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Higher-order gluon corrections to a particular mechanism for the AI = 1/2. rule are computed using 
quantum chromodynamics. It is found that due to gauge invariance these corrections leave the form of the 
lowest-order result essentially unchanged. · 

I. INTRODUCTION 

The weak decays of strange hadrons are con­
veniently grouped into three general categories: 
leptonic, semileptonic, and nonleptonic. While 
the leptonic and semileptonic decays have been 
fairly well understood for many years, only re­
cently has serious progress been made towards 
the understanding of nonleptonic decays. 

It is well known that experimentally the non­
leptonic decays of strange hadrons which proceed 
through the AI=~ part of the effective weak Hamil­
tonian are enhanced by roughly a factor of 20 (in 
amplitude) over those decays which go via the 
AI=% part' of the effective weak Hamiltonian. This 
is called the iii=~ rule. It had been hoped that 
strong-interaction effects at short distances would 
sufficiently enhance the AI=~ portion of the usual 
current-'current nonleptonic weak Hamiltonian 
to explain the AI=i rule. 1 However, detailed cal­
culations using quantum chromodynamics (QCD) 
do not lead to a large enough enhancement.2 

It has been claimed3 that the answer lies in the 
amplitude shown in Fig. 1, sometimes called a 
"penguin" diagram. Since the gluon (g) carries 
no isospin, this amplitude is pure AI=~. At first 
glance the penguin diagram appears to give a 
small contribution to the effective weak Hamil­
tonian, but its chiral structure leads to a very 
large contribution to strange-particle decay amp­
litudes involving pions when its matrix elements 
are evaluated by saturating the matrix element 
of a product of quark bilinears with the vacuum 
intermediate state. Analysis3 - 6 of both strange 
meson and baryon decays supports the hypothesis 
that both the magnitude of the decay amplitudes 
and the AI= t rule are understandable on this 
basis. 

Calculation of Fig. 1 reveals that (in the ap­
proximation of regarding the W -boson and charm­
quark masses as very heavy) the loop integral 
gives a factor of k2 which cancels the pole in the 
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gluon propagator. As a result Fig. 1 can be de­
scribed, perhaps surprisingly, in terms of a local 
four-quark operator in the effective·Hamiltonian 
for nonleptonic weak decays. 

It is natural to wonder whether this local four­
fermion structure is an artifact of the lowest­
order !!alculation or will persist to higher orders. 
For example, Fig. 2(a) might appear to be a dia­
gram showing that the local four-fermion result 
is indeed an artifact of the lowest'-order calcula­
tion. In-Fig. 2(a) the factor of k2 from the upper 
loop integration cancels the gluon propagator 
when the masses of the strange and down quarks 
are zero. This, however, does not lead to a local 
four-fermion structure, but instead to a structure 
of the type shown schematically in Fig. 2(b). 

Another class of diagrams that might seem to 
show that the local four-fermion result of Fig. 1 
is an artifact is shown in Fig. 3. Again, the dia­
grams of this type do not admit an interpretation in 
terms of a local four-fermion structure. More­
over, they are no smaller than the lowest-order 
penguin diagram even in the limit of large charm­
quark and W -boson masses. The diagrams of 
Fig. 3 would, taken by themselves, ruin the low­
est-order local four-fermion result. 

The purpose of this paper is to show, .by ex­
plicit calculation, that a cancellation of soft-gluon 
effects occurs between the diagrams of Figs. 2 
and 3 and to show how similar cancellations occur 
between other· diagrams so that in general the 
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FIG. 1. "Penguin'' diagram contributing to nonlep­
tonic weak decays. 
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FIG. 2. (a) A two-loop penguin-type diagram contri­
buting to nonleptonic weak decays. (b) Symbolic repre­
sentation of (a) illustrating the cancellation of a gluon 
propagator by the upper loop integration. 

local four-fermion structure of the effective weak 
Hamiltonian density is not destroyed. 

