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Simple quantum systems in spacetimes with closed timelike curves
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Three simple examples illustrate properties of path-integral amplitudes in fixed background space-
times with closed timelike curves: nonrelativistic potential scattering in the Born approximation is
nonunitary, but both an example with hard spheres and the exact solution of a totally discrete model are

unitary.

PACS number(s): 03.65.Bz, 04.90. +¢

Path integral or sum-over-histories quantum mechan-
ics has been proposed as a possible means of generating a
self-consistent dynamics in the presence of closed time-
like curves (CTC’s) [1]. It has been argued [2-5], howev-
er, that for interacting systems such evolution (e.g., from
before a compact region with CTC’s to after) is necessari-
ly nonunitary. (Such nonunitarity would present dire
though perhaps not insuperable [2,3,6] obstacles to the
interpretation of the predictions of such mechanics.) The
purpose of this paper is to offer three very simple exam-
ples to illuminate the issue of unitarity.

The first example, considered in Sec. II, is nonrelativis-
tic particles that scatter via a real potential in the Born
approximation as one particular particle traverses a sim-
ply specified time machine that defines the compact CTC
region. This is just a variant of Boulware’s calculation [4]
of relativistic particles in a Gott spacetime, but it has two
virtues: (1) One can carry the calculation to the end and
close a logical loophole left open in Ref. [4]; (2) the exam-
ple is so simple that there is no mystery or subtlety as to
how the nonunitarity arises. This calculation is also an
example of the general analysis of perturbation theory
given in Ref. [3] and agrees with those arguments.

Inspired by Thorne and Klinkhammer [5], I consider
in Sec. III WKB hard-sphere quantum mechanics with
the same simple time machine as defined in Sec. II. If
one includes (a) all numbers of encounters, and (b) an ex-
cluded volume effect on the “disconnected” graphs, the
amplitudes are Galilean covariant (otherwise they would
not be) and unitary. In fact, they are equal to the nonin-
teracting amplitudes for particles traversing the time
machine. Hence there is unitarity but no net interaction
with the potentially dangerous time travelers.

In Sec. IV, I turn to a minimal discrete model that can
be solved by enumeration of configurations. It is intend-
ed to be a cartoon of a general, nonlinear quantum field
theory with a specified compact region of CTC’s. The
local-field variable is reduced to two possible values, the
spatial positions inside the time machine are reduced to
one location, all spatial positions outside are likewise one
location, and time is discrete. The model is presumably
no more a free field theory than the general, noncritical
Ising model. A nearest-neighbor action that gives uni-
tary time evolution on the normal, flat spacetime lattice
generates a different but unitary evolution from before
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the CTC to after.

If the nonunitarity of perturbation theory [3,4] is,
indeed, generic, then it behooves us to understand what is
special about the nonperturbative systems discussed in
Secs. IIT and IV. Regrettably, no such explanation is
offered at present.

The philosophy and motivation of current investiga-
tions of time machines is to seek out whether some funda-
mental principle forbids their existence or whether they
are physically realizable. Even failing that thus far, these
questions offer a challenging context to test and stretch
our understanding of gravity and quantum mechanics.
For now, we begin with a little background.

1. BACKGROUND

It is not known at present whether a compact region
containing CTC’s can arise in the context of classical
gravitation [7]. Microscopic versions may exist as quan-
tum fluctuations of spacetime. Alternatively, large CTC
regions may exist as relics of the quantum gravity epoch
of the big bang.

Entertaining the existence of time machines as worthy
of consideration, one is faced with two paradoxes of clas-
sical particle mechanics: a collision may render an “‘ear-
lier” portion of a trajectory as inconsistent with the col-
lision itself, and given initial conditions may correspond
to several trajectories that satisfy the classical equations
of motion [1]. An action formulation allows one to con-
sider only those trajectories that are globally self-
consistent. A quantum action principle gives an interpre-
tation to the multiple classically allowed trajectories.
Each is a stationary point of the action, but all paths are
added coherently with the appropriate phase. (An in-
herently quantum-mechanical singularity in the stress
tensor does apparently develop just before the first
CTC’s [8]. This is thought by some to signal a back reac-
tion, which, handled consistently, may forbid the forma-
tion of CTC’s. However, the strength of the singularity is
sufficiently weak that the relevant distance scales are so
small as to require a quantum gravity analysis, and the
sign of the effect, opposite for fermions and bosons, is not
understood.)

