unit volume. In this paper the suffix is used to denote properties 

of i-fold particles made up from i elemental particles. All lengths 

and times in the computer model are non-dimensional ized with the radius of 

the unit particle and the time step 6 t. The coli ision simulation 

algorithm is programmed for a digital computer. 

The program can also function in a different mode in which 

collisions are counted but . particles are not coagulated. On coli ision, 

one of the particles is randomly repositioned so as to avoid repeated 

collisions of the same pair of particles. This allows direct measure-

ment of the collision function, 6, for any given mechanism. 

Particle motions take place in a cubical box or 11control volume 11 

of side L and volume V. (Figure 1 gives a schematic representation of 

this box and a definition of the rectangular coordinate system used.) 

Particle positions are denoted by _t(i) = (P 1(i),P2 (i),P
3
(i)). The 

simulation employs what are essentially periodic boundary conditions, 

so that particles that have left the control volume at the end of a 

time step are replaced, for the next time step, by image particles 

that enter from the opposite side. This type of boundary condition ; is 

commonly employed - in Monte Carlo simulations (see Alder and Wainwright, 
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1969) and allows an infinite homogeneous system to be modeled approxi-

mately by a finite volume. Edge effects are reduced by allowing 

particles to interact with image particles just outside the control 

volume. The slight modifications to these boundary conditions required 

for laminar and turbulent shearing motions are described in §3.4 and 

§3.5 below. 

In order to model a system in dynamic equilibrium, a fixed number 

N of particles of unit volume are added to the population at random c 

each time step and any particles that have reached a preset maximum 

volume v = i •v are removed from the population. (Typically, max max o 

i 125). The constant addition of small particles is a crude max 

attempt to represent, indirectly, the particle volume flux E into 

the size range from the coli ision of particles smaller than v
0

• In 

the s imul at ion 

E 
v N 

0 c 
V!::.t 

The removal of large particles is necessary to I imit the total volume 

density of particles in the simulation. It can be physically justified 

as a crude representation of the loss of larger particles from a region 

by the combined action of sedimentation and vert i cal concentration 

gradients. The procedure of adding small particles and extracting 

large ones is consistent with the hypothesis that collisions between 

particles of similar size are more important and is justified a pos terior i 

by the success of the simulation in reproducing Hunt's (1982) dimensional 

results. 

The simulation start s either by gene rating a monodisperse 

po pulation of particles randomly distributed over the control volume, 
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or by reading a set of particle positions and sizes from a preexisting 

file. This file is either a set of particles of given size distribution 

generated by an auxiliary program, or the end point of a previous 

simulation that is to be continued. Control! ing parameters for the 

simulation run are either input manually or read from a file. 

The particular methods for generating the particle displacements 

at each time step, !(i) = (Y 1 (i),Y2 (i),Y
3

(i)), and updating their 

positions between time steps are described in detail below in 

connection with each physical collision mechanism. Each particle is 

assumed to travel on a straight line path at constant speed during 

each time step. The algorithm used to detect particle collisions is 

described in §3 . 2 below. 

At the end of every time step the particle size distribution is 

computed. After a prescribed number k of time steps, the size 

distribution, averaged over time t = k•6t, is placed, along with the 

positions and sizes of all the particles, in a file in permanent 

computer storage. The particle positions and sizes are written over 

the previous copy to save storage space. The latest version is then 

always available to restart a run at a later time. The simulation 

continues until the required number of time steps have been completed. 

Time averages are needed to provide reasonable particle size 

statist i cs as only a small number of particles are followed. Once a 

simulated system has reached a statistical steady state (dynamical 

equilibrium) then long time averages can be employed to produce well 

converged statistics. To follow the evolution of a rapidly changing 

system with any preci s ion, it would be necessary to repeat the simula­

tion many times and compute ensemble averages. 
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Most simulations were started with a monodisperse population 

of particles. The total volume of particles in the simulation increases 

continuously until the first particle grows by coagulation to v and max 

is removed. In order to.'bave reasonable computational times the 

volume concentration, ¢, of suspended particles used in the simulations 

is larger than that occurring in many.natural systems. (For example, 

typically¢ is about 20 p.p.m. in Hunt's experiments but is about 103 

larger in the simulation runs). 

