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FAST SEISMIC RAY TRACING*
H. B. KELLERt anD D. J. PEROZZI}

Dedicated to Joseph Keller in honor of all his contributions

Abstract. New methods for the fast, accurate and efficient calculation of large classes of seismic rays
joining two points xg and xg in very general two-dimensional configurations are presented. The medium
is piecewise homogeneous with arbitrary interfaces separating regions of different elastic properties (i.e.,
differing wave speeds cp and cg). In general there are N+ rays joining Xg to xg while making contact with
N interfaces. Our methods find essentially all such rays for a given N by using continuation or homotopy
methods on the wave speeds to solve the ray equations determined by Snell’s law. In addition travel times,
ray amplitudes and caustic locations are obtained. When several receiver positions x% are to be included,
as in a gather, our techniques easily yield all the rays for the entire gather by employing continuation in
the receiver location. The applications, mainly to geophysical inverse problems, are reported elsewhere.

1. Introduction. In this paper we present new fast, efficient and accurate methods
for determining large classes of seismic rays joining two arbitrary points, xg and xg,
in very general two-dimensional configurations. We allow arbitrary geological inter-
faces and free surfaces separating or bounding various regions of different
homogeneous isotropic elastic material, i.e. differing constant wave speeds cp and cs.
In general we expect that there can be 2V "' distinct seismic rays joining xs and xg if
each ray makes contact with N interfaces or bounding surfaces. This is because on
contact with an interface a seismic wave (compressive or shear) may change type or
it may not. Our new procedures easily determine all or most such rays for a given N.
Travel time and amplitude variation along each ray are determined. Phase shifts along
the rays are also determined since the occurrence of every caustic on any ray is
detected and the phase shifts at an interface are calculated. From this data, compiled
for some set of integers, say N =1,2, -+, Nnay, We can construct very realistic
artificial seismograms.

Of course the basic goals of this work are to solve various geophysical inverse
problems. We have already used our new techniques to determine source locations,
media speeds and interface locations in test problems, see Perozzi [5]. These applica-
tions will be reported elsewhere.

In § 2 we formulate the ray problem for the general piecewise constant plane
configuration. It reduces to systems of coupled nonlinear equations—Snell’s law—since
the rays are piecewise linear. We also introduce the notion of the ‘“‘signature” of a
ray which is a useful device for labelling rays. It is of help in devising simple computer
codes for solving the ray problem.

In § 3 we describe the solution procedures that we employ: Newton’s method
and continuation in speeds and receiver location. A particular continuation or
homotopy procedure is devised to get the first ray with a given number, N, of interface
contacts.

In § 4 we discuss briefly the computation of travel time, amplitude variation and
phase. A worked out example is contained in § 5.

The current work does not include the computation of diffracted rays. However
using the theory developed by J. B. Keller [3] such rays could be included. The
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982 H. B. KELLER AND D. J. PEROZZI

beginnings of the practical determination of such contributions are included in Perozzi
[5] where some diffracted rays and their travel times are determined. To include
amplitude calculations we must employ the methods of J. B. Keller and this will be
done in the future.

2. Formulation. The earth structure is modelled by piecewise constant regions
of arbitrary shape. The interfaces between regions as well as the free surface of the
earth are assumed to be smooth curves, say represented by the formulas’

2.1 y=fix), i=0,1,2,---,M.

We shall adopt the convention that i =0 represents the free surface of the earth; thus
we are only concerned with the domain y = fo(x). At the present we do not consider
intersecting interfaces (i.e. as at corners of a region). This is merely a simplifying
assumption to aid in understanding our general methods; the intersection of interfaces
can be included with some slight additional complications. So our configuration consists
of “layers” but the interfaces need not be parallel nor simple geometric shapes; see
Figs. 1 and 2.

—R —R y= fo(x)

m=1
(vpv3)

y=f|(x)

m=|
(V21V3)

m=3
(vgvp)

FI1G. 1. Schematic diagram of a four layered medium with arbitrary interfaces, y = f;(x), and wave speeds:
Cp = Uam and Cs = Uz, +1 in medium m. Rays of two different classes are shown.

X -2,0) K= (o) iz0,,..,8

m=2

m=|

F1G. 2. Source and gather locations for the computational example with three layers.