Without a globally definable time sequence or foliation,
there is no Hamiltonian evolution in the presence of
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CTC’s and hence no obvious reason for unitarity of evo-
lution from before to after the CTC region. Nevertheless,
free particle systems yield unitary evolution [9]. Viewed
in terms of particle trajectories, this unitarity relies on
cooperation between the different numbers of windings
through the time machine. (See Appendix B for a sketch
of a proof in this language.)

It has been argued that interacting systems are general-
ly not unitary (even if the same local action on a foliable
spacetime yields unitary Hamiltonian evolution). This
paper considers three examples. The background space-
times are chosen by fiat, there being no known “realistic”
models with compactly generated CTC’s. For simplicity,
the spacetimes are locally flat, with all the curvature lo-
cated at singular points.

Nonunitary amplitudes may still be used to generate
relative probabilities for sequences of events or observa-
tions [3,6]. However, there is a consequent acausality in
that construction because the geometry of all future
CTC’s have an effect, in principle, on current observa-
tions.

II. BORN APPROXIMATION

The background spacetime is defined as follows. Fig-
ure 1 illustrates the construction in 1+ 1 dimensions. In
the flat space, whose points are labeled (z,¢), the heavy
lines centered at z=y, and of length Yatt=0and t =T
are identified so that along them the region immediately
before t =0 connects smoothly to that after t =7, while
the region immediately before ¢t =T connects smoothly to
that after 1 =0. In the new spacetime, we preserve the
original local direction of time and can use the old coor-
dinates to label points. The handle thus formed contains
the CTC’s.

The spacetime is flat except for the two singular points
at the handle ends that have excess angles of 27. The to-
pological theorems regarding compactly generated CTC
regions [10] are satisfied, albeit somewhat singularly. For
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FIG. 1. Time machine in 1+1 dimensions. The heavy lines
are identified such that the cross-hatched regions join smoothly
to each other and are disconnected from the likewise joined
t <0 and ¢ > T regions.

example, the Cauchy or chronology horizon (i.e., the on-
set of the CTC region) loops through the singular points.
(If one were to smooth out the curvature over a finite re-
gion, the Cauchy horizon would be the first lightlike
curves that circle the handle.) Also, there exist the isolat-
ed geodesics that enter but do not exit the CTC region (or
vice versa); these are the limiting case of trajectories that
enter (or exit) the CTC region at velocity v as v —0.

As the Born approximation always has zero radius of
convergence in 1+1 dimensions (because all potentials
have at least one bound state), I will use 3+ 1 dimensions
for an explicit example. A generalization of the space-
time defined above is clear: a compact region of space
(e.g., sphere) centered on y, and of volume Y is identified
at t =0 and ¢t =T in flat spacetime analogously to the
(1+1)-dimensional case to define the time machine.

The dynamics is that of nonrelativistic bosons
(A=m =1). Their flat space, free propagator is

[27i(t,—1,)] " %expli(z,—2,)*/[2(t,— 1]}, t,>1,,

K/(Zz,tz;zl,tl): 83(12'—21) ) t2=tl ,
0, t,<t,.

The particles interact via a real two-particle potential
AV(r), chosen (for simplicity) to depend on the magni-
tude of the two-particle separation r.

Let K(z,,t,;2;,¢;) be the amplitude corresponding to
all paths that begin at (z,,#,) and end at (z,,¢,) including
all windings of the machine, self-scatterings, and scatter-
ings off closed loops within the machine. And define the
coefficients of the A expansion of K by
K=K,+AK,+A*K,+ ---. There are disconnected
paths (winding around the machine) that contribute a
common factor to K, to the before-to-after vacuum-to-
vacuum amplitude, and to all other amplitudes. Hence,
they are to be divided out and, in practice for the present
context, ignored.

2.1

Important notation convention: 1 adopt the following
convention to indicate the allowed domains for spatial
position coordinates: Points restricted to lie within the
identified volume Y> will be labeled y (with subscripts
and primes). Points restricted to be outside will be la-
beled x. Unrestricted positions are z. Position integrals
are to be taken over the thus implicitly defined ranges.