The simulation requires the generation of relatively large numbers 

of (pseudo-) random numbers from both uniform and Gaussian distributions. 

First, a sequence of (pseudo-) random numbers distributed uniformly 

on the Interval ( 0, 1) are generated by the standard congruence method. 

Random variates are then scaled to any required uniform distribution. 

Variates with Gaussian distribution are generated from this sequence 

by various algebraic manipulations and employing a six constant rational 

function approximation to the inverse of the Gaussian cumulative 

distribution function (details in Abramowitz and Stegun, 1964, §26.2.23 

and §26.8). 

3.2 Collision algorithm 

Detecting which particles have col 1 ided at each time step is 

very costly in computer time and so an efficient method is needed. To 

this end the basic control volume is divided into cubic sub-cells. The 

cells are chosen to be as small as possible consistent with the constraint 

that any particle can only coli ide, during the next time step, with 

particles in the same cell or the adjoining 26 cells. Each cell is 

give n three integer coordinate s that define its position in the control 
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volume. For each particle the numbers of the cell it occupies are 

stored along with its actual position. 

The first stage in checking for collisions is to determine for 

each pair of particles whether they are in the same or adjoining cells. 

Only if this is so, are they considered candidates for a call ision and 

a detailed calculation performed. Checking whether particles are in 

adjoining cells is performed by computationally fast integer arithmetic. 

Given two candidate particles, their relative initial position, 

~ = !(1) - !(2), and displacement, ~y = !(2) - r(l), are computed 

(note the different ordering of particles). Then the condition for 

call ision is that the vector RY enters the sphere of radius a= r. + r. 
I J 

around the point RP, a simple geometrical test. This corresponds to 

following the motion of the two particles in a frame of reference 

moving with the (1) particle (see Figure 2 for schematic illustration). 

A further advantage of the sub-cell system is that it allows for 

easy implementation of periodic boundary conditions. Particles in 

cells along any of the boundaries of the control volume are allowed to 

interact with particles in the requisite cells on the opposite side 

of the volume. 

3.3 Brownian motion 

The thermal impact of molecules cause suspended particles to. 

perform random motion relative to the bulk fluid. In contrast to the 

recent work of Nowakowski and Sitarski (1981), the particles studied 

here are much larger than the molecular free-path in the fluid and so 

are in the continuum regime of Brownian motion. Also the time step, 

~t , of the simulation is very much larger than the particle viscous 
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relaxation time, t 
r 2r2 /9v . Therefore, the relevant probability 

distribution function (p.d.f.) for the displacement, Y, of a particle 

during a time step is (Chandrasekhar, 1943) 

where 0 is the diffusivity of the particle 

0 = kT/(6n~r) = Kb/{6n r} • 

Each component of Y has an independent Gaussian p.d.f. 

(4n0.6 t) 1 / 2 
k 1,2,3 

and this is used to replace the Brownian motion of the particles by 

a finite random walk. At each time step three independent random 

components of displacement are generated for each particle from the 

corresponding Gaussian distribution. The r.m.s. displacement in any 

direction, .6x , of an i-fold particle i s 

where, 0 . =KJ(6n r.), i s the particle diffusivity. D. can be obtained 
I u I I 

in terms of the diffusivity 0 of an eleme ntal particle by 
0 

Particl e coli isions are simulated on the ba s is of straight 1 ine 

trajectories during each time step. The question arises, therefore, of 

the validity of thi s as an approximation to Brownian induced coagulation. 

The r.m.s. displacement has been chosen correctly, but a pa rticle of 



15 

mass m undergoing Brownian motion actually travels along a tortuous 
1 

path at r.m.s. speed (kT/m)~. At first sight this suggests that the 

simulation would underpredict the cell ision rate. However, replacing 

Brownian motion by a finite random walk must change the pair distribution 

function, that is to say the probability distribution function for 

the spacing between any given pair of particles. So, while modeling 

Brownian motion by a finite random walk introduces ineffic"iency into 

the basic coli ision process it can compensate by increasing the 

probability that any pair of particles are found close together at 

the beginning of a time step. Here, 11 close together" means a separation 

on the scale of the r.m.s. steplength of the random walk. These 

matters are investigated in detail in Appendix A. Tests with the 

non-coagulating form of the program have shown that satisfactory call is ion 

rates for monodisperse populations of particles are obtained when 

the ratio bxlr is about 0.5. It is important to use the maximum possible 

time step in order to minimize computation times. 