' Our techniques easily include other representations of the interfaces such as x = g;(y) or the parametric
form: x = x;(s), y = yi(s).
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The medium between each successive pair of interfaces is assumed homogeneous,
isotropic and perfectly elastic. Thus at most two kinds of signals can propagate in
such media, compressive with speed cp and shear with speed cs. These speeds of
course differ in different media. The rays however must all be straight line segments
in each region—thus no differential equations need be solved. A ray is determined
geometrically by knowing the initial or ‘“source” point, xs, the final or “receiver”
point, xg, and each contact point or node, x,, at which the ray meets an interface.
Further on each segment [x;_1, X ] its type of propagation must be known and this is
equivalent to specifying the speed, cp or cs, in the medium containing that segment.
At the contact points Snell’s law must hold and this serves to determine the nodes as
we now show.

Let the speed on the segment [x -1, X, ] be denoted by v foreachk =1,2,- -, N.
Let a tangent vector to the interface at each node, x;, be denoted by 7. Then Snell’s
law in its most general (plane) form requires that

Xr — Xp—1 X +1— Xg
(2.2) Uk+1('7k . ——————) = Uk("rk . ——i—-——)
|xk —xk—-ll |xk+1"xk|

Here we have used the vector notation x; =(x, yx) and (t - x) represents the usual
scalar product of vectors. From the interface representation (2.1) it follows that when
X, is on the interface i, say:

(2.32) Xk = (Xi, Yi) = (X fiy, (x10))-

Also a tangent to the i th interface at x,. is given, with f'(x) =df(x)/dx, by:
(2.3b) 7 = (1, fi, (xi)).

Using (2.3) in (2.2) we get

O = xi—1) + [, (i) (fi, k) = fio_, (xk—1))
[ = xie—1)* + (i, (1) = Fae1 (K1) 12

(X1 =xk) + i, () (fi (i w1) = fir (X)) _
L1 =x0)> + (Fi s Fier) = Fi (x0)) 2172

The relations (2.4) must hold at each interface, say for k=1,2,---, N, on a ray
meeting N interfaces between xs and xg. Of course since the source location, x5, and
the receiver location, xg, are assumed known there are only N unknowns in (2.4),
the scalars: x1, x5, ++,xn. For k =1 and k =N in (2.4) we must use

Gr =k 41
(2.4)

0.

2.5 X0 = (X0, o) = (X0, fir(x0)) = (xs, ¥s),

) XN+1= (Xn+1, YN+1) = (XN+1, fiN“(xN+1)) = (xg, YR)-

The notation fi,(xo) and f;,,,(x~+1) may be meaningless if as is frequently the case,
xs or xg does not lie on an interface or free surface. But (2.5) eliminates all such
difficulties. After using (2.5) in (2.4) there remain N nonlinear equations in N
unknowns. If we introduce the vectors
(2.6)

XE(xlax%""xN)T, VE(vla 029""UN+1)T3 q)(X, V)E(¢1y¢2,”"¢N)T’

then our system can be written as

(2.7 o(X, V)=0.
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2.1 Ray signatures, classes and propagation types. To use the above formulation
we must specify on each ray to be computed the ray speed intended on each of its
segments [X;_1, X, ] and the appropriate interface formula at each of its nodes, xx. To
do this we label each different material with an integer, m, say. Then the speeds in
material m are labelled as

(28) Cp,m =U2m, Cs,m =V2m+1, m= la 23 et 9M'

Now, given xs and Xg, a ray can be classified by listing sequentially its speed on the
first segment, the number of its first interface contact, etc., terminating with the speed
on its final segment. This listing we call a ray signature and it is equivalent to listing
in order the subscripts j=2m or j=2m+1 for (2.8) and i for (2.1). Thus a ray
signature is specified by giving an ordered set of 2N +1 integers:

(2.9) (it da, iy s e in iN+1).

All such rays with fixed iy, « + -, in form a class of rays with N interior nodes joining
xs and xg. There are generally 2V *1 rays in such a class, each being of a different
propagation type.

Let us give some simple examples. In Fig. 1 a sketch of four layers is indicated,
the first and third composed of the same material. Two different classes of rays are
indicated: one class with one internal node called I and one class with two internal nodes
called II. All possible signatures are given as follows:

Rays of class I Rays of class 1I:

1. [4,2;2] [P,P] 1. [4,3;4,2;2] [P;P;P]

2. [4,2;3] [P;S] 2. [4,3;4,2;3] [P;P;S]

3. [5,2;2] [S;P] 3.[4,3;5,2;2] [P;S;P]

4. [5,2;3] [S;S] 4.[4,3;5,2;3] [P;S;S]

(2.10) 5.(5,3;4,2;2] [S;P;P]
€. [5,3;4,2;3] [S;P;S]

7. [5,3;5,2;2] [S;S;P]

8.[5,3;5,2;3] [S:S;S]

We have also listed next to each ray signature the sequence of propagation types
represented by each such ray. This is redundant information since it can be obtained
from the signature by simply observing the parity of the speed indices. But we find
it useful to sometimes display the simpler propagation type signature as well.

