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ation of the potential primarily in the repulsive region. 
Possibly there also exists some systematic errors in 
the apparatus relating to the in-plane or out-of-plane 
detector motion; data reduction of the combined DCS' s 
was performed to eliminate the effects of such system­
atic errors in determing the more accurate combined 
potentials. Consequently, only the combined potentials 
will be discussed hereafter; error bars claimed for them 
may be widened slightly beyond those quoted in Paper I. 

V. DISCUSSION 

On the basis of the computer simulation results of 
Paper I, we have selected the M2SV [Eq. (7)] and third­
order SPFD [N = 3 in Eq. ( 8)] potentials as the most 
suitable ones for analyzing the present DCS data. 13 

Our best potentials (the "combined potentials" of the 
previous section) can now be compared with others that 
have been obtained from fits either entirely or primarily 
to DCS scattering data. These are the exponential­
spline-MSV (ESMSV), 14 the exp-6, 16and the Hartree­
Fock-Dispersion (HFD)15 potentials. A large variety 
of other potentials have been obtained from fits to only 
transport or gas-imperfection properties (see Ref. 14 
for a recent compendium of these potentials). We be­
gin with a discussion of reasons to avoid comparing 
potentials obtained from these different types of exper­
iments (see also Sec. VI). 

The second virial coefficient is given classically by10 

B(T) = 21fN Avr! [1- e-•f<P>IkT]p2dp, ( 9) 

where T is the temperature, NAvis Avogadro's number, 
k is the Boltzmann constant, and rm, E, andj(p) have 
the meanings introduced in Eq. (4). For He-Ar at T 
> 200° K, quantum mechanical corrections10 are small 
(< 5%), so that the sensitivity of B(T) data to different 
regions of the potential may be gauged by plotting the 
integrand of Eq. (9) as a function of p, as shown in Fig. 
7. We may change the repulsive region without affect­
ing the rest of the potential by altering the inner joining 
point p1 , where a Born-Mayer exponentially repulsive 
wall is joined smoothly to the SPFD potential (see Sec. 
IV). At T = 600 o K, the effect on the integrand of chang­
ing p1 from 0. 80 to 0. 81 (see Sec. VI) is seen to be sig­
nificant (though small) for reduced distances p;> 0. 65; 
we conclude that B(T) data are sensitive to the repulsive 
region of the interatomic potential in the range 0. 65 < 
p < 0. 86 [note that f(p) = 0 at p = 0. 8621. At T = 200° K, 
a similar argument indicates sensitivity in the range 
0. 69 < p < 0. 86; in both cases the lower limit may easily 
be determined by noting the minimum distance for which 
the integrand deviates noticeably from a simple p2 de­
pendence. Consequently, in considering the relative 
contributions to B(T) in the repulsive (p < 0. 86) and at­
tractive (p > 0. 86) regions of the potential, we are con­
cerned only with the integrand beyond p = 0. 65 at T 
= 600° K, or beyond p = 0. 69 at T = 200° K. It is then 
seen from Fig. 7 that the shallowness of the He-Ar 
attractive well causes B(T) data to be as sensitive to 
the attractive region as to the repulsive wall only for 
low temperatures (T< 200° K). We will therefore follow 
the precedent of Chen et al. , 14 who found that they could 
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FIG. 7. Differential contribution to the classical second virial 
coefficient as a function of the reduced interatomic distance p. 

. I(p) is the integrand of the second virial coefficient expression 
[see Eq. (9) of the text). Curves are calculated from the SPFD 
potential whose parameters are listed in Table II. Solid line: 
·T=600 oK and P;=O. 80; dashed line: T=200°K and p1=0. 80; 
dotted line: T = 600 oK and p1 = 0. 81; p1 is the point below which 
a Born-Mayer repulsive wall is used as discussed in Sec. IV. 

fit the strongly repulsive region of the interatomic po­
tential to B(T) data, having already fit the weakly repul­
sive and attractive region to their thermal DCS mea­
surements. They accomplished this by using the 
ESMSV form55 to decouple these two regions at p 
"'0. 84 (r = 2. 97 A). Dilute gas transport data are in 
principle even less sensitive to the (shallow) attractive 
well region of the He-Ar potential than are B(T) data 
when, as in the present case, kT » E

10
•
59

; we will there­
fore use the repulsive wall part of the potential pre­
viously determined from these macroscopic properties, 
with no adjustments (see Sec. VI). The resulting po­
tential, whose attractive and weakly repulsive regions 
had been obtained from the DCS fits, will be shown in 
Sec. VI to be consistent with all the available micro­
scopic and macroscopic experimental data. We empha­
size that the latter type of data, being insensitive to the 
attractive portion of the potential, must not be used in 
its characterization. For example, assuming a given 
mathematical form for the potential (such as a LJ12-6) 
allows a determination of r m and E parameters by fitting 
to the macroscopic properties being considered. How­
ever, the validity of such a potential should not be con­
sidered to extend to the attractive region; these r m and 
E therefore cannot be used as physically meaningful 
values for the position and depth of the well mini-
mum. 14

•
26 This is of course in strong contrast to DCS 

data which, at least for the present case, can be used 
to determine rm and E values accurately. 13 

For any direct comparison of DCS scattering results 
between different laboratories to be useful, a large 
variety of involved apparatus characteristics (see Sec. 
II for examples) must be taken into consideration. In 
view of the difficulties inherent in such a procedure, 
and the fact that it is the potentials extracted from the 
data that are ultimately to be discussed, we use the ap­
proach of comparing the various laboratories' poten-
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FIG. 8. Interatomic potentials of the MSV shape for He-Ar as 
a function of interatomic distance; inset as in Fig. 6. Solid 
curve: this work; dashed curve: Ref. 14; dotted curve: Ref. 
15. The potential parameters are given in Table III. Error 
bars and arrows along the abscissa are placed as in Fig. 6. 

tials instead. 14-
16 This must be performed using the 

same potential form to fit all of the DCS experiments, 
since the simulation results of Paper I clearly show 
that in some instances the extracted potentials may de­
pend strongly on the potential model used. 13 Conse­
quently, even though the MSV form52

•
55 previously used 

by others is not appropriate for obtaining accurate in­
teratomic potentials from the present room-temperature 
scattering data (cf. the M2SV and SPFD potentials of 
Table ll), it was used to reduce our data also, in order 
to compare respective scattering results. 