3.4 Laminar shear 

The coagulating effects of a velocity gradient are investigated 

by imposing a uniform shearing motion on the control volume: 

u = G•x 
1 3 

with G the shear rate. The particles are assumed to move with the fluid 

so their displacement in any time step is just 

Y(i) = (Y
1

(i),O,O); Y (i) = G•P (i)•bt 
:1: 3 

As stated in the introducti on, in this paper we are ignoring hydrodynamic 

interactions between particles. The large body of work on particle 
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interactions in low Reynolds number flows (see e.g. Mason, 1976, for 

a review) shows that hydrodynamic forces will always come into play 

in a detailed analysis of coli ision dynamics. This is investigated 

in deta i 1 in a subsequent paper. 

A un i form shearing mo tion, on average, moves a fraction of the 

particles out of the control volume at every time step. If they 

were replaced in the control volume according to simple periodic 

boundary conditions (P 1 = P1 - L, whenever P1 > L) the simulation 

would be completely deterministic once initial positions had been 

chosen for the particles. Each particle would move in a straight I ine 

with fixed P2 and P3 coordinates. After a certain time all coli isions 

between existing particles would cease as each particle would have 

swept out its own track through the control volume. In a real flow this 

would not occur as particles are continually meeting 11new11 particles. 

Therefore, in the simulation, when a particle leaves the volume it is 

replaced at a randomly chosen height P
3 

on the other side of the control 

volume. The random value of the height P
3 

must be chosen from a 

distribution that reflects the increasing flux of particles at la rger 

values of P
3

• This flux is proportional to P
3 

and a uniformly distri­

buted random variate may be converted to this 1 inear p.d.f. by taking 

its square-root. This strategy lead s to a further complication: 

particl e s may be replaced on top of one another, leading to spurious 

coli isions. This is almost totally eliminated by checking for such 

particle overlaps at the end of each time step and randomly moving 

one of each overlapping pa ir. This may introduce a few further ove rlaps 

as no final check i s made. An estimate of this numbe r is ava ilabl e 
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from the number of initial overlaps, which is recorded. This error is 

acceptable in the 1 ight of other approximations in the simulation. 

Overlaps are also introduced by the process of adding new elemental 

particles at each time step, whatever the coli ision mechanism. All 

types of overlaps are resolved simultaneously in the same manner. 

3.5 Turbulent shear 

We wish to simulate the coagulation of smal I particles by 

turbulent flow. The motion of suspended particle can be identified 

with the motion of an adjacent fluid particle provided that the time 

scale of the (fluid) particle acceleration is much greater than the 

particle relaxation time, t , that is to say, if inertial effects are 
r 

negligible, as will be the case here. Then for particles of r~dtus 

smaller than the smallest scale of the turbulent motion (the Kolmogorov 

length scale, (v3/E)t), coagulation rates are determined solely by the 

kinematics of the small scales of the turbulent flow field, in particular 
1 1 

by the r.m.s. strain rate (E/V ) ~/15~. These small scales are very 

nearly isotropic (Batchelor, 1953). 

Under these conditions, two particles separated by a distance 

smaller than the Kolmogorov length scale are subjected to a motion that 

can be decomposed into a rigid body rotation representing the local 

vorticity, and a locally uniform three-dimensional straining motion. 

The rigid body rotation component of the motion has no effect on the 

coli isions of non-interacting particles and so only the straining motion 

(with symmetric velocity gradient tensor) is modeled. The straining 

motion will be uniform over length scales smaller than the Kolmogorov 
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micro-scale but there is no agreement as to the duration of this 

straining (Monin and Yaglom, 1975). Two time scales are important for 

the small scale straining: the rate of rotation of the principal axes 

of strain and the rate of changeof the magnitude of the principal rates 

of strain. For turbulent flow at high Reynolds number the rate of 

change of the deformation fields of the small eddies is related to 

the Lagrangian time microscale a (Lumley, 1972). The time scale of 

the deformation field is A./u 1
, where>.. is the Taylor microscale and u 1 

the r~m.s. fluctuating velocity. Corrsin (1963) approximates the 

ratio of the two as 

and since by definition 

we have 

-.-2 
15\l _u_ 

E 
and 

u•A. 
R =-A. \) 

which implies that the strain and vorticity fields of the smal 1 eddies 

remain constant for a time interval at least equal to the Kolmogorov 

time sea 1 e, t 
1 

(\l/E) ~ . This is just the inverse of the characteristic 

strain rate. 

