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FLUID DYNAMICS OF LIQUID HELIUM*

H. W. LIEPMANN"

Abstract. Liquid helium at low temperatures owes its existence to h through the zero point energy
classically it should be solid. 4He the common isotope, owes its peculiar behavior as a fluid to its spin
and hence again to h; classically the differ,ence between 3He and 4He should be trivial.

In liquid helium flow we deal with a system which still shows all the usual behavior of a liquid plus
some additional strange properties which reflect directly macroscopic quantum effects. The governing
equations of motion due largely to Landau and London are, except in their linearized form, not as well
founded and most certainly less well confirmed than one would like. Consequently, the experimental
fluid dynamicist working with helium should have a field day exploring flow problems in an atmosphere
more adventureous than with any ordinary fluid. This indeed is often the case. One does, however,
ruefi]lly discover that some of the more interesting and significant flow configurations which one likes
to study in this strange field are by no means sufficiently well explored in the corresponding classical
cases. One therefore likes to design simple fluid flow experiments which bring out the essentially new
properties of He II and permit an experimental contribution to, or decision among, the theories of
He II flow. In t’his spirit, experiments associated with the propagation of shock waves in liquid helium
have been initiated at GALCIT. The design and construction ofa cryogenic shock tube and its applica-
tion to liquid helium are discussed in this paper.

1. Introduction. The development ofa cryogenic shock tube and its application
to the study ofsuperfluid dynamics resulted simply from cross-fertilization between
parallel work at GALCIT on shock waves, and on He II flow problems. Anyone
familiar with elementary shock tube theory realizes that the shock Mach number
is limited by the ratio of the velocity of sound in the driver and driven gases and
hence for perfect gases by the temperature ratio T4/T1. This ratio is conventionally
increased by increasing T,, but it is obviously even more effective to decrease T1.
Indeed, with room temperature helium as driver and cold helium as the driven gas,
T/T1 can be made as large as 200. This simple idea was the origin of the shock tube
development by Rupert and Cummings [1], [2], [3]. The possibility of producing
very closely controlled heat and pressure pulses at cryogenic temperatures opens
the way to the study of a host of interesting problems in both fluids and solids.
The most obvious and spectacular application seemed to us the production and
propagation of shock waves in liquid helium. This paper should be considered a
progress report on this work.

2. Shock tube. The cryogenic shock tube in its present version is shown in
Figs. and 2. It differs from the usual shock tube by a unique diaphragm setup
which, using a long strip ofmylar, permits a change ofdiaphragms without opening
the shock tube. This feature was necessary since it is impossible to open a cryo-
genically cooled tube without condensation of air, CO2, etc. from the room.
Measurements of the x,t-diagrams were based on sensitive temperature gauges,
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FG.

standard thin film gauges at the higher temperatures and semiconductor elements
at cryogenic temperatures. Details of the design and performance can be found
in [3].

Shock tube theory applied to the case of the same monatomic gas as driver
and driven gas gives, for the limiting shock Mach number M c/al,

M2 _< 16 "
Tx

Similar simple limit expressions can be found for the density and temperature
ratios across the shock P2/Pl and Tz/T as well asfor the temperature and pressure
T and p5 reached behind a shock wave reflected from an ideal endwall. Thus

P2/Pl < 20T4/T1, T2 <-_ STy,

Ps/Pl <= 120T4/T1, T <= 12T.
The pertinent numbers in the present sets of experiments are T4 300K, T1
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>_ 1.3K and hence for the gas temperature range in the shock tube

1.3K< T< 3600K.

Helium for all practical purposes is a perfect gas in this temperature and appro-
priate pressure range. Indeed the cryogenic shock tube is the only facility for which
the simple perfect gas relations apply all the way up to Mach numbers of the order
of 40 or more.

The possible range of variables of state in a shock tube gas are limited by
the condition that the tube diameter D should be large compared to the shock
thickness and hence to the mean free path A. This is essentially a condition on the
density p with some small temperature effects due to the dependence of the colli-
sion cross section and mean free path on the temperature. Thus P cannot be too
small because of viscous effects; it cannot be too large in order to avoid condensa-
tion. For a perfect gas, consequently,

PlRT1 < P < Ps,

where Pl denotes the limiting density Pl pI(D/A), and p the saturation pressure.
Since T is very low, the inequality is not very stringent, and the viscous

effects at a given pressure level are much reduced by cooling. Figure 3 shows
Cummings’ measurements of shock Mach number as a function of the pressure
ratio P4/P with T1 as parameter compared to ideal shock tube theory. The approach
to ideal behavior as T is lowered is evident.
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At first glance it may appear that even stronger shock waves can be obtained
using a heavy monatomic gas in the driven section, because then

M2_ 16 T4ml

where m and m4 are the molecular masses ofthe driven and driver gas respectively.
Unfortunately, the vapor pressure at a given temperature is correspondingly
lower for the heavier gases and hence, the range of shock Mach numbers cannot
be substantially increased in this fashion. Of course, the use of a hydrogen driver
does increase the performance of a cryogenic helium shock tube.

