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Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying

the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the

Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which

consisted of Ag5Te3 and Te phases, with additional 200-600 nm size particles of PbTe. The

self-assembled interfaces altered the thermal and electronic transport properties in the bulk

Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a

low thermal conductivity (j¼ 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak

of 0.41 at 400 K. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733661]

Thermoelectric (TE) materials have long been recog-

nized as a promising candidate in the application of sustain-

able energy. Nanostructuring in TE material has been

considered as an effective way of reducing thermal conduc-

tivity while minimizing the decrease of electronic

mobility.1–3 Embedded nanosized phases that created extra

interfaces with submicron spacing length are capable of scat-

tering the phonons with mid-to-long mean-free-path.4

Approaches to synthesize bulk nanostructured materials

include solid-state precipitation,5,6 eutectoid decomposi-

tion,7,8 spinodal decomposition,9,10 and eutectic reaction,11,12

etc.

Research on the ternary Ag-Pb-Te system is mostly con-

centrated on the pseudo-binary PbTe-Ag2Te owing to the

excellent thermoelectric materials PbTe and Ag2Te.13,14

Exploration of this ternary system deviated from the pseudo-

binary line (PbTe-Ag2Te) is rare, leaving a large space

open for other promising candidates for thermoelectric

applications.

This study focuses on the use of ternary eutectics to pro-

duce fine microstructures that would be ideal for thermoelec-

tric applications.11,12 It is proposed by the authors that an

Ag-Pb-Te ternary-eutectic (L!Ag5Te3þTeþ PbTe at

339 �C) featured self-assembled nanostructuring lamellae

may be promising for TE applications.15 Given that the ter-

nary eutectic alloy possesses stronger mechanical strength

and promising thermoelectric properties (i.e., composed of a

semiconductor PbTe and a metal phase11), a synthesis route

is carried out, by using the modified Bridgman method,16,17

with compositions lying close to the Ag-Pb-Te ternary-

eutectic point.17

The synthesis process started with pure elements; Ag

shots (99.99 wt. %, Aldrich, USA), Te flakes (99.99 wt. %,

Aldrich, USA), and Pb chunks (99.99 wt. %, Strem chemi-

cals, Newburyport, USA) were weighed based on the compo-

sitions listed in Table I and placed in a quartz tubes of

10�5 Torr. The total amount of constituent elements was

7.0 g. The ampoules were sealed and homogenized in a fur-

nace at 850 �C for 24 h, followed by water-quenched. The

as-prepared ingots were used for unidirectionally solidifica-

tion, by using the modified Bridgman method.16,17 The

as-solidified plate sample with relative high density (>95%,

as listed in Table I) was used for metallographic observations

by using a field-emission scanning electron microscope

(FE-SEM, Carl Zeiss LEO 1550VP) equipped with a back-

scattered electron (BSE) detector. An energy dispersive

spectrometer (EDS, Oxford 6587, England) was used for

chemical compositional analysis. A powder x-ray diffrac-

tometer (Philips X-Pert Pro; Cu Ka radiation) was used for

phase identification for angles (2h) of 20�-90�.
The as-solidified plate sample was polished for thermo-

electric property measurements. The thermal conductivity

(j) can be calculated by the equation: j¼CpDd, where d is

the sample density, Cp is the heat capacity, and D is the ther-

mal diffusivity that determined by using a flash diffusivity

method (Netzsch LFA 457). Heat capacity (Cp) is estimated

by using Dulong-Petit method, Cp¼ 3 R/M. Electrical resis-

tivity (q), carrier concentration (n), and carrier mobility (l)

were measured by the Van der Pauw method with a reversi-

ble magnetic field of 2.0T. Seebeck coefficient was measured

by using chromel-niobium thermocouples of a computer-

aided apparatus.18

TABLE I. Nominal compositions of the Ag-Pb-Te alloys.

Composition

(at. %) Density Relative density Heat capacity

Ag Pb Te (g/cm3) (%)a (J/gK)

Eutectic 33.1 4.3 62.6 6.60 95.5 0.199

Near-eutectic 31.8 3.1 65.1 6.65 96.2 0.200

aThe relative density is compared with the theoretical density (Dtheoretical)

calculated from each constituent phases, i.e., Dtheoretical¼ 8.4%�PbTe

(8.24 g/cm3)þ 38.3%�Ag5Te3 (7.60 g/cm3)þ 53.3%�Te (6.23 g/cm3).

a)Authors to whom correspondence should be addressed. Electronic

addresses: jsnyder@caltech.edu and swchen@mx.nthu.edu.tw.