The effect of the rate of rotation of the principal axes of strain 

on the collision rate was investigated using the monodisperse, non-

coagulating version of the simulation. The velocity gradient was 

simulated so that both the principal axes and principal rates of strain 

could be changed independently. The magnitude of the strain was kept 
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constant for a time interval equal to the Kolmogorov time scale. No 

statistically significant difference in the collision rate was found, 

whatever the time scale of rotation of the principal axes of strain. 

Therefore in the coagulation simulation both principal axes and rates 

of strain were varied at the same rate. 

Assuming homogeneous, isotropic, unbounded turbulence with a 

Gaussian velocity gradient field, the elements of the rate of strain 

tensor were chosen randomly to satisfy (Hinze, 1959) 

au. au. 
I J 

axk ax Q, 
= 

l 
subject to 

1 E 

Tiv i=j=k=£ 

j=£ and i=k or i=£ and j=k and i~j 

2 E 

Tiv k=£ and i=j and i~k 

0 all other combinations 

au. 
I 0 

ax. = 
I 

and kept constant for a time interval equal to the Kolmogorov time scale. 

The simulation proceeds as in the case of laminar shear with 

particle displacements being given by the product of the time step (6t) 

and the fluid velocity corresponding to the particle position. Now, 

however, as the motion is three-dimensional and stochastic, true 

periodic boundary conditions can be used. This corresponds to the 

control volume being surrounded by copies which are deformed with the 

original. Particles in the control volume at the end of one time step 

can then be used for the next. However, in preliminary simulations, 



20 

random fluctuations in the number of particles were found to cause 

trouble. To avoid the program halting because of too many or no 

particles left in the control volume the total number was adjusted 

at each time step according to 

where NCOL is the number of collisions that had occurred during the 

time step, and N the number of elemental particles added. In order to 
c 

satisfy the above condition, either particles were removed at random, 

or a particle whose volume had been chosen at random from the existing 

population was added at a random position. Finally, particle overlaps 

were resolved as explained in §3.4. 

3.6 Multiple mechanisms 

Simulations were performed in which the particle displacement was 

the 1 inear sum of a fluid shearing and a Brownian component. The 

relative magnitude of the Brownian and shearing parameters could then 

be varied to investigate their interaction. 

4. RESULTS 

Figure 3 shows the effect of changing the r.m.s. steplength on 

collision rate in Brownian motion (see Appendix A for a discussion). 

There is some statistical scatter in the results but the general shape 

of the curve is correct. From these results a s~itable time step 

can be chosen for simulations involving Brownian motion. Similar 

computations of collision rates in laminar and turbulent shear induced 
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coagulation were performed to check that they yielded the values given 

by Table 1. This, indeed, was found to be the case. The result for 

turbulent shear due to Saffman and Turner (1956) has been amended by 

a factor of TI~ from that in the original paper, correcting an algebraic 

error. 

The development of a size distribution in a typical simulation 

starting with particles all of unit volume v and undergoing Brownian 
0 

induced coagulation is shown in Figure 4. The size distribution is 

non-dimensional ized according to equation (3) and plotted logarithmically 

against particle volume non-dimensional ized with the unit particle 

volume. The curves plotted are smoothed approximations to the actual 

data points, at v= i•v , which are rather scattered. The upper portion 
0 

of the data attains a slope of -3/2 once a range of about one decade 

in volume has been reached. Then, as particles of increasing size are 

formed, the slope of the size distribution remains the same, but its 

absolute level declines gradually. It reaches a statistically steady 

state once the first large particle is lost from the system. The final 

steady state for this set of parameters is shown in Figure 5, along with 

that for a run at a higher final volume concentration ¢ (this is obtained 

by adding more particles at each time step). The points plotted are 

actual data from the simulations, averaged over 1000 time steps. Even 

with this time averaging there is still some statistical scatter in the 

data, especially at the lower end of the size distribution where very small 

numbers of particles are actually involved. To further smooth the data 

in the region v/v
0 

= 20-100, they have been averaged in groups of 5. 
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For both these runs v = 125•v , although the volume distribution max o 

is only plotted out to v/v 
0 

100. Beyond this the data becomes 

erratic. The two sets of data are fully collapsed by the normalization 

used and very clearly exhibit the -2/3 power low expected from Hunt's 

(1982) theory. The intercept of the best fit line of slope -3/2 with 

the axis v/v
0 

1 gives the constant ab in equation (3). 