Unitarity of single-particle evolution from before to
after the time machine would require

[ dxK(x,T;x,,00K *(x,T;x},0)=8(x,—x]) . (2.2)

The free particle amplitude K (which includes all wind-
ings of the time machine) is unitary in this sense. So next
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consider the O(A) contribution to Eq. (2.2). Is

[ dx[K,(x,T;x,,00K§ (x,T;x},0)

+Ky(x,T;x,,00KT(x,T;x},0)]=0? (2.3)

To evaluate Eq. (2.3) in closed form, I make the further
simplification that T >>Y? and consider points x, and x
such that T >>(x{""—y,)%. For such a large T machine,
the leading contribution comes from the minimal number
of windings (as discussed in Appendix B).

The minimal, i.e., one, winding contribution to
fdel(x, T;x,,0)K§ (x,T;x{,0), defined to be 4(x;,x}),
is illustrated in Fig. 2. Lines with arrows pointing up
(down) are factors of K }* ) the dashed line is a factor of
V(|zz—zll), the heavy horizontal lines define the time
machine, and the factors must be integrated over
O<t<Tandall z, z,,y, and x.

Boulware [4] notes that for a field-theoretic local A¢*
interaction, the O(A) contribution is of the form of a par-
ticle scattering off an effective potential given by
AK(z,t;z,t) (which, naively, is the density of particles
looping the machine). However, this is clearly a com-
plex, oscillatory function of z and ¢. Since unitarity of
potential scattering requires a real potential, Boulware
concludes that unitarity is violated.

In the present case, the analysis can be carried a bit
further to address the following two issues: Since the
question of unitarity cannot be posed without integrating
over all z,, z,, and ¢ between O and 7, is it possible that
the net integrated effect is, in fact, unitary? And if not, is
the nonunitarity trivial, e.g., is the amplitude unitary up
to an overall factor, which could then be reabsorbed into
the measure? (This latter possibility is realized in the ex-
ample of Sec. III.) The answers here are no as found in
Appendix A. For simplicity, use the time machine as the
origin of coordinates, i.e., take y,=O0. Then the
T >>x{"2>> Y2 amplitude is

«—time

time —»

space —»

FIG. 2.

O(A)
A(x;,x}). The lines pointing upward denote factors of K/,
downward K f* , and dashed horizontal V; the solid horizontal
lines denote the time machine as in Fig. 1.

propagator unitarity testing amplitude
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Y3 o i(x,—x,)%/2T
A(xl,x’l):g—(ZmT) 3271 T
T

x1+(x;—x)) x;-(x;—x7)

X

3
|x,—xil %, —xi
xj-(x,—x}) X1+ (x;—x))
p - , (2.4)
x| x|

where W(r) is a complex linear functional of V' (r) defined
in Eq. (A4), which satisfies ReW(r)=V(r) and
W(—r)=W(r)*. Quite generally, then,
A(xy,x7)+ 4 *(x],x,)70.

III. HARD SPHERES

Quantum billiards or impenetrable spheres can be
treated in a WKB approximation because their interac-
tion, rather than being smooth on the scale of a wave-
length, can be treated as a boundary condition [5]. (The
“approximation” is thus exact, in the sense it is exact for
free particles.) I consider here a single particle’s traversal
of the same time machine as described in Sec. II. In par-
ticular, I consider paths of initially compact wave packets
whose spread is small compared to the hard-sphere diam-
eter. The packets traverse the time machine in a proper
time sufficiently small that wave packet spreading can be
ignored; this can be guaranteed for all numbers of wind-
ings and self-collisions by suitable choice of initial condi-
tions and ratio of the hard-sphere size to the size of the
time machine.

The amplitudes are given by a factor of
i eXp{iS iassical }» Where S pgsicat =+A2%/At for each col-
lisionless leg of the journey and a ( —i) for each collision.

It is instructive to go to a moving frame rather than
the machine rest frame. Let the center of the identified
region at t=7T be y; and that at 1 =0 be y, such that
yo—Yo=d. Paths with 0, 1, and 2 windings are shown in
Fig. 3.