3. Macroscopic quantum effects. A fundamental consequence of quantum
mechanics is the existence of a zero point energy, i.e., a finite energy content of
matter as T 0. Hence, at sufficiently low temperatures, any substance will
exhibit quantum mechanical effects on a macroscopic scale. For a perfect gas or
an ideal solid the necessary dimensionless variables are easily written down
using the uncertainty principle. For a gas, the momentum per particle is of order
w/mkT, the characteristic length, the average distance between particles l, is
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related to the number of particles per unit volume n by n- 1/3, and hence

w/mkT ,h
1/3

relates n and T. The corresponding temperature is the degeneracy temperature of
gases, very high for electrons in metals, of order 2K for helium. For ideal solids
the momentum of the phonons is related to the velocity of sound, a, and the
uncertainty principle gives

kT
h,rtl/3a

i.e., T is here the Debye-temperature, 0, which for most solids is of order 102K.
This quantum mechanical regime of both fluids and solids is well within the

temperature and density range accessible with the cryogenic shock tube. The
most obvious of these quantum effects are:

(a) The characteristic difference in the allowed collisions for particles with
integer and half-integer spin. This results in a different mean free path for 3He and
’He respectively, and hence to a different shock wave thickness. The effect has
been computed and verified in viscosity measurements. It should be observable
without too much trouble.

(b) The specific heat due to the lattice vibrations in a solid vanishes as (T/O)3

and consequently, the heat capacity of solid boundaries in the temperature regime
of interest here is much less than a liquid or gas at the same temperature, in spite
of the large density ratio.

This fact is crucial for the heat transfer from a fluid to a solid and hence for
the reflection and transmission of shock waves at fluid-solid interfaces.

(c) The most spectacular of the macroscopic quantum effects occurs in the
liquid phase of ’He below the 2-line. The study of shock waves in He II promises
to be of real interest for the understanding of the appropriate quantum hydro-
dynamical equations of motion. The first steps in this direction are reported below.

4. Shock waves in liquid He II. The phase diagram of 4He is well known (Fig.
4). Helium does not solidify under its own vapor pressure even as T --, 0, but exists
in two liquid modifications divided by a phase transition line, the so-called 2-line.

He II is a "superfluid", i.e., it behaves in many respects quite differently than
a classical liquid. In particular there exists a real wave velocity for temperature
waves, i.e., small temperature variations satisfy a hyperbolic wave equation unlike
the parabolic, diffusion-like, equation for ordinary fluids. This wave motion
predicted first by Tisza and experimentally realized by Peshkov is, unfortunately,
known as "second sound". Thus, a finite reversible heat flux is possible in He II
and indeed the transmission of heat from, say, one heated plane boundary to
another is quite like the corresponding heat pipe problem in classical heat transfer,
and interpreted as a counterflow of a "normal", entropy carrying fluid and a return
flow of a "superfluid" with zero entropy.

To illustrate the difference between He II and a classical gas consider, with a
view to later shock tube application, the "piston problem" (Fig. 5). The fluid in a
semi-infinite tube is set into motion by a piston advancing impulsively with
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velocity U. The resulting wave propagates with a velocity c related to the piston
velocity and piston pressure by

P- Po PoUc

for the classical fluid and by a similar expression for He II (identical in fact for
weak waves). Hence, the propagation of a pressure wave is similar in the two
cases. The corresponding temperature increase, due to the pressure wave, is much
smaller in He II than in a gas.

Now consider a heated piston, i.e., a case where not only the velocity but the
temperature as well is prescribed at the piston surface. In the classical case, the
temperature distribution is as shown in Fig. 5. If the temperature rise through the
pressure wave does not happen to coincide with the temperature prescribed on the
piston surface, the adjustment must occur via a local temperature boundary
layer in a continuous fashion. In He II, however, the adjustment is made discon-
tinuously by means of a temperature wave propagating with a definite wave
velocity quite like a shock wave. On the basis of these facts, which stem from the
Bose character of helium, London and Landau have developed the two fluid
equations for He II, which can be written down conveniently in terms of two
velocities and and the ratio p,/p,

p p,, + ps,
W U his,

in terms of the velocities and densities of the normal and super fluid, respectively.
The resulting equations are, of course, much more complicated than the Navier-
Stokes equation but the characteristics as well as the shock jump conditions are
easily extracted.