Figure 6 is a comparison of the steady state size distributions 

for laminar shear at two volume concentrations differing by an order of 

magnitude. Again the data points are averaged over 1000 time steps, 

and are collapsed onto a slope of -2 by the normalization suggested by 

dimensional arguments. Similar results are shown for turbulent shear 
1 

in Figure 7, where the inverse of the Kolmogorov time scale, (t::/v)~, 

is used in place of G in the normalization of the size distribution. 

Again, a -2 power law is achieved at steady state and the normalized 

results are independent of the flux of particle volume through the size 

range. Note, however, that the data points are slightly lower than 

in the case of laminar shear. This is simply a consequence of the 

coli ision functions given in Table 1: the expressions for laminar 

and isotropic turbulent shear are identical if G is replaced by 
1 

1.72 (t::/v)~. With this sealing the data of Figures 6 and 7 collapse. 

This result strongly suggests the equivalence of laminar rectilinear 

shear and three-dimensional turbulent shear as coagulating agents. 

It is gratifying that the results of the simulations, which do not 

assume forms for the coli ision fuctions, B, agree well with arguments 

suggested by the analytic estimates for B. 



23 

The next series of simulation runs illustrate the effect that the 

ratio imax v /v (i.e . the size range covered by the simulation has on max o 

final steady state size distributions in Brownian motion and laminar 

shear. Figures 8 and 9 give size distributions for the three cases 

v /v max o 27,125, and 512. In al 1 cases the relevant -3/2 or -2 

power law prevails. For Brownian motion the results for v /v = 125 max o 

and 512 are indistinguishable, while those for the smallest size range 

are slightly higher at the upper end of the size range. For laminar 

shear there is a slight but consistent dec! ine in level with increasing 

size range. This reflects the extent to which the s i ze distribution 

is affected by the col 1 is ions of the relatively smal 1 number uf large 

particles. In laminar shear the col! ision function increased with the 

volume of the particles involved faster than in Brownian coagulation. 

Work on the effects of hydrodynamic interactions between particles on 

coagulation (see Adler, 1981 for most recent study) suggests that 

they act to reduce most the collision rate between particles of widely 

different sizes. This would probably result in weaker dependence of 

the level of the size distribution (the value of ash) on the size range 

cove red by the simulation. Further work, with a more sophisticated 

simulation incorporating hydrodynamic interactions, will elucidate 

this point. 

A cons ensus of the simulations performed give s the values, 

ab = 0.2 ± 0.04, ash = 0.24 ± 0.05 

However, it is 1 ikely that accounting for hydrodynamic and interfacial 

force s wil 1 alter the values of these dimensionl es s constants. 
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So far all the results have been for simulations in which only one 

collision mechanism has been present. We now turn to cases where both 

Brownian motion and fluid shearing operate. A new normalization of the 

size distribution and volume variable is now required to collapse all 

the data. Following Hunt (1982) we define a non-dimensional volume 

X = v• (K /K ) sh b 

where Ksh represents G or 1.72 (E/V)! and Kb is as before. This is such 

that the collision rates due to Brownian motion and shear are equal 

for particles of size X~ 1. Then if a normalized size distribution is 

defined by 

equations (3) and (4) ieduce to 

and 

Results of three simulations each for laminar and turbulent shear 

with Brownian motion are plotted in this normalized form in Figure 10. 

Lines of slope -3/2 and -2 are drawn for comparison. There is some 

indication of a change in slope around x= 1 but it is not conclusive. 

