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Tensor spherical harmonics for the 2-sphere and 3-sphere are discussed as eigenfunction problems of the 
Laplace operators on these manifolds. The scalar, vector, and second-rank tensor harmonics are given 
explicitly in terms of known functions and their properties summarized. 

The analysis of scalar, vector, and tensor wave equa­
tions on the manifolds fJ2 and SJ is greatly facilitated by hav­
ing a set ofbasis functions that reflect the symmetries and are 
eigenfunctions of the Laplace operator. The use of scalar fJ2 
harmonics in multi pole expansions of electrostatic fields is 
probably the most well known example; 1 but cosmological 
pertubation, 2 stellar pulsations, 3•

4 and scattering problems 

also make use of multi pole expansion using the vector and 
tensor harmonics as well. In this paper the fJ2 and S3 harmon­
ics are approached as eigenfunction problems (based on an 
analogy with the discussion of fJ2 harmonics by Thorne and 
Compolattaro• and the discussion of S3 harmonics by Lif­
shitz and Khalatnikov2

) with an emphasis on explicit solu­
tions, summarized in Tables I and II. These harmonics will 

TABLE I. S' tensor harmonics. 

r 88 =I, r <N =sin'O 

Scalar: yUml 

Tensor: 'T/ ~;:' 1 = yUml y ab 

a
1Work supported in part by the National Science Foundation Grant 
PHY76-07919. 

h1Chaim Weizmann Fellow. 

E "'=-1- E 0 = -sinO 0 sinO' "' 

\J'Y(/m) =-/(/+I) yUm) 

\72 1/J~/m) = [ 1-/(l+ I) ]1/J u (/m) 

\l2rP ~m) = [ 1-/(l+ I) ]r/J a (/m) 

'T/ ~~n) Yah =2Y(lm) 

X~;;) yhc =t/J ~m) 

X~/,"lyab=O 
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Orthogonality relations 
d'il=sin(} d(} drp 0<(}<1T, 0<<p<21T 

Jd'n ·'·'"' l/J .,,,. r"" =1(1+ I) 15 15 'f' a h II mm' 

J d'{} "';nq, ;,'"' r"" =I(/+ I) /j II /j mm' 

Jd'il 11 '"'11 '"'' r"'r"d = -2/5 15 . uh cd II mm 

Jd'il x'"'x'"" r"'r"" =215 ./5 . uh <d ll 111m 

All other products vanish, e.g., 

J d'{} ¢ :hx uh =0, etc. 

The completeness of these functions follows from the completeness of the scalar harmonics 

L Y 0"'l((),<p) Y* Uml((}',<p')=/5 (cose-cos(}')l5(<p-q/) 
!,m 

TABLE IL S' tensor harmonics. 

gn =1, g""=sin'y, g << =sin'y sin'(}, 

Scalar: yuolm) (y,(},rp) Ll ylnlml = _ n(n +I) ycntm) 

Vector: A ~;""' 1 = ( O,sin1
' 

1 y C\1 1 ! i (cosy) dJ ;lml ((},rp)) 

2442 

B ;;•/m) = (-I(/+ I) sin' ) yc;:' i) (cosy) yUm) (IJ,cp) -a' [sin'' I X c;:+ /1 (cosy) Jl/1\'"'l ((},rp)) 

c:;''"'' = (2"' I (n + l)(n -/ )!(/!)')'/2 (a,< sin' X c;:" /) (cosy)) y\lm) ((},rp) , sin' :r c;:) /) (cos:r) l.";""' ((},rp) 
rr(n+l+l!) 

LlA :;'''"' = [I- n(n + 2) ]A ;;''"'' 

LIB;;""'' = [I -n(n + 2) ]B ;;''"'' 

Llc;;''"'' = [2-n(n+2) Jc:;''"'' 

B ~;~~m) = !( B ((JJ + B tJ.a ), 
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c(nlm) = y(nlm) +-'-n(n +2) y(nlm)g 
a/3 ;o.;{3 3 a/3 

E (nlm)_ 
ub -

F~~lm) =W+ I) sin1x c~=J 1 ( cosx) ¢' ~;'1 (6,rp )+ [ sin1x c~=J 1 ( cosx) 

+ 2 (_!___( sin1 +2 X C(l= I) ( COSX)-cotx~ ( sin1+ 2 X C(l= 11 (cosx)) )]rfi'"'1(6,m) 
[ 2 -/(I+ I) l ax' n I ax n I oh T 