The action corresponding to a single winding for a par-
ticular collision point is %dz /T. For one winding, the in-
tegral over the possible locations of the collision gives a
factor of L /T'/?, where L is the length of the projection
of the no-collision path onto the identified volumes. (In

FIG. 3. Hard-sphere WKB trajectories through the CTC re-
gion with 0, 1, and 2 self-collisions.
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1+1 dimensions, L is simply Y.) For n windings,
the factor is (L /T'/?)"/n!). (This ignores an excluded
volume effect; the L" should actually be
L(L—D)L —2D)-:-[L —(n—1)D], where D is the

J
n
{exp

2
i(x;_x)Z in+1
2 T

2
n! T

> exp
o Tl/2

This itself is not unitary for d#<0. Nor, however, is it
Galilean covariant. What is missing is a correct account
of the disconnected paths.

When the initial collisionless path from x to x’ does not
traverse the positions in the time machine, the machine is
threaded by closed loops. The amplitude for these loops
is the coherent sum over all numbers of loops, integrated
over their allowed trajectories as restricted by the exclud-
ed volume effect of the impenetrable spheres. The sum of
these closed-loop amplitudes is also the before-to-after
vacuum-to-vacuum amplitude.

When the initial collisionless path does traverse the
machine, each of the paths included in Eq. (3.1) excludes
a volume for possible closed-loop disconnected paths, i.e.,
the velocity d /T paths that pass through the collisionless
path. However, the factor thus lost from the completely
disconnected volume is precisely the factor acquired by
summing the possible collisions as in Eq. (3.1). Hence,
the product of the amplitude in Eq. (3.1) with the allowed
disconnected loops is equal to the product of the unitary
collisionless amplitude with the hard-sphere vacuum-to-
vacuum amplitude. All of the apparent nonunitarity and
frame (or d) dependence resides in a common factor of all
amplitudes, which is the naive before-to-after vacuum-
to-vacuum amplitude. This factor, however, is unobserv-
able and is properly divided out everywhere.

IV. AN ISING MODEL

Finally, I consider a totally discrete model that can be
solved by enumeration of the finite number of
configurations. The analogue flat spacetime, depicted in

Z—

(@) (b)

FIG. 4. (a) Flat 2X5 lattice spacetime, with arrows indicat-
ing the positive sense of the timelike links. (b) 2X5 spacetime
with a closed timelike curve.

n
] =iexp
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billiard ball diameter. For simplicity, we assume
L >>D.) Hence, the sum of amplitudes for such paths
that go from (x,0) to (x’, T') with windings n =0, 1,2,. ..
is

i (x'—x)?
2 T

(3.1

|
Fig. 4(a), consists of a 2 X m lattice, i.e., with two spatial

positions and m times. At each lattice site n, there is a
two-valued field s(n)==1. The “path integral” is

Z= exp ia Y [s(n+p)—sm))?],

s(n) n,u

4.1)

where p runs over the two positive unit vectors. The
choice a=1/8 yields a unitary 4 X4 transfer matrix that
relates the four possible s configurations at a given time
to those at the next time. The time machine is defined by
reidentifying two of the timelike links as indicated in Fig.
4(b). The amplitude of interest is the 4 X4 matrix for the
sum over all intermediate time configurations with a par-
ticular initial configuration (immediately preceding the
CTC) and a particular final configuration (immediately
following the CTC). I have done the sums for systems
with m =3, 4, and 5. In each of these cases, the ampli-
tude differs from the analogous flat spacetime system but
is, nevertheless, unitary.

V. CONCLUSION

The nonunitarity of interacting particle propagation
across a compact region of spacetime with closed time-
like curves (CTC’s) is demonstrated with an exceedingly
simple, nonrelativistic example. In a particular limit of
the parameters, all integrals can be evaluated for arbi-
trary incoming states. This was not done in previous
analyses. An analogous issue arises in the general, rela-
tivistic perturbation-theory analysis of Ref. [3]. There
the nonunitarity is demonstrated by identifying combina-
tions of propagator functions that are nonzero in the
presence of CTC’s but which would have to integrate to
zero against general state functions were the theory uni-
tary. It is not immediately obvious that the state func-
tions form a complete set with respect to the relevant in-
tegrals.