Also, the constant ab and ash obtained from the data in Figure 10 

are the same (within statistical error) as those obtained from simula-

tions with only one call ision mechanism present, providing some support 

for the hypothesis of non-interference of mechanisms. 
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5. DISCUSSION 

The main aims of this study have been: 

1. to study the feasibility of a Monte Carlo simulation of 

both the collision function, 6, and the coagulation 

equation (2) for the evolution of a population of 

particles to a steady state; 

2. the investigation of Hunt's (1982) theory for the 

form of the resulting size distributions. 

The simulation method described has proved most successful in 

modeling the coagulating powers of both Brownian and bulk shearing 

mechanisms and the development of steady state size distributions. 

This is in spite of the relatively restricted range of particle sizes 

that can be followed in any one computer run and the somewhat artificial 

strategy of adding new unit particles at each time step. 

The results show that final steady state is rather insensitive 

to the size range covered, and that the size distribution at the upper 

end, (small particles), is not very disturbed by replacing the interactions 

of all small particles with the addition of unit particles at a constant 

rate. These observations are in accord with the striking success of 

dimensional analysis in predicting the observed size distributi ons. For 

dimensional ana lysis t o be successful the dynamics of the coagulation 

process must be mainly 11 local'' in size space so that further inde pe ndent 

parameters (such as v and v ) are not important. We ex pect that o max 

accounting f o r hydrodynamic interactions betwe en particles will decrease 

th e dependence of the l eve l of the si ze distribution, f o r given vo lume 
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flux, in shear-induced coagulation. Notice that the evolving populations 

of particles start to exhibit the relevant power-law over much of their 

size distribution long before a steady state is reached. 

Hunt 1 s further hypothesis that different col I ision mechanisms can 

act independently over separate size ranges has been partially confirmed. 

A slope of ~312 is not very different from ori~ -2 whe~ there is 

scatter in the data! However, complete resolution of this point would 

require the simulation to cover a greater range of particle sizes. 

This is not feasible with the available computer storage. The perturba­

tion analysis of van de Ven and Mason (1977), for the effect of weak 

shear on Brownian coagulation, suggests that when hydrodynamic interactions 

are considered the two mechanisms may not be strictly additive. 

In conclusion, it can be said ihat, while simple in concept, and 

using acceptable computer resources, the simulation method has provided 

useful elucidation of Hunt 1 s hypotheses and experimental results under 

carefully controlled conditions. Further work on the technique to 

include hydrodynamic interactions, interfacial forces ahd gravitational 

settling will be reported in a subsequent paper. 
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APPENDIX A 

FINITE STEPLENGTH AND COLLISION RATE IN BROWNIAN MOTION 

The theoretical coli ision function, 6~ for Brownian induced 

collisions between particles of radi i r . and r. given in Table was 
I J 

computed (see e.g. Chandrasekhar, 1949) by solving a diffusion equation 

for the pair distribution function, w(s), where s is the distance 

between the particles. In particular, the coli ision function is given 

by the asymptotic flux to the surface of a fixed sphere of radius 

a= r. + r., with a total diffusivity D = D. +D . • The "concentration", 
I J I J 

w, is held at zero at s =a and at units= oo. Initially, w is 

uniform outside the sphere. Then at large times the pair distribution 

function is given by 

w = 1 - o/s (A. 1) 

whence the required result: 

(A. 2) 

If the actual pair distribution function in the finite steplength 

simu l ation was identical to that in (A.1), then the collision rate 

measured would be no larger than one-half of that in (A.2), however 

small the steplength. This result can be obtained either by careful 

evaluation of the expected coli ision probability from the algorithms use d 

for generating particle displacements and de tecting coli isions, or by 

the following simple argument. In the limit of 6x <<a, i.e., very 

sma ll r.m.s. steplength, but still with 6 t >> t, two particles must r 

be so close at the beginning of the time ste p in which they coli ide 

that the curvature of their surfaces may be neg lected. The probl em th en 
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reduces to that of the collision of a diffusing point with an 

adsorbing plane and we need only consider the component of the 

random walk perpendicular to the plane. 

Consider now this one-dimensional problem. The particle is judged 

to have collided with the plane if its final position is on the far 

side of the plane. For any given final position on the far side of 

the plane there is a whole class of possible Brownian trajectories 

leading to it. Now each of these trajectories must cross the plane for 

the first time at some point. There will be an associated trajectory 

defined to be identical with the original until the first contact with 

the adsorbing plane and then the mirror image, in the plane, of the 

original. As the end-point of this associated trajectory lies on the 

near side of the plane it would not be judged a coli ision by the 

coli ision algorithm. Hence the 50 percent inefficiency. 