Chen et al. 's14 experiments covered the laboratory 
angular range between 3° and 45° at a relative collision 
energy of 20.8 meV, while Smith et al. 's15

•
16 results at 

18. 2 me V were for scattering angles between 4 o and 
30°. Although these collision energies are but a third 
of ours, the increased sensitivity of their OCS's to the 
long-range region of the potential is probably compen­
sated for by our more extensive measurements of low­
angle scattering; in any case, the long-range region of 
the potential is taken to be a theoretically estimated one 
and is not fit to the data. 14

-
16 Conversely, the higher 

scattering angle but lower energy results are less sen­
sitive to repulsive interactions than our higher energy 
but lower scattering angle measurements. 13 We would 
therefore expect all three DCS's to be sensitive to the 
potential for interatomic distances between about 3. 0 
and 6. 5 A, as determined from the simulations of Paper 
I. The consistency of the three experiments may thus 
be judged by comparing, for this range of interatomic 
separations, the MSV potentials extracted from fits to 
the respective OCS's. From Fig. 8 it is evident that 
these potentials are indistinguishable within our pre­
cision limits, estimated in Paper I as ± 30% for the re­
pulsive wall (corresponding to ± 0. 04 A in the position 
of the wall), ± 10% for the attractive well, and :1:20% 
for the attractive tail. Because of the greater sensitivity 
of our room-temperature experiments to the weakly 
repulsive wall of the potential (2. 8 A< r< 3. 1 .A), the 
MSV fit to our data tends to yield a slightly deeper well 
than it would if the wide-angle scattering data respon­
sible for this sensitivity (ll > 15°) were neglected. How­
ever, the simulation calculations13 indicate that this 

TABLE III. Fitted parameters for various MSV potentials. a 

rm/A E/meV x2 b,c,d t.ao.ss/ a c(%) Ref. 

3. 54± 0. 01 2.09±0.15 4100 (3) 2.44 14 

3.55 2.30 3900 (2) 2.36 16 

3.55 2.25 3900 (2) 2.36 this 
work 

"Defined in Eq. (6) of the text, with {3= 5. 45, p 2= 1. 40, C6 
=5.889eVA6; C8 =11.12eVA8; C 10 =o.o. 14 

bScattering intensity normalized to 500 an 6h= 0. oo, 6v= 4. 9° 
for the combined data fits; the number of parameters varied 
is given in parentheses. 

0 See Eqs. (1) and (3). 
dThe fitted parameters were {3, rm, and E for Ref. 14. For 
Ref. 15 and the present work they were r m and E only, with {3 

fixed at the value obtained in Ref. 14. 

effect is < 10%, so that correcting for it would not sig­
nificantly affect the agreement among the curves of Fig. 
8. Further documentation of the data's consistency 
from the three different laboratories is furnished in 
Fig. 9 where the OCS's calculated from the various 
MSV potentials are compared. In Table Ill we list the 
corresponding r, and E parameters, and the goodness­
of-fit statistical indices [Eqs. (1) and (3)], for the three 
calculated DCS's scaled to our combined in- and out-of­
plane data. The quality of these three fits is substan­
tially the same. Having thus established the consistency, 
and from it the reliability of the three different labora­
tories' scattering data, we may now apply the results of 
Paper I in selecting the most suitable He-Ar potential. 
In Fig. 10 we display those He-Ar potentials extracted 
from DCS fits and preferred by the three different lab­
oratories: exp-6, 16 HFD, 15 ESMSV, 14 M2SV, and SPFD. 
We now proceed to discuss them. 
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FIG. 9. Laboratory-averaged differential cross sections for 
in-plane and out..of-plane scattering calculated from the cor­
responding MSV potentials of Fig. 8. 
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FIG. 10. Interatomic potentials proposed for He-Ar as a func­
tion of interatomic distance; inset as in Fig. 6, Solid curve: 
SPFD potential of this work; dashed curve: MSV potential 
from Ref. 14; dotted curve: HFD potential of Ref. 16; 
dash-dotted curve: exp-6 potential of Ref. 15. The M2SV poten­
tial is not shown here as it is very close to the SPFD one (see 
the solid curves of Fig. 6). Error bars and arrows along the 
abscissa are placed as in Fig. 6. 

The simulation calculations of Paper I showed that a 
given mathematical model must have sufficient flexibil­
ity to decouple different regions of the potential. 13 

This is required to enable an accurate representation 
of the interaction energy to be obtained by iteratively 
inverting the kinds of DCS data under discussion here, 
That is, each individual parameter should be related 
(in the ideal case) to a specific region of the potential, 
and conversely. 12 The consequent unsuitability of the 
exp 6 potential [Eq. ( 5)] for fitting DCS data is substan­
tiated by the results of Paper I. The single reduced 
form parameter a has the onus of determining the 
shape of the entire potential, including the long-range 
dispersion interaction for which it is known to be inap­
propriate at the distances sampled by the DCS experi­
ments. 16

• 
54 On the other hand, the HFD formulation 

has a large number of parameters, each with a fairly 
clear physical interpretation. 60

•
61 The resulting poten­

tial combines the convenience of being represented by 
a single analytical e:,pression with the advantage of 
having ranges of interatomic distances in which the po­
tential is sensitive to individual parameters. This 
pleasing combination is attained through use of exponen­
tial damping factors. We note that the HFD parameter­
ization is a generalization of the Buckingham-Corner 
(BC) potential, 10 and is somewhat akin to the Barker­
Pompe form, 62 both of which were investigated in detail 
in Paper I. In fitting the potential to their DCS data, 
Smith et al. 15 varied only the r m and f: parameters of 
the HFD model; they relied on recent theoretically 
determined dispersion coefficients C 6, C8, and C 10

54 and 
on repulsion parameters fitted to SCF-HF calculations. 61 

We shall hereafter refer to the HFD potential they ob­
tained as "constrained" in the sense that the full flex­
ibility of the HFD model was not exploited in the fits to 
their data. We note that the exoonential repulsion pa­
rameters strongly influence the HFD potential15

•
60

•
61 

at its attractive minimum and beyond, even though the 
HF calculations are unreliable at these large inter­
atomic distances. 61 For example, even at the minimum 
the contribution of this repulsion is+ 2. 4 meV, whereas 
that of the remaining attractive terms is -5.0 meV. 

It is apparent from these caveats that although the HFD 
form itself should indeed be highly flexible, 15 the ap­
proximate nature of the data used in fixing the repul­
sion parameters of the constrained HFD potential re­
stricts its flexibility to that of a two-parameter poten­
tial, and limits its ability to provide reliable r m and f: 

parameters. 13 This is especially true because the re­
pulsion parameters are responsible for determining 
not only the repulsive wall, but also the attractive well 
region of the potential, to which the DCS data are highly 
sensitive. As shown in Paper I and in Sec. IV of the 
present paper, a greater degree of flexibility is needed 
for an appropriate description of these regions of the 
potential. In particular, the simulation results of 
Paper I showed that the BC parameterization, having 
about the same flexibility as the unconstrained HFD 
form, 15 does not yield an accurate long-range potential· 
when fitted to the DCS data, By fixing this region of 
the potential with known values for the dispersion con­
stants, 54 as was done with the constrained HFD poten­
tial, the weakly repulsive wall and attractive minimum 
regions have no remaining flexibility. It is therefore 
not surprising that the He-Ar constrained HFD15 poten­
tial is quite similar in shape to the rather inflexible13 

exp-6 potential, 16 as shown in Fig. 10. Nor is it sur­
prising that both are quite different from the ESMSV po­
tential, 14 as well as from the present SPFD and M2SV 
potentials. Laboratory DCS curves corresponding to 
these proposed He-Ar potentials are shown in Fig. 11. 
The SPFD potential form is fully able to mimic the HFD 
potential in direct numerical fits to the latter's shape13 

[i.e., fitting only the b 0 and b 1 parameters of Eq. (8} ], 
within the range of interatomic distances probed by the 
DCS experiments. Consequently, if the constrained 
HFD potential provides a description of the He-Ar in­
teraction within the accuracy obtainable from the scat­
tering measurements, the present SPFD potential should 

.1~0 ~~__j_~~~IO:;--~--'---=~--;;,;~~--' 

8oa0/deg 

FIG. 11. Laboratory differential cross sections for in-plane 
and out-of-plane scattering. Points as in Fig. 4; curves are 
calculated from the corresponding potentials of Fig. 10. 