0003-6951/2012/101(2)/023107/4/$30.00 VC 2012 American Institute of Physics101, 023107-1

APPLIED PHYSICS LETTERS 101, 023107 (2012)

Downloaded 10 Aug 2012 to 131.215.220.186. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4733661
http://dx.doi.org/10.1063/1.4733661


Fig. 1(a) shows the BEI micrograph of the ternary eutec-

tic alloy (Ag-4.3 at. %Pb-62.6 at. %Te) solidified using the

Bridgman method; a small picture, shown in the upper-left

corner of Fig. 1(a), suggests that no obvious primary phase is

found. In Fig. 1(a), the as-solidified eutectic microstructure

features a submicron lamellae, composed by the Ag3Te5 and

the Te phases, and a bright PbTe phase with feature size of

200-600 nm. The overall composition of observed area in

Fig. 1(a) is Ag-4.2 at. %Pb-62.6 at. %Te, close to the starting

composition of the eutectic alloy, Ag-4.3 at. %Pb-62.6 at. %Te.

Similarly, a near-eutectic alloy with composition of Ag-

3.1 at. %Pb-65.1 at. %Te is also solidified using the Bridgman

method (Fig. 1(b)), revealing a distinct microstructure. As

shown in Fig. 1(b), the primary phase is recognized as the Te

phase, the secondary phase is Ag5Te3 with composition of

Ag-37.8 at. %Te, and the fine region, which is the last solidifi-

cation region, is the ternary eutectic with average composition

of Ag-4.3 at. %Pb-63.2 at. %Te. Fig. 1(c) shows the x-ray dif-

fraction patters of the eutectic and near-eutectic alloys. Three

different phases can be identified, Ag5Te3 (JCPDS#861168),

PbTe(JCPDS#381435), and Te(JCPDS#361452).

The performance of thermoelectric material is guided by

the figure-of-merit (zT), zT¼ (S2/qj)T, where S is the

Seebeck coefficient, q is the electrical resistivity, j is the

thermal conductivity, and T is the absolute temperature,

respectively. Fig. 2(a) shows the thermal conductivity (j) of

those two alloys. Generally, the thermal conductivity (j)

contains two contributions (j¼ jLþje.); the lattice thermal

conductivity (jL) and electronic thermal conductivity (je).

The je is further expressed by the Wiedemann-Franz law:

je¼LT/q, where L is the Lorenz factor (L¼ 2.45� 10�8 V2/K2,

for free electrons). However, in our case, the electronic terms

(je) are less than 5% of the overall thermal conductivity

(i.e., je< 0.02 W/mK). Thus, the lattice term dominates the

thermal conductivity, and the electrical term can be

neglected. The eutectic alloy exhibits lower thermal conduc-

tivity than that of the near-eutectic; a minimum value of

0.3 W/mK at 415 K is found in the eutectic alloy.

Fig. 2(b) shows the Seebeck coefficients and electrical

resistivity of the eutectic and near-eutectic alloys. The See-

beck coefficients are all positive in the temperature range of

300-430 K, revealing p-type behavior. At 300 K, the Seebeck

coefficient of the near-eutectic alloys is larger than 420 (lV/K),

while that of the eutectic alloy is relatively smaller

(S¼ 395 lV/K). On the other hand, it is suggested from

Fig. 2(b) that the near-eutectic alloy, which has a higher

Seebeck coefficient, exhibits higher electrical resistivity

(denoting as open circles) and gradually decreases with

FIG. 1. BEI images of Bridgman-grown (a) eutec-

tic alloy (Ag-4.3 at. %Pb-62.6 at. %Te), (b) near-

eutectic alloy (Ag-3.1 at. %Pb-65.1 at. %Te), and

(c) XRD patterns of Bridgman-growth eutectic and

near-eutectic alloys.

FIG. 2. Temperature-dependent (a) thermal conductivity and figure-of-merit

(zT) and (b) Seebeck coefficients and electrical resistivity of eutectic and

near-eutectic alloys.