3. Solution procedures. To solve (2.7) we employ Newton’s method and continu-
ation procedures. Specifically if we have an approximation, say X", to the values X
of the node abscissae, then an improved value is given by

(3.1a) X=X 4+86X7,

where

(3.1b) A'SX" =—-”,

Here we have used

3.2) X'=(x1,x5",xNn), ®'=0X", V), A'=AX"V)

where A(X, V) is the Jacobian matrix:

0d(X, V)

(3.3a) AKX, V)= 3X
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From (2.4)-(2.6) we find that A is an N XN tridiagonal matrix, say A =[by, ax, cx],
where

d J
(3.3b) =20 g =00 o0
0Xk -1 0X 0Xk 41
Specifically the components are:
Vks1 ) 2 (Axi+yiAyg 2]
= 1+yr Ay + —(*)
ak Dk[ YAy +(ye) D.
v ” , Axp1+VviA 2
L [l_ykAkaJr(yk)z_(_fc_ﬂ__Lk_M) ]
Dy i1 Dy iy
(-39 A Ay (A A
Vk+1 Xk + Yi-1Ayx) (Axi +y Ay
b, = — [1+ k— ’—( )( )]
k Dx Yik-1Y«k Dx Dx
Uk [ ' (Axk+l+y;cAYk+l>(Axk+1+,V;c+1AYk+l>]
Cr=— 1+ - .
« Dy 1 YiVierr Dy 11 Dyq

Here we have used the notation:

. df(x;
(3.3d) Ax;=x;—x-1, Ay, =y;—yi-1, yjs—’;'%l, D;=[(Ax)*+(Ay,)’T""2
]

Newton’s method converges quadratically when X ° the initial guess is sufficiently
close to a solution. That is we can insure

(3.4) lsxI=KlsxX" I, v=1,2,---

if we can also insure that X’ is close to a solution. For this purpose we use continuation
techniques.

3.1. Continuation in speeds. We consider the one-parameter family of speeds
3.5) VI)=AV+(1-AN)V, 0=A=1

Clearly V(0)= V and V(1)=V. So if the solution of (2.7) using tl}e speeds (3.5) is
denoted by X (A) it follows that X (0) is the solution using speeds V and X (1) is the
solution using speeds V. If the solution is known for any value of A we can use as
the initial guess in Newton’s method for the value A +AAX the vector

(3.6) XA +A0) =X A)+AAX(A).

This is accurate to order AA? if we know X (A)=dX (A)/dA. This derivative is obtained
from using (3.5) in (2.7) and differentiating to get, recalling (3.3a):

dP(X (1), V(A)) 5

3.7) AXQA), VANX ) =— v [V-V1
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The matrix B=90®/9V is N X (N +1) and is bidiagonal. Specifically the kth row
of B = (by,;) has the elements, using the notation of (3.3d),

T (Axk+1+Y;<AYk+1)
bip=T—"=—-|\—"7"7T—"7""),
vk Dy 4y
0 (Axk +y LAYk)
3.8 b = = ,
(3.8) kst =00 D.

Thus since A(X (1), V(1)) is known at A we easily obtain X (1) by solving (3.6).

As a further simplification we note that our continuation techniques are usually
employed to compute all rays in a given class (see §2.1). If these rays of different
propagation types are used in an appropriate order the vectors, say V and V, from
two consecutive rays differ only in one component. Then, for example, we will always
have, for some k:

(3-9) V—"}:(O’""O’vk_ﬁk’o""’O)T

and the right-hand side of (3.7) has only two nonzero components, the (k —1)st and
the kth. It is easy to devise an algorithm that will march through all 2¥*! possible
velocity sequences changing only one velocity component at each step.

In at least 90% of our test cases we were able to use the above indicated
continuation procedure with AA = 1. That is, in one step we obtain an initial guess for
which Newton’s method converges for the new speeds V, from (3.6) with A =0 and
AA = 1. This procedure is so robust that our algorithm proceeds by choosing AA =1
to start and if Newton’s method does not convérge in a few iterations (say 3) we then
replace AA by AA/2 and continue. An extremely efficient algorithm results.