Eigenvalues: 
AA all=[5-n(n+2)JAall AD all= -n(n+2)Da11 

A AlaiiJ=[l-n(n+2)JAra/3J 

AB all =[5-n(n+2)]Ball AF all =[2-n(n +2)]FafJ 

A jjlalli= [1-n(n +2)l0rat3J AG all =[2-n(n+2)]Gn/3 

Divergence conditions: 

A af3;yg 13Y =1( 3-n(n+2) )A a 

B all;rgllr = 1< 3-n(n+2)) B a 

Trace conditions: 

D allg a/3 = 3 y(nlm) 

be used in a separate paper to discuss perturbations in space­
times with these symmetries. 

We use the conventions of Ref. 1 for the scalars- har­
monics and the conventions of Ref. 5 for the Gegenbauer 
polynomials. We denote three-dimensional covariant de­
rivatives by a semicolon, two-sphere covariant derivatives by 
a vertical line, represent the two-sphere metric by r ab' the 
three-sphere metric by g f.J.V' and define the sign of the curva­
ture tensor so that the Ricci identity is given by 

V a;{3;y - V a;y;{3 = V f.J.R ~{3y· 

2443 J. Math. Phys., Vol. 19, No. 12, December 1978 

Greek indices run from 1 to 3 and denote three-sphere indi­
ces, Latin indices run from 2 to 3 and denote two-sphere 
indices. 

The manifold S' is characterized by its metric 

ds'=gf.J.V dxf.l dxv=dx'+sin'x(dtF+ sin'()drp'), 

where the coordinates xf.l = (X,(),q;) have the domains 
0 <X< 1r, 0<,() < 1r, and 0 < rp < 21T with the usual polar sin­
gularities at 0 and 1r. The sufaces X= const are conformal to 
s- [described as above with the coordinates xa =((),rp)]. The 
S' harmonics are the tensorial eigenfunction solutions 
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T af3···r to the equations 

,d T af3 ... y T af3 .. ·y;Jl.;V g Jl.V =A T af3 ... y (1) 

that are regular on S' and have eigenvalues A. The S' har­
monics satisfy the obvious, similar conditions to the above. 

At this point it is convenient to restrict consideration to 
the S' harmonics and review the scalar, vector, and second 
rank tensor solutions of Ref. 4. The scalar harmonics are the 
well known yUml ((),rp) listed in Ref. 1 and these form a com­
plete basis for scalars on s>. The tangent space to a point on 
S' is two-dimensional, to span it we need two linearly inde­
pendent solutions to the vector form of Eq. (1 ). These can be 
obtained from the gradient of the scalar harmonics ( t/J ~mJ) 
and the dual of the gradient ( ¢ ~ml) (see Table I for defini­
tions) (since the space is two-dimensional taking a vector's 
dual gives another vector). That the gradient t/J a is a solution 
to the vector form ofEq. (1) follows from Ricci's identity 

Y ,a[~c Y be = ( Y .~c Y be ) ,a + Y .d R %ac Y be 

= [1-/ (/ + l)]Y,a, 

where (for S') 

R abed = Y ac Y bd - Y ad Y be· 

That the dual vector tPa satisfies the same equation with the 
same eigenvalues follows from the vanishing of the covariant 
derivative of the Levi-Civita tensor. Under the improper 
transformation()' =1T- (), rp' =rp+trwhich corresponds to a 
coordinate inversion t/Ja transform as a polar vector and <Pa 
transforms as an axial vector, hence they are called even and 
odd parity vector spherical harmonics, respectively. For sec­
ond rank tensors the space is four-dimensional and can be 
spanned by a skew tensor X ab and three symmetric tensors 
77 ab, t/! ab, and tPab defined in Table I. These satisfy the ten­
sor form ofEq. (1) from arguments analogous to the vector 
case. The point to be made here is that all the S' harmonics 
can be constructed from a knowledge of the scalar S' har­
monics, but this is not the case for the SJ harmonics as will be 
shown below. 