This cancellation, which might seem surprising 
from a strictly diagrammatic point of view, 
actually has a simple and fairly well-established 
field-theoretic interpretation. 3 ' 4 ' 7- 9 To leading 
order in the heavy masses the sum of all dia­
grams of the penguin type (with arbitrary gluon 
insertions) ~ust be equal to a sum of matrix ele­
ments of local, gauge-invariant operators times 
Wilson coefficients.1 Apart from four-fermion 
operators, one might expect the operator 
if y" (1 - y ,)Ta s <nv Fv'" )a to appear in the expansion. 
[Here DvFv'" = (DvFviJ.)aTa denotes the covariant 
derivative of the gluon field strength tensor.] 
Other operators have the wrong dimension, chiral­
ity or flavor quantum numbers. But by the equa­
tions of motion for QCD this operator is itself 
a four-fermion operator. Thus th.e local four­
fermion structure of the lowest-order penguin 
diagram is preserved in the sense that the sum 
of all penguin-type diagrams equals a sum of Wil­
son coefficients (which will be modified from 
their lowest-order values) times matrix elements 
of local four-fermion operators. 

The basic result has already been stated in Refs. 
3 and 4. The purpose of this paper is to show, in 
a diagrammatic language, how the higher-order 
diagrams manage to preserve the basic structure 
of the ~owest-order result. In the next section, 
the details of the calculations are outlined. Some 
comments and the conclusions are stated in Sec. 
III. 

II. CALCULATIONS 

In the absence of strong interactions the weak 
interactions induce a strange-quark-to-down-
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FIG. 3. Two-loop penguin-type diagrams which are 

not the matrix elements of a local four-fermion opera­
tor. 
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FIG. 4. One-particle-irreducible diagrams contribu­
ting to the transition s-d+(gluons) at the one-loop level. 

quark transitions'- d in the mass matrix which 
can be absorbed into quark wave-function re­
normalization if the s'trange and down quarks are 
on the mass shell.10 When the gluon field is pres­
ent, strangeness-changing transitions such as 
s- d + (gluons) exist which cannot be absorbed into 
a redefinition of the fermion fields. 

Consider first the contribution of the one-parti­
cle irreducible diagram in Fig. 4(a) to the effective 
weak Hamiltonian. In Fig. 4(a) the cycloidlike line 
represents the gluon field A~. The W -boson 
propagator has been replaced by a Fermi coupling 
which gives the leading contribution of an expan­
sion in powers of 1/Mw2 • In momentum space 
Fig. 4(a) gives rise to an effective vertex E';_(p;k) 11 , 

where11 

and 

I a k) = ~ J d4q ai fi ;_ Te+m 
11 ( ·/2 (21T)4Y (q-k)z-mz+iO 

. Ta . fi+m 
X zg y II Z 2 2 ·o y a • q -m +z . 

The SU(3) color matrices Ta, aE{l, 2, ... , 8}, 
satisfy the commutation relations 

[Ta, Tb] = if4bcTc 

and the normalization condition 

(la) 

(lb) 

(2a) 

{2b) 

·When calculating I~ (k) only terms which con-· 
tribute to leading order in the heavy quark mass 
m are kept and k2 is treated as small compared 
with m 2 • That is, we work in the soft-gluon and 
large-quark-mass limit. Since the "infinite" part 
is independent of the mass of the quark and will 
cancel by the Glashow-Iliopoulos-Maiani (GIM) 
mechanism12 when another quark is added to the 
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loop of Fig. 4(a), the resulting expression for 
l~ (k) is finite and has the form3•10 

I~(k)= ~ 12~2 ln(-;:)T4 (k2y~ -k~~). (3) 

The dependence of the logarithm in Eq. (3) ori the 
renormalization point mass fJ. will cancel by the 
GIM mechanism, but it is retained at this stage 
so that the argument of the logarithm appears 
dimensionless. In the four-quark model, fcir ex­
ample, the case of physical interest has a charm 
quark in the loop. However, a diagram such as 
Fig. 4(a) with an up quark in the loop arises from 
the matrix elements of the usual current-current 
term in the effective Hamiltonian. If the charm 
quark is treated as heavy, then to leading order 
in the heavy charm quark mass m the up quark 
does not contribute except to cancel the infinite 
parts and replace JJ. by a typical hadronic mass. 
This last point is somewhat arbitrary since in the 
limit where mis very heavy ln(m 2/fJ.2) is approxi­
mately independent of Jl. 