J. Chern. Phys., Vol. 70, No. 1, 1 January 1979 



Downloaded 21 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

494 Keil, Slankas, and Kuppermann: Scattering of thermal He beams. II 

be identical to it within that accuracy. 13 However, as 
seen from Fig. 10, it is not. This is in spite of tl1e 
equivalence of the scattering data used to obtain these 
respective potentials, as demonstrated earlier in this 
section (see also Figs. 8 and 9). From these consid­
erations, we conclude that the constrained HFD poten­
tial does not provide an accurate representation of the 
He-Ar potential (see also Sec, VI. B). 

In fitting the ESMSV potential to their scattering data, 
Chen et al. 14 did not adjust its exponential or spline 
components; since these are used only for the strongly 
repulsive wall of the potential, their effect on the DCS 
fits are minimal. 55 We can therefore use the simulation 
results of Paper I, as applied to the MSV potential 
form, 52 to assess the suitability of the ESMSV form to 
provide a potential accurate in the van der Waals min­
imum region. The (ES)MSV potential is clearly superior 
to the exp 6 one, 13 especially since it can be made to 
have the correct long-range behavior. With the avail­
ability of its Morse {3 parameter to describe weakly re­
pulsive interactions, the (ES)MSV potential may also be 
preferred over the constrained HFD one. However, as 
demonstrated in Paper I, the (ES)MSV parameteriza­
tion is unable, for room-temperature experiments, to 
describe the attractive well region as adequately as 
some other potentials that have an additional parameter 
available to describe the weakly repulsive wall indepen­
dently of the well region. This particular parametric 
independence does not appear to be required for the 
lower collision energy experiments. However, their 
increased sensitivity to the long-range region of the 
potential suggests that accurate values for the disper­
sion coefficients are particularly important. 13 Thus, 
the use of a C 8 coefficient too weak by a factor of 2, 54 

and the neglect of the C10 contribution altogether, may 

E/meV 
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FIG. 12. He-Ar integral cross sections Q as a function of the 
relative collision velocity v (lower abscissa scale) and cor­
responding relative energy E (upper abscissa scale). All scales 
are logarithmic. Solid curve: calculated from the SPFD po­
tential of this work; dotted curve: calculated from the (ES)MSV 
potential of Ref. 17. The error bar at v = 2. 5 km/ sec repre­
sents a constant calibration error of ± 2% in the experimental 
data of Ref. 17. 

induce a slight bias into the ESMSV potentials extracted 
from the low collision energy experiments. In addition, 
the dispersion series was used for distances that may 
be too close to the attractive minimum14 (see also Sec. 
VI. B). 

We may use the above discussion to justify our pref­
erence for the shallower wells of our M2SV and SPFD 
potentials. However, because of the relatively small dif­
ference between those potentials and the ESMSV one, 14 we 
cannot discriminate completely against the latter. 
Nevertheless, it must be stressed that the DCS data of 
the various laboratories, which are equivalent, should 
be reduced with more flexible potentials, or with po­
tentials whose known parameters are more accurate 
than heretofore used. Otherwise, the analysis intro­
duces a systematic bias into the potentials extracted 
from the data, 13 a bias which may not be circumvented 
by claiming good fits of the calculated to the experi­
mental DCS's. It is on this basis that we reject the 
exp-616 and the constrained HFD15 potentials as having 
attractive wells that are apparently too deep. 

VI. APPROPRIATENESS OF THE M2 SV AND SPFD 
POTENTIALS FOR THE DESCRIPTION OF OTHER 
PROPERTIES 

In this section, we compare the predictions of the 
SPFD or M2SV potentials, which are nearly equivalent 
(see Fig. 6), with experimental measurements of mi­
croscopic and macroscopic properties. We also refer 
to similar comparisons using the previously proposed 
scattering potentials. 14

- 16 

A. Microscopic properties 

Integral cross sections Q, measured in arbitrary 
units as a function of the relative collision velocity v, 
provide data sensitive to the "area" of the attractive 
well. This area is usually expressed as a product of 
the E and r, parameters, 1 

b but is of course dependent 
upon the model chosen to describe the potential. The 
E r m product for an LJ12-6 model of the He-Ar inter­
action has been obtained from Q(v) data as 7. 7±0. 818 

or 7. 5 ± 0. 863 me V A. To provide a first indication of 
the consistency of our DCS measurements with these 
results, both of which are sensitive to the attractive 
well region, we fitted the LJ12-6 model to our scatter­
ing data. We obtained an E r m product of 7. 6 me V A, 
which is very close to the value obtained from the Q(v) 
results. However, this value is no more reliable than 
is the rather crude LJ12-6 model, and is presented 
here only as a rough estimate of the compatibility of 
the (arbitrarily normalized) Q(v) and DCS results. A 
more accurate value for the E r m product, obtained from 
the third-order SPFD and M2SV potentials (see Table 
III), is 6. 4 ± 0. 7 meV A. A comparison of absolute 
Q(v) values calculated directly from the respective 
SPFD and LJ12-6 potentials18 is given below. 

More recent Q(v) data have been obtained with ab­
solute normalization, and have been used to determine 
the rm and E parameters of an (ES)MSV potential. 17 The 
potential obtained is identical to the (ES)MSV potential 
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of Smith et al. , 15 and very close to our MSV potential; 
it is therefore significantly different from the more ac­
curate third-order SPFD or M2SV potentials (see Figs. 
8 and 10 Table llJ). This equivalence of the several 
(ES)MSV potentials demonstrates the consistency of the 
(absolute) Q(v) data with the DCS results. In Fig. 12, 
we compare Q(v) curves calculated from the (ES)MSV 
potential as well as from the more accurate third-order 
SPFD and M2SV potentials [the Q(v) curves for the 
M2SV and SPFD potentials are indistinguishable in the 
figure]. It can be seen that the curves are within the 
estimated systematic error of ± 2% in the absolute cal­
ibration of the Q. In addition, there seems to be an ad­
ditional random experimental error not shown in the 
figure of about ±2%. 17 The Q(v) curve calculated from 
Helbing et al. 's LJ12-6 potential lies an average of 
-3% below that of the SPFD potential. 18 These experi­
ments are thus unable to discriminate between the po­
tentials [i.e., the Q(v) data are consistent with all of 
them], despite their sensitivity to the attractive well 
region17 and the 30% greater well depth of the (ES)MSV 
potential. This is probably due to the Q(v) data's in­
sensitivity to the shape of the potential well; we empha­
size again that the third-order SPFD or M2SV potentials 
are more accurate than is the (ES)MSV one, as demon­
strated in Sec. V and Paper I. 