However, for the same reason, the pair distribution function will 

not be identical in the theoretical and simulated cases. In the finite 

steplength case, w will be larger within a distance of order 6x of s= a. 

This can compensate for the basic inefficiency of the coli ision algo rithm. 

The actual form of w for a given distribution of steplengths and hence 

the coli ision function could be computed by solving the relevant integral 

equation. This has not been done as yet, but the non-coagulating form 

of the simulation has been used to determine the col 1 is ion rate for 

a monodisperse population of particles as a function of the mean steplength. 

The results of this "experimental" determination are shown in Figure 3. 

The ra t io of measured collision rate to that predicted from (A.2) is 
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plotted against the ratio of r.m.s. displacement in any direction, ~x, 

and the particle radius r. The ratio is unity for ~x/r about 0.6 

and so ~x is chosen accordihgly in all the coagulation simulations. 
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Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

FIGURE CAPTIONS 

Schematic diagram of simulation box or "control volume11 

. -
with cartesian -coordinate system and representative particle 
. , . 
at position (P 1 ~P2 ,P3 ). Displacement of particle in current 

time step is (D 1,D2,o
3
). 

(a) Geometry for call is ion algorithm. (b) Viewed in 

frame of reference in which particle 2 is at rest. 

Simulated collision rate of monodisperse particles under­

going Brownian motion as a function of r.m.s. displacement. 

The ratio between measured coll iiion rate and theoretical 

rate is plotted against the ratio of steplength to particle 

radius. 

Development towards steady state of size distribution of 

initially monodisperse population undergoing Brownian 

induced coagulation. D = 0.222, E = 5.6x 10- 5 , i = 125; o max 
t i me: - ---- - t = 2 5 ; - --- - t = 50; - -- - t = 1 00; 

--- t = 200; -- t = 400; -- t = 600. 

Steady state non-dimensional size distribution for 

Brownian motion. D = 0.222, i = 125; + E= 5.6x 10-S, o max 
cp = 0.016; 0 E = 4.4x 10- 4

, cp = 0.043. 

Steady state non-dimensional size distribution for 

laminar shear. +G = 0.25, E = 1.4x10- 5
, i = 125, max 

cp = 0.013; D G = 1, E = 1.1 X 10- 3
, i 125, ¢ = 0.114. max 

Steady state non-dimensional size distribution for turbulent 

shear. Ksh = 0.5, imax = 125; + E = 5.7x 10- 4
, ¢ = 0.053; 

D E = 1. 4 x 1 o- 5 , q, = o. ooa. 



Figure 8. 

Figure 9. 

Figure 1 0. 

Comparison of steady state non-dimensional size distri-

but ion for Brownian motion for different i max . D 
0 

= 0.222, 

E 5.6 X 1 o- 5 ; Oi - 27' ¢ = 0. 011 ; i = 125, 

~i 
max max 

¢ 0.016; = 512, ¢ = 0.0022. max 

Comparison of steady state non-dimensional size distribution 

for laminar shear for different i • D G = 1, E = 1.1 x 10- 3
, max 

i = 27 ¢ = 0. 049 · + G = 1 E = 1. 1 x 1 o- 3 i = 125 max ' • ' ' max ' 
¢ = 0.057; ~G = 0.25, E = 1.4x 10- 5

, i = 512, ¢ = 0.014. max 

Steady state normalized size distribution for (i) Brownian 

motion and laminar shear, (ii) Brownian motion and turbulent 

shear. (i) E = 5.6x10- 5
, i = 125; OK h = 0.25; ¢ = 0.0081; max s 

XKsh = 0.125, ¢ = 9.011; 6Ksh = 0.063, ¢ 0.013. 

(i i) +K h = 0.3.44, D = 0.8, E = 1.7x 10- 5 , i = 512, s o max 
¢ = 0.0096; <>Ksh = 0.215, D

0 
0.222, E = 5.6x 10- 5

, 

imax 125, ¢ = 0.0077; QKsh 0.043, D
0 

= 0.222, E,= 5.6 x 10- 5
, 

i = 125, <t> 0.013. max 
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