The nonunitarity of perturbation theory is presumably
generic. However, analogous calculations in two nonper-
turbative examples do not exhibit nonunitarity at the
same level. This challenges us to better understand the
issues. Free theories are unitary, presumably, because
particles that do go back in time still cannot influence
anything in the past, and they themselves eventually
propagate into the future because quantum diffusion
prevents a particle from time cycling indefinitely with a
nonvanishing probability. In the hard-sphere example
considered here, there certainly are interactions, e.g., two
incoming wave packets could scatter off each other, and
there certainly is time travel, i.e., of the type performed
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by free particles, which definitely alters their trajectories
even after the CTC region. But the particular time
machine considered here appears to have the property
that the multiple classical alternatives allowed by having
both interactions and CTC’s sum to something equivalent
to having no interactions.

The discrete model considered here is not a free field
theory in that it is not linearly coupled harmonic oscilla-
tors because of the restriction s==1. Its simplicity al-
lows an exact solution but precludes much in the way of
interpretation.

A better understanding of each of these examples
would be very welcome.
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APPENDIX A

The leading large T behavior of the O(A) unitarity
violation discussed in Sec. II can be evaluated in three
steps. First consider the unitarity of the Born approxi-
mation in flat spacetime for a single-particle scattering off
a potential. Then generalize to two-to-two particle
scattering. And, finally, modify the latter to fit the time
machine boundary conditions.

Let B(zy,z,) be the amplitude depicted in Fig. 5, i.e.,
including integrals over z, z’, and :

Blzpzp)=—i [ dzdz’ f dt K ;(z,1;25,0)¥(2)
XK(z',T;z,t)

XK;‘(z’,T;zE,,O) . (A1)

Free particle unitarity reduces this to

FIG. 5.
B(zy,zg).

O(A) unitarity amplitude for potential scattering
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Bl(zg,2))= f dzf dt K ;(2,1;2,0)V(2)K } (2,1;2},0)

P )3 fTéLCXp {i(z§—2'3)/(20)}
m

Z,— 2
i | %o

(A2)

The second form uses the explicit form for K r» and Vis
the Fourier transform of V. Note that if V is real,
V(k)=FV*(—k), and then B(zyz))+B*(z},z,)=0,
which is the statement of O(A) unitarity of potential
scattering.

The t integral in Eq. (A2) can be expanded about the
large T limit (changing variables to k =1/t)

B(z,2')= (2;’;3 J7 ke dk expli(z2=2")k 2} V(2 —2)k)
i V() (A3)
16m° T?

The k integral is reminiscent of the radial part of a spher-
ically symmetric Fourier transform. In particular, if we
restrict V(r) to real functions that depend only on r, the
magnitude of r, and define the function W(r) by

Wir)=—

*pk) , (A4)
then ReW(r)=V(r) (which is symmetric under r — —r),
while ImW(r) is antisymmetric in 7. In terms of W,

2 2

z°—z 2z

22—z
2|z—2z’'|

iv(0)
167°T?

1
B(z,z')=—
8 |z_z/|3

(AS)

For two-to-two scattering, the analogous amplitude
B(z,,z,,2},2}), depicted in Fig. 6, is given by

B(z,,2,,2,25)=8%2Z—2Z')[B(z,z')+B(z,—2')], (A6)

where
2=(z,+2,))/2, z=2z2,—z,, (A7)
0 42 Z,
Th +
oF 7z, z,

FIG. 6. O()) unitarity amplitude for two-particle potential
scattering B(z,,2,,2},2)).
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FIG. 7. Truncated two-particle amplitude A4(z,,2,,2},23).

and the same definitions hold for the primed coordinates.
Equation (A6) reflects that the problem is separable into
free center-of-mass motion and scattering in the relative
coordinate. Unitarity to O(A) is again clearly satisfied.
The amplitude we need to test unitarity to O(A) in the
time machine is 4(z;,2,,z},2,), illustrated in Fig. 7. It is
simply related to the B’s using the unitarity of K ;, which
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implies that K, is the inverse of K /. Hence
A(21,2,,2,,2,)= [ d238%(Z—Z')[B(z,2)+B(z,—7)]

XK (23, T;25,0) . (A8)

This final integral over z; is trivial because of the & func-
tion.

The one-particle amplitude relevant to the time
machine is (recalling the implicit ranges of coordinates x,
y, or z defined in Sec. II)

Axpxy)= [ dy A(x,,y,x,y)= Y3 4(x,,¥0,X},¥0) , (A9)

where the second form is the leading term for small Y.
A(x,x})+ A *(x},x,)70 [the actual expression is given
in Eq. (2.4) using Eq. (A7) and the § function], which im-
plies there is no unitarity.