By studying the vacuum ultraviolet absorption spectra 
of rare gases and their binary mixtures, the energy 
levels of many weakly bound van der Waals molecules 
have been obtained. 19 Unfortunately, even a very recent 
study was unsuccessful in determining the dissociation 
energy for the v = 0 vibrational level D 0 of either He-Kr 
or He-Xe, 19 which probably supports only the v = 0 
level. 64 To the best of our knowledge, no such studies 
are yet available for He-Ar. In anticipation of the 
future availability of such D0 measurements, we com­
pare below the calculated values for D 0 of the different 
He-Ar potentials being considered. In Table IV we 
display these predictions for the SPFD and M2SV poten­
tials, as well as those obtained from several previously 
proposed He-Ar potentials. 14

-
16 We also show the well 

depth E and zero-point energy G(O) for each of these 
potentials; none supports more than one vibrational 
level. Although the value of E for the ESMSV potential 
is - 17% greater than that for the SPFD or M2SV poten­
tials, the respective D 0 values are all very close. 
Since D0 = E- G(O), such fortuitous agreement is due to 
the larger curvature of the ESMSV minimum (listed as 
Kin Table IV), which gives it a larger value of G(O) than 
those of the SPFD and M2SV potentials (note that the 
latter two have similar values of K). The D 0 values of 
the exp 6 and HFD potentials are closer to those of the 
SPFD and M2SV potentials than are the respective well 
depths. Here, however, the compensatory effect of the 
greater curvature at the minima for the former two 
potentials than for the latter two is insufficient to pro­
duce a fortuitous agreement between these D 0 values. 

Calculating D 0 for each of the third-order SPFD "ex­
perimental" potentials of Paper I, 13 we estimate the ac­
curacy with which this quantity may be predicted for 
He-Ar from DCS measurements to be about :1::5%. The 

predicted dissociation energy determined from the po­
tentials of this work is thus D 0 = ( 0. 72 ± 0. 04) me V. 
The anticipated spectroscopic measurements of D 0 may 
eventually provide a very direct means of discriminat­
ing between some of the proposed potentials, at least in 
their respective attractive well regions. It should be 
noted, however, that such measurements cannot be used 
to obtain the well depth E (equivalent to the dissociation 
energy De) of He-containing pairs, because the zero­
point energy may be estimated only if several vibra­
tional states are observed. 19· 66

• 
67 The implication is 

that for very weak attractive wells (those which support 
no more than two bound states), the DCS measurements 
contain more information about the shape of the well 
than do the spectroscopic measurements. 

B. Macroscopic properties 

In a preliminary comparison of experimental macro­
scopic dilute gas properties23- 29 with those calculated 
from our M2SV or SPFD scattering potentials, we en­
countered a problem similar to that of Chen et al. 14 

They were unable to satisfactorily reproduce second 
virial coefficient B( T) data with an MSV potential 52 

fitted solely to their He+ Ar scattering results, and 
chose to overcome this difficulty by using the ESMSV 
form 55 instead (see the beginning of Sec. V). This is 
quite reasonable insofar as the B(T) data are more sen­
sitive to the repulsive wall than are the scattering re­
sults; the former are sensitive primarily to the attrac­
tive portion of the potential only at low temperature 
(see Fig. 7 and Ref. 10). Viscosity and diffusion coef­
ficients 17(T) and D(T), respectively, are even less sen­
sitive to the attractive portion of the potential1c, 

59 in the 
relatively high temperature regime to which the experi­
ments23-29 are inherently limited (by the condensability 
of the Ar); it is therefore to be anticipated that these 
properties may also not be described adequately by a 
potential fit solely to DCS measurements. The useful­
ness of the He-Ar B(T), ry(T), and D(T) data therefore 
is not necessarily in distinguishing between potential 
curves or parameters characteristic of the attractive 
well and adjacent regions of the potential, but rather 
lies primarily in describing more strongly repulsive 
interactions. In this regard, these data provide a 
means of obtaining the potential for interatomic separa­
tions not probed by the thermal DCS measurements. 

TABLE N. Calculated spectroscopic quantities for He-Ar 
from several porposed potentials. a 

E/ G(O)/ Dol K/ 
Potential meV meV meV (meV/A2)b Ref. 

SPFD 1. 76 1. 05 0.71 4.9 this work 
M2sv 1. 80 1. 08 0.72 5.2 this work 
ESMSV 2.09 1. 39 0.70 9.9 14 
HFD 2.60 1.77 0.83 17.5 15 
exp-6 2.72 1. 81 0.91 18.2 16 

"See Ref. 65. 
bK is defined as the curvature of the potential at the minimum of 
the attractive well. 
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Dilute gas transport properties have been used to ob­
tain the He-Ar potential for repulsive interactions be­
tween 25 and 1DD meV. 26 The lower distance limit of 
- 2. 4 A to which these data are sensitive is governed 
by the availability of high-temperature diffusion data, 
while the upper distance limit is dictated by the fai~ure 
of the fitting procedure for distances beyond- 2. 7 A. 
The potential obtained was displayed graphically. 26 We 
have been able to represent it accurately and conve­
niently by the Born-Mayer form 

v BM(r) = ce-"'' for 2. 4 < r < 2. 7 A' ( 1D) 

with the nonreduced values of C = 1. 23 x 1D5 e V and a 
= 5. 69 A-1. The range of validity of this repulsive po­
tential does not overlap that of the potentials obtained 
from fits to the scattering data (see Sec. V). Conse­
quently, it should be possible to combine the potentials 
by "switching" between them. The "switch over" 
should, of course, occur for interatomic separations 
at which neither the DCS nor the 71(T) and D(T) data are 
highly sensitive to the potential. Halfway between the 
upper limit for Eq. (lD) of p"" D. 75 and the lower re­
duced distance limit of sensitivity for DCS data (p 
""D. 81) 13 is therefore an appropriate central switch over 
distance Po· 

We choose a convenient switching function as 

1 
h(p) = 1 + e r<•-•o>. (11) 

This function rises from D to 1 as p is decreased; the 
rapidity of the rise is governed by T. The switching 
function has a value h(p) =D. 5 at p = p0, so that we specify 
Po= D. 78. By requiring h(p) = 0. 95 at the upper limit 
for Eq. (1) of p = 0. 75, thus dampening the influence of 
one region of the potential on properties depending on 
another, we specify T = 100. The switching function is 
thus completely specified by the sensitivity of the DCS 
and gas transport properties to the potential, without 
adjustment of either of its parameters. It is used to 
combine the V BM potential of Eq. (10) with the M2SV or 
SPFD potentials obtained by fits to the DCS measure­
ments. Denoting the latter collectively as V ocs, the 
"modified" M2SV or SPFD potentials are given by 

V(r) = h(r/r ml XV 8~r)+ [1- h(r/rmll XV ocs(r). (12) 

The r m reduction parameter is 3. 659 or 3. 573 A for 
v ocs being the M2SV or SPFD potential, respectively 
(see Table II). In order to test the validity of the above 
procedure for combining scattering and macroscopic 
data, the modified M2SV and SPFD potentials are used 
to calculate values for DCS, transport, and equilibrium 
properties for comparison with experimental results. 