3.2 Continuation in receiver location. For use in geophysical prospecting the ray
problems of interest involve an array of receiver locations (called a gather”) (see
Fig. 2). Thus it is naturally suggested to use a ray solution ]ommg xs and x¥ as the
initial guess to the ray joining xs and x¥ provided x¥ and x¥ are close neighbors.
Our continuation procedures supply an even better technique which is simply to
continue x& into x?. Thus in place of Xn.+1 = (Xgr, Yr) Of (2.5b) we consider:

(3.10) vt Q) =AXP+ (1 =2)xD = A, y D)+ 1 -1 R, y&).

Here as A traverses the interval [0, 1] the final (receiver) node Xy 41(A) goes from x&
to x§. Just as in § 3.1 the solution of (2.7) using (3.10) in place of (2.5b) is denoted
by X (A). The initial estimate of the solution for A +AA is given by (3.6) but now

X (1) is obtained from

B1)  AKQ), Vixya)x o) =22E A i@ oy

OXN +1

Here, in A(+) and ®(-), we have denoted the dependence on xx-1. This was
suppressed before since it was irrelevant for the previous discussion. We note now
that only the final component in ®(-), called ¢n(-) in (2.6), involves Xn+1. The
dependence is easily obtained by setting k =N in (2.4). Thus we find that 0®/0xn+1
is a matrix of order N X2 and all components but those in the last row vanish. The
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nonvanishing Nth row is: (d¢n/0xn+1, 0ON/dyn+1) Where

N N [ (AxN+1)2 , AxN+1AyN+1]
=- 1+ +fh (o) AN
OXN +1 Dn 11 Dn 11 finlxn) DX
(3.12) s A o A A
PN [ { ( YN+1)} XN+1 YN+1]
—= in(xn){ 1+ + .
YN +1 DN+ fin(xn) Dn 1 D3xi1

Thus the right-hand side of (3.11) has all components zero save the last one which is:

ddn N o 3¢’N ( W _

OXN+1

(3.13) "’)+ y®).

In many applications the receivers are all located on a plane surface for which y % =y

and so the above simplifies further.

3.3 First ray in a class of rays. We have shown in § 3.1 how to use continuation
in speeds to compute all the rays of a given class of rays after one ray of that class
has been determined. We now show a simple but powerful technique, based on speed
continuation, for determining some first ray of any given class. Usually we pick the
pure compressive ray type: [P; P; - - -; P], but this is not crucial. So we assume given
Xs, Xr and an appropriate signature of the first ray to be determined. Then we arbitrarily
take, for example:

a XR —Xs

(3.14) xk—xs+k(N+l), k=0,1,-+ -, N+1.

We call the vector with these components X and with it and the signature indices, i,
we then determine the nodes &, = (£, f;, (£x)). For §; we take the correct value of v,
as determined by the signature and the medium containing the segment [io, ﬁl]. Then
using (2.2) and the predetermmed nodes &, we compute successively ¥y, * * *, On+1 tO
generate the speed vector V. These speeds are generally unrelated to any physically
reasonable materials—they may even be negative. Further the ‘‘ray” in question may
pass through the same material several times with different propagation speeds © on
each such segment (suggesting the term “Rxemann sheeted material”’). Nevertheless
our procedure has generated vectors X and V such that

(3.15) (X, V)=0.

Now we simply use our continuation procedure of § 3.1 to determine the solution for
the correct physical speeds V. The continuation for this first ray is usually somewhat
slower than for the continuation between successive rays of different propagation
types. But it too converges surprisingly fast. A theoretical justification for these
continuation procedures in the present application is discussed in Perozzi [5].

For different geometric configurations we may employ different techniques to
generate the nodes .. But the basic idea is as described above.

Other ways to determine the first ray in a class of rays are suggested by the
continuation in receiver locations described in § 3.2. Obviously if a ray is known to
go from xg to Xg where Xz is close the desired xg we can continue from %z to Xg.
Although this is described for use in a gather in § 3.2 we could possibly determine
an initial ray by shooting. Indeed shooting is the standard way in which ray tracing
is usually done, so we need not describe the technique here. Our continuation
procedure coupled with Newton’s method does not take much more computing per
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iteration step than does shooting iterations (using Newton’s method). But our pro-
cedures are much more stable than the shooting techniques and require far fewer
iterations.