Transforming to coordinate space, by the sub­
stitution k 11 --ia~, Fig. 4(a) is represented by the 
operator 

J(\(x)=- ~ 1f1T2 ln(11~:)2dL(x)y11 T4SL(x) 
(4) 

in the effective weak Hamiltonian density. Note 
that Eq. (4) does not contain the heavy quark field. 
In general we want to derive an effective Hamil­
tonian density independent of the heavy quark 
field. 13 •14 Of course, matrix elements of this 
Hamiltonian must be evaluated to all orders in the 
theory of strong interactions. 

The matrix elements of the operator in Eq. (4) 
reproduce the amplitude for the lowest-order 
penguin diagram in Fig. 1 and the amplitude for 
the diagram in Fig. 2. 

Next consider the case where two gluon fields 
are attached to the quark loop as shown in Fig. 
4(b). In momentum space, Fig. 4(b) gives rise to 
an effective vertex lt'zb(p; k11 k2)11 u which has the 
form 

(5) 

The calculation of I~bu(k11 k2 ) is simplified by noting 
that only logarithmically divergent integrals have 
the potential to give rise to a logarithmic enhance­
ment in the heavy-quark mass m. Explicit calcu­
lation to leading order in the h!=!avy-quark mass m 
reveals that in the soft-gluon and large-quark­
mass limit where k1 2 , k2 2 and k1 • k2 are treated 
as small compared with m 2 

I~bu(k1 , k2) =-:;: 1~;2ln(;nTcr•b[(2k2+ k1) 11 ru- (2k1 + k2kr 11 * <~1- ~2)g11 u]. (6) 

The "infinite" part is omitted since it is independent of the quark mass m and will cancel by the GIM 
mechanism. In coordinate space, Fig. 4(b) is represented by the operator 

G g2 (m2\ 
:JC2(x) =- f2 121T2 ln \7}2dL(x)y~'TcsL(x)j"'"b [2A~(x)auAt (x) +At (x)auA~(x) +A ub(x)a 11A~(x)] + H.c. (7) 

in the effective weak Hamiltonian density. If Fig. 
4(b) as a subdiagram of Fig. 3 could be replaced 
by the effective vertex in Eqs. (5) and (6) then 
Fig. 3 would be included in the matrix elements 
of JC2 evaluated at the one-loop level. There would 
then be a complete cancellation15 between the dia­
grams in Fig. 3 and the diagram in Fig. 2(a), 
which is included in the matrix elements of JC1 
evaluated at the one-loop level. However, such a 
substitution is only valid if the gluon momenta k1 
and k 2 can be considered as small compared to 
the heavy quark mass. If one differentiates the 
diagrams in Fig. 3 with respect to an external 
momentum, their ultraviolet convergence is im­
proved enough for the substitution of the effective 
vertex in Eq. (5). 16 It follows that the sum of dia­
grams in Figs. 2(a) and 3 is a constant independent 
of external momenta and thus is proportional to 

the tree approximation for the matrix elements 
of a local four-quark operator. Thus the sum of 
the two-loop diagrams in Figs. 2(a) and 3 just 
gives a higher-order (i.e., order g 4) contribution 
to the Wilson coefficients of local four-fermion 
operators and does not change the basic form of 
the lowest-order result due to the one-loop dia­
gram in Fig. 1. Note that the corrections to the 
Wilson coefficients given by the diagrams in Figs. 
2(a) and 3 depend on the choice of renormalization 
scheme. We use a mass-independent renormaliza­
tion scheme. 17 · 18 

At the two-loop level we also encounter diagrams 
such as Fig. 5 which give higher-order contribu­
tions both to matrix elements of :JC1 and to Wilson 

. coefficients of local four-quark operators in the 
effective Hamiltonian for nonleptonic weak de-
cays. If Fig. 4(a). as a subdiagram of Fig. 5 could 
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FIG. 5. Example of a two-loop diagram that gives a 
higher-order contribution to both the matrix elements 
of :re1 and to the Wilson coefficients of local four-quark 
operators in the effective Hamiltonian. 

be replaced by the effective vertex in Eqs. (1a) 
and (3), then Fig. 5 would simply be a higher­
order contribution to the matrix elements. How­
ever, the ultraviolet convergence is not good 
enough for this simple substitution. Differentiat­
ing with respect to an external momentum reveals 
that Fig. 5 differs from a higher-order contribu-

tion to the matrix elements by a term which is in­
dependent of the external momenta and hence pro­
portional to the tree approximation for the matrix 
elements of a local four-fermion operator. Thus 
Fig. 5 also gives rise to an order-g 4 contribution 
to the Wilson coefficients of local four-fermion 
operators. 