023107-2 Wu et al. Appl. Phys. Lett. 101, 023107 (2012)

Downloaded 10 Aug 2012 to 131.215.220.186. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



temperatures. The electrical resistivity of the eutectic

alloy (denoting as open squares) is almost temperature-

independent. It is possible that the nanostructure of the

eutectic alloy with interface spacing less than 1 lm is

attributed to enhance the scattering of phonons with long

mean-free-path and thus reduces the thermal conductivity

(Fig. 2(a)). Furthermore, the partially aligned lamellae (i.e.,

Ag5Te3þTe) is likely to provide a continuous electronic

transport path that gives a lower electrical resistivity.4 Nano-

rods of Te are known to be semiconducting with good ther-

moelectric properties.19

In general, a promising thermoelectric material should

possess large Seebeck coefficient, which corresponds to low

carrier concentration, and large electrical conductivity

(d¼ 1/q), which requires high carrier concentration. Thus,

an optimal carrier concentration, which is typically found in

heavily doped semiconductors (n� 1019-1021 carrier/cm3,

Ref. 20), is crucial to obtain a balance between the Seebeck

coefficient and electrical conductivity. The dependences of

the Seebeck coefficient (assuming a degenerate semiconduc-

tor or metal with acoustic phonon scattering) and the electri-

cal conductivity with carrier concentration n can be

expressed as Eqs. (1) and (2), respectively.

S ¼ 8p2k2
B

3eh2
m�T

p
3n

� �2=3

; (1)

1

q
¼ r ¼ nel; (2)

where m* is the effective mass and l is the carrier mobility,

respectively. It is expected that the Seebeck coefficients and

the electrical resistivity decreases as the carrier concentration

increases (S� n�2/3 and q� n�1), respectively.

The experimental Hall carrier concentration (nH) is cal-

culated via nH¼ 1/eRH, where e is the electron charge and

RH is Hall coefficient. The temperature dependent Hall car-

rier concentration (nH) of the eutectic and near-eutectic

alloys is shown in Fig. 3(a). If the conduction is dominated

by a single band and the scattering is known, the relationship

between the actual carrier concentration (n) and the meas-

ured Hall carrier concentration (nH) can be calculated.21

However, the Seebeck and resistivity of the alloys reported

here decrease with temperature which suggests multiple, not

single band behavior. Furthermore, because of the complex

composite microstructure the analysis of Hall coefficient

derived for homogeneous materials should not be considered

quantitatively precise.

Nevertheless, the analysis of the experimental Hall coef-

ficient (RH) using the more familiar quantities of Hall carrier

concentration (nH) and Hall mobility (lH¼RH/q) can lead to

insight and qualitative comparisons. As shown in Fig. 3(a),

the Hall carrier concentration of those two alloys are roughly

in the same order of magnitude, 1017� 1018 (carrier/cm3).

The eutectic alloy has slightly higher Hall carrier concentra-

tion compared with that of the near-eutectic alloy, which

may explain the lower Seebeck coefficient as shown in

Fig. 2(b).

Hall carrier mobility, lH, of the eutectic and near-

eutectic alloys (Fig. 3(b)), shows similar values. The

decrease in Hall mobility with temperature follows a power

law approximately as l�T�1.5 (denoting by a dashed line),

suggesting that acoustic scattering dominates in both eutectic

and near-eutectic alloys.21,22

The temperature dependent figure-of-merit (zT) is shown

in Fig. 2(a). The zT of the eutectic alloy gradually increase

with temperature and reach its maximum value of 0.41 at

400 K. The zT values of the near-eutectic are lower than that

of the eutectic one, with a maximum zT peak of 0.23 at 400 K.

In summary, an approach for synthesis of aligned nano-

structured bulk thermoelectric material, using unidirectional

solidification, is demonstrated with ternary eutectic and

near-eutectic Ag-Pb-Te alloys. The ternary Ag-Pb-Te eutec-

tic featured nanosized lamellar structure which consisted of

Ag5Te3 and Te, and nanoinclusions of PbTe phase. The ter-

nary eutectic Ag-Pb-Te alloy exhibits low thermal conduc-

tivity (0.3 W/mK at 415 K), presumably due to the nanosized

lamellar structure and the nanoinclusions that enhance pho-

non scattering. Furthermore, the partially aligned lamella

(Ag5Te3þTe) could be beneficial to the electrical transport,

yielding a ZT maximum of 0.41 at 400 K. Given that the

Hall carrier concentrations of the alloys (1017-1018 carrier/

cm3) are still lower than that of optimal range (1019-1021 car-

rier/cm3), further engineering of the carrier concentration

may further improve the thermoelectric performance.
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FIG. 3. Temperature-dependent (a) Hall carrier concentration (nH) and (b)

Hall carrier mobility (lH) of eutectic and near-eutectic alloys.
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