4. Travel time, amplitude, phase. After a ray has been determined we compute
the time for a signal of the given propagation type to propagate from xs to xg. Since
v is the speed on the kth segment of the ray, [x,_1, X, ], the travel time is clearly

N+1 Dk

k=1 Uk

4.1) t=

The amplitude change along a ray is also computed assuming that a source of
unit strength is located at xs. In a narrow tube of rays surrounding the ray in question
it is assumed that the energy in the wave is conserved. Then the change in energy
along the ray is proportional to the normal cross-sectional area of the ray-tube; that
is, it is proportional to the Jacobian of the mapping induced by the rays. This is a
purely geometrical effect and is called ‘‘geometric spreading””. The computation of
the geometric spreading factor, G, or equivalently of the Jacobian of the ray mapping
from wavefronts at xs to those at xg is given by formulas in Cerveny et al. [1] or in
Perozzi [5]. G depends on the curvature of the reflecting or refracting interface at
each node on the ray, on the curvature of the wavefronts, on the distances between
nodes, and on the ratio of propagation speeds on incident and transmitted or reflected
signals. A derivation of the geometric spreading factor for rays from a point source
incident on a curved interface is given in Keller and Keller [4].

In addition at each incidence of a ray upon an interface the ray splits, in general,
into two reflected rays and two transmitted rays. The energy carried by an incident
ray must be appropriately partitioned amongst the four rays it generates. This partition
is determined by energy conservation and yields the reflection and transmission
coefficients at each interface. These coefficients are computed by solving a linear
system in four unknowns. This system is derived in H. B. Keller [2] and the computa-
tional details are summarized in Perozzi [5]. The amplitude factor E, for a given ray
is simply the product of the appropriate reflection or transmission coefficients for each
node on the ray.

The total amplitude change for a given ray is thus the product GE and we easily
compute this factor for each ray by applying the formulas referred to above.

Finally we also compute the phase change along each ray. This data is required
if we wish to produce continuous synthetic seismograms using standard convolution
codes. There are three possible sources of phase change: i) reflections, ii) caustics, iii)
critical or supercritical rays.

The reflections are easily detected and yield a phase change of: yi= for a
reflection and y; = 0 for a transmission. At most one caustic occurs on each ray segment
between adjacent nodes. The phase change is: v;; = /2 if a caustic occurs and y;; =0
if no caustic occurs. The occurrence of a caustic is automatically detected in the course
of computing the contribution to the geometric spreading factor between two adjacent
nodes (see Perozzi [5, pp. 31-33]). Supercritical rays occur when the linear system
determining the reflection and transmission coefficients become complex (due to
imaginary angles). The coefficients, a, in this case are of the form a =|ale™® with
0=¢ <2. Then the phase change is simply v;; = ¢. The total phase change on the
ray segment [X;_1, X ] is thus

k k k k
Y =vi tvi tVii
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and so the total phase change on a ray is
f k
=Y.
k=1

5. Example. The above indicated techniques have been employed in a variety
of tests and examples, see Perozzi [5]. We present here a typical such example which
also illustrates the fact that the rays of each class need not be unique or need not
even exist. A complete existence and uniqueness theory for rays has never been
developed although some modest beginnings are contained in Perozzi [5].

The geometry for this example is sketched in Fig. 2. The earth’s surface and two
interfaces are represented by the formulas:

a) y =fo(x)=0,
2
- 1) -5,
b) y=rio=x((35)
x 2
0 y=Flx)= —10((10) +1).
Five receivers are located at the points x@=(,0),i=0,1,--+,4. The top and

bottom media are the same, denoted by index m =1, and the middle medium is
denoted by m = 2. The speeds in medium 1 are:

vp=0,=2.44, vs=v3=1.71;
and in medium 2 they are:
vp=0v4=15.38, ve=0vs=3.44.
All the rays in each of the seven families indicated in Fig. 3 yield a total of 292 rays.

g

I

T

FIG. 3. Seven families of rays for the three layer example. With 2N*" rays in a family with N nodes
there are 292 rays in all of the families shown.
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In Fig. 4 we show the amplitudes against arrival times for 228 rays computed at
each of the five stations in the gather indicated in Fig. 2. The seemingly equal amplitude
of most of the low amplitude rays is merely due to scale difficulties. Two distinct
structures are clearly indicated but more stations (or rays, or both) are required to
refine their shapes. By convolving the signal responses of Fig. 4 with a typical
seismometer response function artificial seismograms of reasonable resemblance to
true ones are easily obtained.

In Figs. 5, 6, 7 we show some computed rays illustrating: nonuniqueness in Fig.
5 where three rays of class II (of type PPPP) are shown joining xs=(—2,0) to
xr = (4, 0); nonexistence in Fig. 6 where rays of types PP, SPP, PPPP are shown but
no ray of type PPP could be found. Note that the SPP ray is not included in the
classifications of Fig. 3. Finally in Fig. 7 three rays of class V (see Fig. 3) are shown.
The initial speeds for the continuation leading to these rays contained some negative
values but no difficulties result.
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