The virial coefficients were calculated by numerically 
integrating Eq. (9); first and second quantum correc­
tions10 were calculated and applied to the classical B(T), 
amounting to a total of 4. 6% at T = 200° K and 1. D% at 
T = 60Do K. Transport coefficients were calculated in 
the first approximation10 by the method of Smith and 
Munn, 68 but using quantum mechanical cross sections 
(see Sec. ill). The experimental "interaction coeffi­
cients" B12, 11 12, and D12, were calculated from mea-

surements of the corresponding pure component and 
mixture virial and transport properties, with the ex­
ception of Brewer and Vaughn's coefficients. 23 These 
were calculated using experimental literature values 
for the pure component B(T). 

The M2SV and SPFD potentials, whose parameters 
are listed in Table II, were modified using Eqs. ( 11) 
and {12), and then used for the bulk property calcula­
tions. Results are presented in Table V, showing the 
standard deviations of the various calculated proper­
ties from the corresponding experimental ones. Also 
shown in this table (see the last row) is the effect of 
modifying the M2SV and SPFD potentials on the standard 
deviations for the fits to our DCS data. These standard 
deviations correspond to values of the ~a0 • 95/a statisti­
cal index [Eq. ( 3)] of 2. 16% and 2. 15% for the modified 
M2SV and SPFD potentials, respectively. In comparing 
these ~a0 . 95/a to the values of 2. 08% and 2. D7% ob­
tained in the absence of the modifications (see Table II), 
their effect on the DCS is seen to be rather minimal. 
The standard deviations for our DCS fits may be scaled 
to those of other experiments by the signal intensities 
at our out-of-plane reference angle of 4. 9°. Using the 
normalization appropriate for Smith et al. 's data, our 
standard deviation then becomes about 1. 0, which is of 
the same quality of their best fits to their data15 (Chen 
et al. do not report their fitting quality14)o 

Both the modified M2SV and SPFD potentials are seen 
to describe the experimental macroscopic data rather 
well (Table V). This is very encouraging, especially 
since the B(T) data are reproduced, even though they 
were not used at all in choosing the modified potentials 
of Eq. (12). We also note from the table that the modi­
fied M2SV potential is slightly better able to describe 
the bulk property data than is the SPFD one. 

The modified M2SV potential is shown in Fig. 13, 
which has a logarithmic energy scale above 1. 0 meV. 
Also shown for comparison are the corresponding curves 
for the ESMSV potential, 14 and for the HFD one. 15 On 
the scale used, the modified SPFD potential is very 
close to the M2SV one and is not plotted. Let us first 
consider the three potentials in the repulsive region be­
tween 2. 4 and 3. D A, where we can see that they are 
all quite similar. Both the modified M2SV and SPFD 
potentials describe B(T) data as well as does the 
ESMSV one; this was the only bulk property considered 
by Chen et al. 14 These two modified potentials also 
describe all the macroscopic data about as well as does 
the HFD potential15 (Table V). High energy integral col­
lision cross section results are also shown in Fig. 13 
for extremely repulsive interactions. 69 Unfortunately, 
there is a gap between 1. 8 and 2. 4 A where the potential 
is poorly characterized by this method (or by any other); 
however, it is rather tempting to interpolate smoothly 
between the high-energy scattering and bulk property 
results. If such an interpolation is valid, the repulsive 
He-Ar potential can now be regarded as reasonably well 
known for r > 1. 4 A. 

The comparison among the three potentials in the 
attractive region is much less satisfactory. The dis-
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TABLE V. Standard deviations cr for dilute gas properties. 

(I 

Temperature modified modified Experimental 
Property range/oK data rangea-d M2SV e,f SPFD"•1 error Reference 

B(T)b 123-323 10.6-18.4 (9) 0.65 0.73 0.12 23 
B(T) 223-323 16.1-18.4 (3) 0.27 0.15 0.05 24 
B(T) 303-773 18. 8-20. 5 (6) 0.72 0.93 0.20 25 

1J(T)" 122-311 88-160 (8) 2.5 4.1 2.5 26 
1J(T) 295-1553 160-470 (11) 6.0 6.0 6.0 27 

D(T)d 90-400 o. 09-1. 2 (4) 0.034 0.031 0.003 28 
D(T) 300-1400 o. 73-9.5 (23) 0.038 0.038 0.10 29 

B(T)b -total8 123-773 10. 6-20, 5 (18) 0.60 0. 71 
1J(T)"-total 122-1553 88-470(19) 4.7 5.2 
D( T) ct -total 90-1400 0. 09-9.5 (27) 0.036 0.037 
DCSh 9. 8-4500 (77) 6.6 6.6 1. 5-100 this work 

~he number of data points that is compared with calculated values is given in parentheses; the data of Ref. 
29 were "smoothed." 

bSecond virial coefficients, units of cm3 /mole. 
"Viscosity coefficients, units of 1-LP. 
doiffusion coefficients at 1 atm, units of cm3/sec. 
"Mathematical forms defined in Eqs. (7) and (8); potential parameters are given in Table II. 
1The potentials.are "switched over" to a Born-Mayer short-range repulsive wall as shown in Eqs. (11) and 
(12). Parameters of Eq. (11) are T=100 and Po=O. 78; the nonreduced Born-Mayer parameters of Eq. (10) 
are C=1,23Xl05 eV and 0:=5.69 A.-1• 

8 "total" applies to the combined data of the several references given for each particular property. 
hDifferential cross sections in arbitrary units. Values of the ~a 0 • 95/a statistical index of Eq. (3), cor­
responding to the absolute standard deviations quoted here, are 2. 16% and 2. 15% for the modified M2SV and SPFD 
potentials, respectively; cf. Table II. The DCS scattering intensities and experimental errors are normalized 
to 500 at the out-Of-plane reference angle of 4. 9°, 

crepancies seen in Fig. 13, especially between the HFD 
and (modified) M2SV potentials, is beyond the 10% error 
bar established by independent computer simulation 
studies13 for the sensitivity of the potentials in the at­
tractive well region. These discrepancies are not 
caused by differences in the data, which have been 
shown to be equivalent (Sec. V). Nor can the discrep­
ancies be resolved by appealing to macroscopic prop­
erties, which are described equivalently by our modified 
potentials and by Smith et al. 's HFD one (Table V and 
Ref. 16). Rather, the discrepancies are caused entirely 
by inadequacies in the potentials previously used to fit 
the scattering data. We have independently shown that 
the present M2SV and SP FD ones do have the flexibility 
required for an accurate potential to be obtained from 
iterative fits to the OCS data. 13 