The case where three gluon fields are attached 
to the quark loop is similar to the previous one. 
In momentum space, Fig. 4(c) gives rise to an 
effective vertex ~be (p; k1 , k2 , k3)1J v>.. which has the 
form 

~be (p; kl> k2, k3)J1Vll. = 2dL (p - kl- k2- k3) 

XI~"g>..(k1 , k2, k3)SL(p) 

and direct calculation in the large-quark-mass 
and soft-gluon limit gives 

(8) 

(9) 

where the "infinite" part which is independent of the quark mass m has been omitted. Transforming to 
coordinate space, Fig. 4(c) is represented by the operator 

in the effective weak Hamiltonian density. 
Using these results we see that a cancellation15 

at the three-loop level occurs which is similar 
to the one between the two-loop diagrams in Figs. 
2(a) and 3. The three-loop diagrams in Fig. 6 
cancel up to terms independent of external mo­
menta, which are proportional to the tree approxi­
mation for the matrix elements of local four-quark 
operators. Thus, taken together, the diagrams 
in Fig. 6 give an order-g 6 contribution to the Wil­
son coefficients of local four-fermion operators, 
preserving the basic form of the lowest-order 
result. 

In the large-quark-mass and soft-gluon limit 
terms with more than three gluon fields -attached 
to the quark loop do not contribute to the transi­
tion s- d + (gluons) at the one-loop level since 
such graphs are finite without the GIM mechanism 
and are incapable of producing a logarithmic en-

This is essentially the same result as a lowest 
order in perturbation theory calculation of Fig. 1 
gives but the derivation is more satisfactory since 
higher-order QCD effects have been taken into 

{10) 

hancement in the heavy-quark mass. Thus, apart 
from Cabibbo-type angles and terms that will 
cancel by the GIM mechanism, diagrams contribut­
ing to the process s- d+ (gluons) with a heavy 
quark in the loop give rise, at the one-loop level, 
to an effective weak Hamiltonian density 

:re penguin (x) = :rel (x) + :re2 (x) + :re3 (x) 

=-~ 1f1f21n(~22 J2iiL(x)yvTasL(x) 
x[D 11 F 11 v(x)]4+H.c .. 

III. COMMENTS AND CONCLUSIONS 

Using the equations of motion for QCD, 

(11) 

(DIJ F 11 v)a =J~ =g(uyvT4u +dyvT4 d+ sy~rs), (12) 

the effective weak Hamiltonian density in Eq. (11) 
becomes the local four-quark operator 

(13) 

account. Of course, using gauge invariance and 
the result of Eq. {4) one can immediately conclude 
that the effective weak Hamiltonian density must 
contain Eq. {13). What we have shown, by explicit 
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FIG. 6. Thr~e-loop penguin-type diagrams which 
together are proportional to the tree approximation for 
the matrix elements of a local four-fermion operator. 

calculation, is how the various pieces' combine 
to give a local gauge-invariant contribution and 
that in the large quark mass limit no other gauge­
invariant contributions occur. Other possible 
gauge-invariant contributions are either higher 
order in 1/Mw2 or lower order in m 2 • For ex­
ample, if the· strange and down .quark masses 
are not taken to be zero, diagrams at the one-loop 
level also give rise to a transition color magnetic 
moment term. However, its contribution10 to the 
effective weak Hamiltonian density is multipliEid 
by a factor m 2/Mw 2 so it is suppressed by· an ex­
tra power of 1/Mw2 (apart from logarithms) pro­
vided Mw 2 »m 2 , as we have implicitly assumed 
by the order in which the large-Mw and large-m 
limits were taken. 

We have also shown how diagrams with more 
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