The dimensionalities of the tensor spaces overS' com­
plicate the previous analysis as can be seen by a count of the 
number of independent solutions to Eq. (1) as a function of 
the rank of the tensor. For scalars there is one set offunctions 
y<ntm) (x,(),rp ). For vectors there are three linearly indepen­
dent harmonics. In three dimensions we cannot use the trick 
of using the dual of a vector harmonic as we did on S', but we 
can use a generalization of this idea and use the curl of a 
vector to generate a linearly independent vector. In three 
dimensions there are two main types of vectors: divergence 
and curl free. The latter is exemplified by the gradient of the 
scalar harmonic 

(2) 

Two other vector harmonics A ~tmJ and B ~nim) can be found 
by imposing the divergence condition 
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A af3 -0 
a;{Jg - ' 
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(3) 

solving for A a from 

.1A a =AA a• (4) 

and forming the third vector from B a= - (curiA )a (obvious­
ly B a is also divergenceless). The vectors A ~Iml, B ~Iml, 
and C ~ntmJ form an harmonic basis for the three-dimension­
al space of vectors on SJ. The second rank tensors on SJ for a 
nine-dimensional vector space so we need nine independent 
tensor harmonics to span it. Two candidates come from the 
scalar harmonics 

D (nlm) _ y<nlm) g 
a/3 - (y,e.op) a/3 (5) 

and 

c<ntml =y<ntml +'-n(n+ 2)y<ntm>g 
af3 ,a,f3 J af3 (6) 

[n.b. these are symmetric tensors and C ~~m) g a/3 =0]. Two 
more come from the divergenceless vectors 

/[<nlm) _A (nlm) 
a/3 - a;/3 ' 

jj<nlm) -B (nlm) 
af3 - a;/3 · 

(7) 

(8) 

These can be further decomposed into symmetric and anti­
symmetric tensors: 

A (n/m) =l(A(nlm) +A(nlm)) 
a/3 2 a/3 {3a ' 

B (nlm) = !( jj(nlm) +B(nlm) 
a/3 2 a/3 {Ja ' 

/[<nlm) _ lB (n/m) E y 
[a,6 [ - 2 y a/3' 

jj<nlm) =-! [ 1 +n(n +2) ]A (nlm) f Y 
[a{-J[ 2 y af3• 

and 

G(n/m) -E i•vy(nlm) 
a/3 - {1 ;/l ' 

where E af3r is completely antisymmetric, 

with 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

The antisymmetric tensors arises algebraically from the vec­
tors while the symmetric tensors come from the covariant 
derivatives of the vectors. To find two more independent 
harmonic solutions we impose tracefree and divergenceless 
conditions on a symmetric tensor Ea/3 and solve Eq. (1) with 
these constraints. The last harmonic F af3 is then found from 
Eaf3 by taking the symmetrized curl 

(15) 

f..s.f3 = !(F af3 + F {Ja ), ( 16) 
(n.b. F [af3l =0 due to the trace and divergence conditions on 

Eaf3). 

We now proceed to verify these statements. For the S 
scalar harmonics we have 

csc'x {_!_(sin'x aY)+csc() [_!_(sin() ay) 
ax ax ae ae 

+esc{}-- =AY(ntm). a'Y )} 
arp' 

The solutions that are regular at the poles are 

y<ntm>(x,(),rp) = (221
+ 

1 
(n + 1 )(n -/)!(/!)')112 
1r(n+l+ 1)! 
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X sin1 X C~~i> ( cosx) yUml (O,cp) (18) 

with eigenvalues given by 

A= -n(n+2), lml<;/<n=O,l,2, .... 

The C~~l> (x) are Gegenbauer polynomials as defined in 
Ref. 5, the yUm) (O,cp) are the fJ2 scalar harmonics, and the 
coefficient is chosen6 to normalize the harmonics 

=D nn'D u·D mm'• 

where the S' volume element is given by 

d 3!1=sin'xdx sinO dO dcp. 

The vector C ~nlm) satisfies 

AC(n/m) =(.d y<nlm) + y<nlm) R {3 g"v. 
Ll a ;a ;{3 f.JaV 

On S' the curvature tensor is given by 

R {3 f.lav =D~g I''' -g~g f.la 

and hence 

.dC~nlm) = [2-n(n+2) ]C~iml 

(19) 

(20) 

(21) 

(22) 

so c~tml satisfies Eq. (1) for a vector. It is not divergence­
less, but satisfies 

c~~~m)g a{J = -n(n+2) y<nlm). (23) 

To solve Eq. (4) we consider the obviously divergenceless 
vector (motivated by considering an odd parity split of a 
divergenceless vector) 

A ~nlm) =(o,h (X)¢ ~m)((},cp)) (24) 

then using the properties of the S'-harmonics Eq. (4) 
becomes 

which has the regular solution 

h ( n/){x)=sinx I+ I C~~l) (cosx), 

with eigenvalue A= [1- n(n + 2)]. 

