A Caltech Library Service

Model Selection Using Response Measurements: Bayesian Probabilistic Approach

Beck, James L. and Yuen, Ka-Veng (2004) Model Selection Using Response Measurements: Bayesian Probabilistic Approach. Journal of Engineering Mechanics, 130 (2). pp. 192-203. ISSN 0733-9399. doi:10.1061/(ASCE)0733-9399(2004)130:2(192).

[img] PDF - Published Version
Restricted to Caltech community only
See Usage Policy.


Use this Persistent URL to link to this item:


A Bayesian probabilistic approach is presented for selecting the most plausible class of models for a structural or mechanical system within some specified set of model classes, based on system response data. The crux of the approach is to rank the classes of models based on their probabilities conditional on the response data which can be calculated based on Bayes’ theorem and an asymptotic expansion for the evidence for each model class. The approach provides a quantitative expression of a principle of model parsimony or of Ockham’s razor which in this context can be stated as "simpler models are to be preferred over unnecessarily complicated ones." Examples are presented to illustrate the method using a single-degree-of-freedom bilinear hysteretic system, a linear two-story frame, and a ten-story shear building, all of which are subjected to seismic excitation.

Item Type:Article
Related URLs:
URLURL TypeDescription DOIArticle
Yuen, Ka-Veng0000-0002-1755-6668
Additional Information:© ASCE 2003. The manuscript for this paper was submitted for review and possible publication on April 8, 2002; approved on July 8, 2003.
Subject Keywords:Bayesian analysis; Model studies; Time series analysis; Probabilistic methods; Mechanical systems, structural; Measurement; Excitation
Issue or Number:2
Record Number:CaltechAUTHORS:20120810-112314239
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:33087
Deposited By: Sydney Garstang
Deposited On:13 Aug 2012 17:52
Last Modified:09 Nov 2021 21:32

Repository Staff Only: item control page