2 4 5 

I nterafomic Disfance/A 
6 7 

497 

As mentioned towards the middle of Sec. IV, we now 
discuss the choice of the reduced distance p1 beyond 
which the theoretical multipole expansion is used54 for 
the SFPD potential [Eq. (8) ]. For an early statistical 
model of interactions between closed-shell atoms and 
ions, it was found5a that the leading term of the multi­
pole expansion mimics well the calculated potential for 
reduced distances beyond p = 1. 1 for Ar2 and p = 1. 7 for 
He2 • Although the results of these calculations were 
not very reliable for the repulsive and for the attractive 
well regions of the potential, the relative contributions 
of the short-range, induction, and dispersion compon­
ents to the potential at large interatomic separations is 

FIG. 13. He-Ar potentials, plotted semilogarithmically for 
energies above 1 meV, and linearly below 1 meV. Solid curve 
at the upper left is obtained from the high-energy integral col­
lision cross section measurements of Ref. 69. Other curves 
are constructed from an amalgam of DCS and bulk property mea­
surements. Solid curve: modified M2SV potential of this work 
(the modified SPFD potential is very similar and is not plotted); 
dashed curve: ESMSV potential of Ref. 14; dotted curve: HFD 
potential of Ref. 15. The horizontal error at r= 2. 6 A is 
± 0, 01 A and is about the same as the horizontal displacements 
among the three potentials there26; at the attractive minimum, 
the error bar is ± 10% of the potential energy. !3 
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TABLE VI. Fitted parameters for SPFD potentials with different values of p1• a 

1.4 
1.6 
1.8 
2.0 
1. 64 

rm/A 

3. 723 
3. 573 
3. 591 
3. 590 

3. 589 

E/meV 

1. 62 
1.76 
1. 87 
2.05 
1. 76 

bo 

3.15 
17.8 
22.1 
24.7 
18.2 

bt x? b,c,d C.ao .95/ ad(%) 

5.15 3100 (4) 2.12 
-4.69 2900 (4) 2.07 
-3.51 3000 (4) 2.11 
-3.19 3200 (4) 2.17 
-4.28 2900 (5) 2.07 

Reduced distance beyond which the potential assumes its theoretical 54 asymptotic from [see 
Eq. (8)]. 

bFor p1 = 1. 4, 1. 6, 1. 8, and 2. 0, the fitted parameters were r m• E, b0, and b1 of Eqs. (4) and 
(8); the p1 = 1. 64 value was obtained by optimizing it simultaneously with the other four parame­
ters. 

0Scattering intensity normalized to 500 at Oh= 0. 00, ev= 4. 9°; the number of parameters varied 
is given in parentheses for the fits to the "combined" data sets. 

dSee Eqs. (1) and (3). 

probably realistic. Our adoption of p1 = 1. 6 for switch­
ing to the first three terms of the multipole expansion 
is predicated upon these semiempirical results. sa, 72 

Lacking sufficiently detailed accurate theoretical cal­
culations, we also seek to justify this choice empirically. 

To this effect, we fit the SPFD potential [r ,, E, b0, 

and b1 parameters of Eqs. (4) and (8)] to our DCS data 
for values of p1 held fixed at 1. 4, 1. 8, and 2. 0, in ad­
dition to the original value of 1. 6. Now, the computer 
simulation results of Paper I showed that up to five 
statistically independent potential parameters may jus­
tifiably be fit to our DCS data, 13 and that p1 is one such 
parameter. We therefore use p1 as the fifth parameter 
in place of the c6 dispersion coefficient, 53 which is held 
constant by using a fixed long-range potential (see Sec. 
IV), and fit the SPFD potential to the DCS data with the 
least-squares optimization of p1 included. The param­
eters obtained for all these fits are shown in Table VI, 
and some of the resulting potentials are displayed in 
Fig. 14. Within the range of distances of the potential 
to which the DCS are sensitive, the effect of increasing 
p1 is primarily to deepen the attractive well of the po­
tential; the position of the repulsive wall is changed 
only slightly over the range of p 1 values considered. 
The shallow potential obtained from the p1 = 1. 4 fit is 
considered unrealistic because of its uneven shape in 
the interatomic distance region between 3. 5 and 4. 5 A 
(see the inset of Fig. 14); moreover, least-squares 
convergence was unusually difficult to attain. Both 
problems are caused by the small b0 parameter value 
obtained, leading to inappropriately large73 b2 and b3 

coefficients. This empirical evidence that p1 must be 
greater than 1. 4 may indicate that the lower limit of 
interatomic distances for which the multipole expansion 
is valid is- 5 A for He-Ar. For p1 = 2. 0, the increase 
in E is seen to be beyond the error bar estimated to re­
flect the accuracy with which this part of the potential 
may be determined. 13 A stronger indication that the 
most appropriate among the fixed p1 values is p1 = 1. 6 
is provided by the least-squares fitting of p1 to the 
DCS data. As shown in Table VI, this results in a 
value of 1. 64; the resulting potential is almost indis­
tinguishable from the p1 = 1. 6 one and is therefore not 
plotted in Fig. 14. 

In this section we have shown that the repulsive wall 
region of the potential, obtained exclusively froJl?. mea­
surements of bulk properties, may be combined with 
the weakly repulsive and attractive regions of the poten­
tial, as determined exclusively by differential scatter­
ing experiments. Microscopic and macroscopic prop­
erties are simultaneously well described by this com­
bined potential, which has thus been determined over 
a wider range of interatomic separations than would be 
possible by consideration of either microscopic or 
macroscopic properties alone. This is largely due to 
non-overlapping regions of sensitivity of such proper­
ties to the He-Ar potential. 

VII. SUMMARY AND CONCLUSIONS 

The computer simulation results of Paper I and the 
thermal DCS scattering measurements presented here 
have been used to construct two equivalent, accurate 
potentials, having different mathematical parameteriza­
tions, for the attractive well and adjacent regions of the 

FIG. 14. Interatomic potentials of the SPFD shape for He-Ar 
as a function of interatomic distance; inset as in Fig. 6. Dif­
ferent curves are obtained fixing p1 = 1. 6 (solid); p1 = 1. 8 
(dashed); p1= 2. 0 (dash-dotted); p1= 1. 4 (dotted), while fitting 
the four remaining SPFD parameters to DCS data. The cor­
responding curve with p1 fitted along with the other SPFD parame­
ters is almost indistinguishable from the p1 = 1. 6 curve and is 
not plotted. The potential parameters are given in Table VI. 
Error bars and arrows along the abscissa are placed as in 
Fig. 6. 
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important heteronuclear rare gas diatom He-Ar. 
These potentials have been modified for strongly repul­
sive interactions, to which the DCS data are insensitive, 
by "switching over" to a potential determined exclusively 
from dilute gas transport properties. 26 This modifica­
tion has virtually no effect on the DCS scattering results, 
while a very good description of gas-phase bulk proper­
ties23-29 is obtained without further variation of any 
parameters. Both potentials are most conveniently 
written in reduced form, 