APPENDIX B

I address briefly free particle unitarity in the T >>Y?3
time machine and for general T and discuss some aspects
of windings in general and small Y. The expansion of the
free particle amplitude K,(x’, T';x,0) from before to after
the time machine in terms of numbers of windings and
the flat-space free propagator K ; looks like (remembering
x’s are outside and y’s are inside the ¥* volume)

Ko(x', T;x,0)=K/(x,T;x,0)+ [ dyK (x',T;y,0)K(y,T;x,0)

+ f dydy' K (x',T;y,00K(y,T;y’,0)K(y', T;x,0)+ - - - . (B1)

To check unitarity, we replace the x'’ integral in
fdx"Ko(x", T;x,0)K§(x”,T;x’,0) with an integral dz”,
i.e., as if x"" ran over the full range, minus an integral
dy'. The integral dz'’ always yields a 8 function because
of K, unitarity. To leading order for T >>Y?, the nonun-
itarity of K, when restricted to end points outside the
time machine is canceled by a contribution from the one-
winding term of K. (The evaluation is straightforward.)
All effects of higher windings (and a residual nonunitarity
of the one-winding term) are down by Y3 /7372,

For arbitrary T, the unitarity of K, with the same time
machine can be demonstrated using the same expansion
[11]. Each successively higher winding restores the uni-
tarity of the one fewer winding amplitude but introduces
its own nonunitarity. Hence, one must sum all windings
to recover unitarity.

A general amplitude written in terms of K £’s, i.e., be-
fore integrating over any spacetime coordinates, will have
various y; arguments. The integrals f dy;f(y;) can be
replaced by Y*f(y,) in the small Y limit as long as all the

l
y’s are independent. If, however, some f dz yields a
83(y,-—yj ), then there is one fewer factor of Y3 than
given by counting the y’s. This is essential to the free
particle case discussed above. The only such z integral
that occurs in the generalization of the calculation of Ap-
pendix A to higher winding numbers comes from the fac-
tor fdx K§(x,T;x0)Ky(x,T,z,t). For this integral, the
following identity holds:

J dxK§(x,T;x,00K(x,T,z,1)=K}(z,1;x,0) ,

(B2)

which follows from free particle unitarity. The same
identity with the K,’s replaced by K,’s was used to get
Eq. (A2). Hence, adding all possible windings to the
paths for this portion of the calculation has no net effect.
Finally, adding higher windings to the other segments of
the paths of the calculation of Appendix A indeed gives
extra factors of Y3. Hence, the leading small Y behavior
is given by the minimal winding amplitude.

[1] F. Echeverria, G. Klinkhammer, and K. S. Thorne, Phys.
Rev. D 44, 1077 (1991).

[2] D. Deutsch, Phys. Rev. D 44, 3197 (1991).

(31J. L. Friedman, N. J. Papastamatiou, and J. Z. Simon,

Phys. Rev. D (to be published); P. de Sousa Gerbert and
R. Jackiw, Commun. Math. Phys. 124, 229 (1989).

[4] D. G. Boulware, Phys. Rev. D (to be published).

[5] G. Klinkhammer and K. S. Thorne (unpublished).



4476 H. DAVID POLITZER 46

[6] J. B. Hartle, University of California at Santa Barbara Re-
port No. UCSBTH-92-04, 1992 (unpublished).

[7] See, e.g., M. S. Morris, K. S. Thorne, and U. Yurtsever,
Phys. Rev. Lett. 61, 1446 (1988); U. Yurtsever, Class.
Quantum Grav. Lett. 7, L251 (1990); G. Klinkhammer,
Phys. Rev. D 43, 2542 (1991); V. P. Frolov, ibid. 43, 3878
(1991); R. M. Wald and U. Yurtsever, ibid. 44,403 (1991).

46

[8]S.-W. Kim and K. S. Thorne, Phys. Rev. D 43, 3929
(1991).
[9] See, e.g., J. L. Friedman, N. J. Papastamatiou, and J. Z.
Simon, Phys. Rev. D (to be published).
[10] S. Hawking, Phys. Rev. D 46, 603 (1992).
[11] J. Preskill (private communication).