The existence of an additional undamped wave motion, second sound,
implies an additional term in the thermodynamic identities: w or p,/p =_ , say,
can be used as new variables of state. For example, the chemical potential p in
He II is a function of p, T and w:

dp -sdT + (1/p)dp w dw,

to second order

u(p, r, w)= Uo(p, r)- 1/2w,
as given by Landau. (London uses as an independent variable. The resulting
expressions can be transformed into Landau’s by a Legendre transformation.)

At first, neglecting quadratic and higher order terms in w we can write

dp a2dp + b2 p-- ds
S

2

dT (x21 dp + ds

a, b, ,/ have the dimensions of velocities. The vanishing of the characteristic
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determinant of the equations of motion gives for the angle of the characteristic (p,

tan4 (p a2 + Psfl2 tan2
09 Ps(Zb2 azfl2) 0.

P,

In terms of the velocity of sound a, the ratio of specific heats 7 and

Ps sZT] 1/2

a2 -n Cp

the corresponding equation for the wave velocity c becomes

c" -(a2 + a)c2 + a:Za22 O.

Since , and az << a, two nearly uncoupled wave motions with

C a
C2 a2

result.
The full, nonlinear set of equations of motion relates pressure p, density p,

enthalpy h and chemical potential/ to the wave velocity c, the fluid velocities
v and w and . For a normal shock propagating into undisturbed fluid (Vo Wo

0), these jump conditions are

p(c- v)= poC,

P- Po Pocv p(1 )w2,

[h-ho=v c- w 2(1 )+ +w--[sr+ (1 )w],
c Po

#--#o=V w(c v) -w,
Z

where s is the entropy/mass, i.e., sT h #.
The set is very complex and has so far been studied very little. A few results

are, however, easily seen.
In the linear approximation, i.e., for v and w small,

Ah TAS + (1/p)Ap.

The system of equations can be split into two parts, a pressure wave for which
Ah Ap/p and a "temperature wave" for which Ah TAS. Thus

U mp
C2ioeoAp POc,

Ap pocv,

and the pressure wave satisfies the usual sound wave relation

On the other hand, with Ah TAS and correspondingly, A# TAS- A(ST)



FLUID DYNAMICS OF LIQUID HELIUM 697

-SAT, we have, since v Ap 0,

TAS wST,
c

-SAT -wc,

C2
?s2AT

AS

Since
AT

p Cp

we have again
TS2

for the velocity of "second sound".
The second order theory, i.e., up to terms in w2, is still within reach, and the
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results have been given by Kalatnikov. For stronger waves, analytical results
become difficult because the functional dependence of the thermodynamic state
variables, such as St on w, are known only up to quadratic terms in w.

In any case, one always has to expect two shock waves, one a pressure wave
with a relatively small jump in temperature, the other a temperature wave with a
relatively small change in pressure.

This behavior is demonstrated by Cummings’ experiment in which a shock
wave in the cryogenic tube was transmitted through the surface into liquid He II
(Fig. 6). The two transmitted shock waves are clearly seen in the x, t-diagram. A
similar experiment about the 2-line (Fig. 7) results, as expected, in only one trans-
mitted shock.
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5. Conclusion and outlook. The work done so far has demonstrated that strong
shock waves can be produced at cryogenic temperatures, and that these waves can
be transmitted into liquid helium. The obvious first step is the study of shock
wave propagation in He II. It is interesting enough to study the possible discon-
tinuities and their interaction contained in the complex set ofjump conditions of
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the two-fluid model. It is expected, but by no means certain, that the model is
correct beyond the linear and second order terms. Thus a more complete experi-
mental and theoretical exploration of the x, t-diagrams is certainly called for.
Beyond this rather obvious problem, a host of exciting possibilities exist, e.g.,
triple intersections and curved shock waves with their vortex sheets are particularly
interesting in a medium in which continuous vorticity is restricted to the normal
fluid only. Besides this, the study of interfaces and of phase boundaries appears to
be quite promising, especially in helium, e.g., it is possible to transmit a shock
wave into helium such that the shock transition straddles the 2-line. Corresponding
experiments at the melting line are equally possible.

The general direction of the research was outlined by the author some time
ago;it could not have been carried out without the very active participation of
Drs. J. E. Broadwell, J. C. Cummings, P. E. Dimotakis and V. C. Rupert who, at
various stages of the research, contributed work, ideas and criticism.
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