(26) 

From Eq. (7) and Eq. (21) we note that the Laplace 
operator acting on A a{J is given by 

.d Aa{J = [3-n(n+2) ]Aa{J +zA[Ja• (27) 

Therefore, the vector B a =€ af.JV A f.JV satisfies the S' vector 
harmonic equation 

(28) 

and obviously Ba is divergenceless. It has the components 

B~nlm) = -1(1+ 1) csc'x h (ni)(X) yUm)((},cp), 

dh (nl) 
B~n/m) = ---- tf~m)((},cp ). 

dx 
(29) 

The tensor harmonics consist of three antisymmetric 
tensors and six symmetric tensors. It is easy to verify that 
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D <ntm) and C <nlml satisfy 
a{J a{J 

.dD <ntm) = _ n(n + 2) D <ntm) 
a{J a{J (30) 

and 

.ac~r>=[6-n(n+2) ]C~~m>. (31) 

Using Eqs. (11), (12), and (13), the vanishing of the covar­
iant derivative of the € afJr tensor, and Eqs. (28), (27), and 
(22), it follows 

and 

A A-(nlm) [ 1 ( + 2) ]A-(n/m) 
Ll [afJJ= -nn [a{JJ• 

.d ii~':-};J? = [ 1-n(n + 2) ]B~':-1!3'?, 

(32) 

(33) 

.dG~:/Jm) = [2-n(n+2) ]G~~m). (34) 

From Eq. (27) and the analogous equation for ~fJ we find 

.dA ~~m) = [5 -n(n +2) ]A ~;~m), (35) 

.dB ~~m> = [5-n(n +2) ]B ~r>. (36) 

The two remaining tensor harmonics are found by solving 
Eq. (l) for a symmetric tracefree divergenceless tensor 
E(n/m) 

a{J • 

The properties oftheS'-harmonics in Table I suggest as 
a candidate the odd parity traceless tensor 

[
0 H (X)¢ ~tm) (O,cp) ] . 

{£(n/m)) _ 
a{J - H(X)l/Ja(lm)((},cp) S(X)l/J~;;')((},cp) 

(37) 

The conditions E afJ:r g fJr = 0 impose the relation 

dH +2cotxH (X)+ ![2 -I (I+ 1)]csc'xS (X)=O (38) 
dx 

which we will use to determineS given H. (In what follows 
we assume I> 1. The I= 1 case wil1 be treated later.) Using 
the divergence condition the E 1a equation 

.d(E J'E Ia b 
ta>~---+csc' X E !albic y c 

ax' 

(39) 

decouples and we find 

d'H dH --+ 2cotx- + [ [2 -I (I+ l)]csc'x- 2cot'x l H =AH. 
dx' dx 

- (40) 

The solution regular at the poles for I> 1 is given by 

n<nt>(x)=sin'x c~-+-_p ( cosx) 

with the eigenvalue given by 

A=[2-n(n+2)]. 

(41) 

(42) 

The symmetric tensor FafJ defined by Eq. (16) is obvi­
ously traceless, divergenceless, and linearly independent of 
the eight previously defined tensor harmonics. It is straight-
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forward to show from Eq. (1) and Eq. (15) that Fap satisfies 
the same harmonic equation as does Eap· The properties of 
the S' harmonics are summarized in Table II. The antisym­
metric tensor Pram is identically zero. This follows from Eq. 
(15) and the divergenceless and traceless properties of EaP• 

E I' aPji[ap]=2E ;,;v -2£~ ;il =0. 

For the case in which I= 1, Eq. (38) implies 

dH 
--+2cotxH=O 
dx 

which integrates to give H =csc2X and implies 
.JE a{:lll= I =2E a/ill= I. But this solution is not regular at the 
poles. If we consider Eq. (39) with I= 1, we find it is already 
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decoupled but it is not divergencefree. In fact it is propor­
tional to the A xa 11 = 1 tensor harmonic. There are no regular 
I= 1 divergenceless tracefree harmonics. 
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