( 4) 

The first of these is the modified SPFD, 21 ·22 written 
as 

f(p)=h(p)Ae-b"+ [1-h(p)](b 0:>t
2 (1+ ~bY) -1], 

with h(p) = 1 + e ;<•-•o> ; :>.. = 1-1/p and p < p1 
(13) 

3 

f(p) =- L: c2i •4P-<2i •4> for p ~Pt. 
1=1 

We have used the results of Paper I to select N = 3. 13 

The DCS data presented in Sec. IV and shown in Sec, V 
to be equivalent to those of two other laboratories, 14· 16 

were used to determine the rm, E, b0, and b1 parameters 
in the above equations. The value of the long-range 
joining point p1 was chosen on the basis of semiempirical 
calculations, sa, 

72 and was justified in Sec. VI by good-

TABLE VII. Modified SPFD potential parameters for He-Ar. a 

Parameter Valueb Method of determination 

N 3 computer simulation° 
rm 3. 573 A DCS measurementsd 
E 1. 76 meV DCS measurementsd 
bo 17.75 DCS measurementsd 
bt -4.685 DCS measurementsd 

Pt 1. 60 semiempirically; DCS mea-
surementsd 

cs" 1.602 theoreticallr 
ca" 0.549 theoretic ani 
c1o • 0,255 theoreticallr 
b2 15.13 smoothness at p = Pt 
b3 -19.23 smoothness at p = Pt 
Ag 6. 972X10 7 viscosity; h diffusion1 data 
bg 20.33 viscosity; h diffusion1 data 

Po 0.78 switching function [Eq. (11)] 
T 100 switching function [Eq. (11)] 

aModified SPFD form of Eq. (13), parameter symbols are as used 
there and in Eq. (4). IT= 3. 08t A for this potential. 

bThose values quoted to four digits (except rm) are not actually 
significant in the last place; we display then only to avoid round­
off errors which might otherwise result in apparent discon­
tinuities of the potential at Pt· 

"Reference 13, 
~his work. 
"Nonreduced dispersion coeffcieints are53 •54 C6 = 5. 867 eV A6; 

C8= 25.68 eV A8; C10 = 152.1 eV A10, 

!Reference 54. 
gNonreduced Born-Mayer parameters are C = 1. 23 x 105 e V; 
0'=5. 69 A-1• 

haeferences 26 and 27. 
1References 28 and 29. 

ness-of-fit criteria. For p > p1, theoretical 54 dispersion 
coefficients c 6, c 6, and c 10 were used; smoothness con­
ditions at p = p1 then determined b2 and b 3• We obtained 
the Born-Mayer parameters A and b from a repulsive 
potential which resulted solely from gas transport prop­
erties. 26 The "switching function" parameters Po and 
T r see also Eq. ( 11) l were chosen to minimize the ef­
fect of one region of the potential on properties depend­
ing on the other. Integral cross section17· 18· 63 and virial 
coefficient23- 25 data were reproduced successfully by 
the modified SPFD potential, and were not considered 
further in its determination. Although our modified 
SPFD potential is characterized by a total of 15 param­
eters, only the five parameters rm, E, b0, b 17 and p1 
were obtained from the fits presented here. The final 
modified SPFD parameters are listed in Table VII. 

The r m and E parameters of course retain their famil­
iar physical significance as the position and depth, re­
spectively, of the attractive minimum, as do the dis­
persion coefficients53 and the Born-Mayer repulsive 
parameters A and b. The b0 parameter governs the 
curvature of the attractive minimum (i.e., [d'i/dp2

] •• 1 
= 2b 0), and p1 may be regarded as the reduced distance 
beyond which the multipole expansion is appropriate. 
Unfortunately, the physical significance of the remain­
ing parameters is more obscure. 

The second of our accurate He-Ar potentials is the 
modified M2SV, 20 written as: 

<B'-pB"' l 
f(p)=h(p)Ae-b"+[1-h(p)]e w [eW-•Bw>_z], 

where 

(14) 

1 8'-ln2 
h(p)= 1 +eT<•-•o>; w= /3-lnZ andp<1-(3-

1
ln2 

j(p) = e8 <l-•>[e 8 (1-•>- 2] for 1- /3-1ln 2,; p,; Pt 

f(p) = (p2- p) [st(P2- P)2+ s3l+ (p- Pt)[s2(P- Ptl2 + s4] 

for Pt <p<p2 
3 

!( ) "" -(2i+4) f P =- LJ Cz; •4P or P ~ Pz. 
1=1 

The modified M2SV potential for He-Ar is character­
ized by the 17 parameters listed in Table VIII. As for 
the modified SPFD potential [Eq. (13) and Table VII], 
only five of these parameters were adjusted to fit the 
DCS data: r ,, E, 8, f3 ', and p 2• Four of the remaining 
parameters are fixed by smoothness conditions (s 1-s4), 

and a fifth is otherwise completely determined (p1). 
The remaining long- and short-range parameters were 
obtained in the same fashion as were the corresponding 
modified SPFD parameters. 

The large number of parameters required to ade­
quately describe all the He-Ar data discussed here in­
dicates that it is highly unlikely that the principle of 
corresponding states 10 can be used to predictanaccurate 
interatomic potential for this system from those of 
others. It is therefore also unlikely that combination 
rules can be found having a predictive accuracy com­
parable to that with which interaction potentials for sim-
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TABLE VIII. Modified M2SV potential parameters for He-Ar. a 

Parameter Valueb Method of determination 

rm 3. 659 DCS measurements0 

€ 1. 80 DCS measurements0 

f3 4.41 DCS measurements0 

/3' 8.54 DCS measurements0 

Pz 1. 60 semiempirically; DCS measure-
ments0 

csct 1. 358 theoretically" 
cad 0.444 theoretically" 

Cto 
d 0.196 theoretically" 

Pt 1.157 Morse f3 parameter 
St -0.552 smoothness at p = p 1 and P2 

82 -2.573 smoothness at p = Pt and P2 

s3 -1.586 smoothness at p = p1 and P2 

s4 0.294 smoothness at p = Pt and Pz 
At 6. 834 X10 7 viscosityg; diffusionh data 
bf 20.82 viscosityg; diffusionh data 

Po 0.78 switching function [Eq. (11)] 
T 100 switching function [Eq. (11)] 

aModified M2SV form of Eq. (14), parameter symbols are as used 
there and in Eq. (4). a= 3. 084 A for this potential. 

bThose values quoted to four digits (except rm) are not actually 
significantin the last place; we display them only to avoid 
round-off errors which might otherwise result in apparent dis­
continuities of the potential at p = Pt> p2, or at a/r m• 

0 This work. 
~onreduced dispersion coefficients are53

•
54 C 6 =5. 867 eV A6

; 

C8 =25.68eVA8; C 10 =152.1eVA10• 

"Reference 54. 
fNonreduced Born-Mayer parameters are C = 1. 23X 105 eV; 
0!=5.69 'A-1

• 

gReferences 26 and 27. 
~eferences 28 and 29. 

ple van der Waals systems may be experimentally de­
termined. 

Independent computer simulation studies13 indicated 
that the range of sensitivity of the present DCS data is 
2. 8 to 6. 5 A. Consequently, we consider this to be 
the minimum range of validity of the M2SV and SPFD 
potentials. However, in view of the supplementary in­
formation discussed here, the validity of the modified 
M2SV and SP FD potentials extends to all separations 
larger than 2. 4 A. If one furthermore interpolates 
these potentials over the 1. 8 to 2. 4 A gap for which no 
accurate information is available, the range of inter­
atomic distances for which the He-Ar potential can be 
assumed known is r > 1. 4 A. For such interatomic 
separations, these two potentials are identical within 
experimental error, and have been shown to provide an 
accurate representation of the He-Ar interaction. For 
distances 2. 8 <:r<: 6. 5 A, the potentials obtained here 
are free of any siginificant biases arising either from 
the experimental data or from the parameterizations 
used to model the interaction. 

ACKNOWLEDGMENTS 

We wish to thank Messrs. W. W. Schuelke, A. W. 
Stark, and I. Moskovitz of the Instrument and Electron­
ics Shops of the Division of Chemistry and Chemical 
Engineering at Caltech for their talented technical sup-

port of the apparatus. We also wish to thank Ambassa­
dor College for generous use of its computing facilities. 

APPENDIX: c.m. TO LAB COORDINATE 
TRANSFORMATION 

We present here a brief description of the center of 
mass (c. m.) to laboratory (lab) coordinate transforma­
tion equations, for an arbitrary beam intersection angle 
and for arbitrary polar scattering angles. The quantities 
used in this derivation are defined in the velocity vector 
diagram of Fig. 15, which is restricted to elastic scat­
tering, i.e., 

luI= U=Ut. (Al) 

The Oz velocity-space lab coordinate axis is chosen to 
be coincident with the primary beam velocity vector, 
and the x 30 xz half-plane contains the secondary beam 
velocity vector. The GZ velocity-space c. m. axis 
similarly coincides with the primary particle c. m. 
velocity vector with the GX axis being in the x 3 0 xz 
half-plane. Orthogonal unit vectors in the lab frame 
are i, f. and k; in the c. m. frame they are i, J, and 
K. These unit vectors are related by: 

(i) ! 
(ii) , 

(iii) 

(A2) J =) 

K=- lsina +kcosa 

where a is easily expressed in terms of v t> v2, and y. 

The relative collision velocity vector ur is given by 

(A3) 

The scattered velocity vectors v and u are related by 

I 
0 

X 

km/sec 
I I I 

.5 

(A4) 

FIG. 15. Velocity vector diagram for He-Ar collisions at an 
arbitrary beam intersection angle y. 0 and G are the origins 
(in velocity space) of the lab (Oxyz) and c. m. (GXYZ) coordinate 
axes, respectively, as defined in the text. The detector posi­
tion D has spherical polar angles 9, rp and e, 4> in these re­
spective frames. In configuration space, the c. m. moves at a 
velocity Vg with respect to the lab origin; the Oz and GZ coor­
dinate axes intersect at an angle a. Velocity vectors are de­
noted "v" in the lab and "u" in the c. m. frames; those with a 
subscript "1" refer to the primary beam, while a "2" refers to 
the secondary beam. The scattered velocity vectors v and u 
(no subscripts) intersect at an angle 13. Symbols in the figure 
with overhead arrows are vector quantities, corresponding to 
boldface symbols in the text. 
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where 

(A5) 

M is the sum of the primary and secondary beam par­
ticle masses m 1 and m2, respectively. The lab and 

c. m. scattered velocity vectors are given by 

v = v(i sin/1 cos<t> + f sine sin<t> + k cos B) ( i) \ (A6) 

u = u(I sine cos <I>+ J sine sin<I> + :K cos e) (ii) 

From Eqs. (A2), (A4), (A5), and (A6) we obtain 

Mv sin/1 cos<t> = m2 [v 2 siny +ur(sine cos<I> cosa- case sina)] (i) 

Mv sinO sin<!>= m 2ur sine sin<I> 

Mv cosB = m 1v1 + m 2[vz cosy 

+ ur(sine cos <I> sin a+ case cos a) l 

( ii) 
(A7) 

(iii) 

It is now useful to express fl, <I>, and v in terms of e, </>, and u. Eqs. (A7i) and (A7ii) furnish 

<1>=0 

•1[r2 siny(cose -1)] <I>= cos . 
ursme cosa 

where 

A~= v2 siny tan<t>( 1- cos e) 

B~ =UrSine tan</> COSQI 

C~ =UrSin8. 

for <1> = 0 

7f 
for <1> =-

2 

(i) 

(ii) (AB) 

The special cases <1> =0 and <1> =rr/2 correspond to in-plane and out-of-plane scattering, respectively, as defined in 
Sec. II. We may similarly obtain fl (in the range 0 torr) from Eqs. (A7): 

8 =tan·{ m 2[v2 siny( 1- co;~)+ ursine cosalJ 

g = tan·l[mzUr Sine(1- COSp)
112

] 
Pk sin<t> 

for <1> = 0 (i) ~ 

for <1> * 0 ( ii) ~ , 

(A9) 

where 

Pk = m 1v1 + m 2[v2(cosy +sine siny) +ur case cosa]. (A10) 

Finally, Eq. (A7iii) yields 

pk 
v = M cose · (All) 

This quantity is useful in calculating the Jacobian of 
the ( e, <I>)- ( e' <I>) coordinate transformation. Requiring 
the conservation of flux upon performing this transfor­
mation, and relating differential surface elements in the 
two coordinate frames, the ratio of the lab to c. m. 
DCS gives74 

.£ulL- v2 

Uc.m. - u2 1 COSO I" (A12) 

The angle o may be obtained from triangle OGD of Fig. 
15 as 

0
_ -1 u +v - v, [ 2 2 2] 
-cos 2uv . (A13) 

The output signals of our electron-bombardment detec­
tor are proportional to number densities. To obtain 

quantities proportional instead to fluxes, and hence to 
DCS's, we must multiply those signals by the corre­
sponding lab velocities. TJ:lerefore, 

(A14) 

where I.e and / 1nc are the scattered and incident signals, 
respectively. c is independent of scattering direction, 
and includes the secondary beam number density and 
the detector acceptance angle. From Eqs. (A12) and 
(A14) we get 

C a vv 1 I =- c.m. ---,2,r-....._-
sc I Inc 

1 
U I COSO I' 

(A15) 

where C/I1no is independent not only of the scattering 
direction, but also of v and v1. 

After specifying the variables Vt. v2, y, </>, and e, 
as well as the constants m1 and m 2, the (e, <t>)- (8, <I>) 
angular transformation is performed using Eqs. (AS) 
and (A9). The detected signal intensity / 00 is then ob­
tained (in arbitrary units) from Eqs. (All) and (A15). 
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