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ABSTRACT

In previous papers we discussed results from fully time-dependent radiative transfer models
for core-collapse supernova (SN) ejecta, including the Type II-peculiar SN 1987A, the more
‘generic’ SN II-Plateau, and more recently Type IIb/Ib/Ic SNe. Here we describe the modifica-
tions to our radiative modelling code, cMFGEN, which allowed those studies to be undertaken.
The changes allow for time-dependent radiative transfer of SN ejecta in homologous expan-
sion. In the modelling we treat the entire SN ejecta, from the innermost layer that does not
fall back on the compact remnant out to the progenitor surface layers. From our non-local
thermodynamic equilibrium time-dependent line-blanketed synthetic spectra, we compute the
bolometric and multiband light curves: light curves and spectra are thus calculated simultane-
ously using the same physical processes and numerics. These upgrades, in conjunction with
our previous modifications which allow the solution of the time-dependent rate equations, will
improve the modelling of SN spectra and light curves, and hence facilitate new insights into
SN ejecta properties, the SN progenitors and the explosion mechanisms. CMFGEN can now be

applied to the modelling of all SN types.

Key words: radiative transfer — methods: numerical — stars: atmospheres — supernovae:

general.

1 INTRODUCTION

Supernova (SN) spectra potentially contain a great deal of infor-
mation about the progenitor star, about the explosion dynamics and
nucleosynthesis yields. Extracting this information, particularly at
early times, is difficult due to their low densities and high veloc-
ities at their effective photosphere. Because of the low densities,
radiative processes tend to dominate over collisional processes and
hence local thermodynamic equilibrium (LTE) cannot be assumed.
Instead we must solve the statistical equilibrium equations, and this
requires vast amounts of atomic data, much of which has only be-
come available over the last decade. The high velocities blend spec-
tral features together, often making line identifications difficult, and
this hinders spectral analysis since accurate spectral modelling is
needed in order to interpret weak, but important, diagnostics.

An inherent feature of SNe is that their spectra evolve with time,
on a time-scale comparable to, or shorter than, the age of the SN.
Thus, a crucial question is whether this time dependence needs to
be taken into account when modelling SN spectra.! Can reliable

*E-mail: hillier @pitt.edu
! When modelling light curves, there are no controversies — time dependence
is essential for modelling the light curves of SNe. An excellent discussion

results from spectral fitting be obtained by modelling only the pho-
tospheric layers, in the spirit of radiative transfer studies on stellar
atmospheres? That is, can we ignore time-dependent terms, and can
we impose a lower boundary condition and adjust this boundary
condition, and photospheric abundances, until our model spectrum
matches what is observed? This approach has been adopted by
many workers in the field, following the first papers by Branch
et al. (1985), Lucy (1987) and Mazzali et al. (1993).

Dessart & Hillier (2005) used the stellar atmosphere approach
to explore the expanding photosphere method (EPM) for finding
distances to Type II SNe. With these investigations they were able
to investigate the physics influencing the EPM technique, and hence
understand why it was difficult to accurately estimate the correc-
tion factors using photometry alone. Dessart & Hillier (2006) ap-
plied the EPM technique to SN 1999em, and showed that the dis-
tance obtained agreed within 10 per cent of the Cepheid distance.
Later, Dessart et al. (2008) successfully applied the EPM method to

of some of the issues regarding time dependence is provided by Pinto &
Eastman (2000). A related issue is the necessity of including all terms of
the order of v/c in the transfer equation; Mihalas & Mihalas (1984) provide
an in-depth discussion of the importance of various terms in the transfer
equation.
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determine the distance to SN 2005¢s and SN 2006bp. Our modelling
of these three Type IIP SNe did, however, reveal a problem that is
also seen in modelling of other hydrogen-rich SNe — the inability
to predict He during the recombination epoch (after approximately
day 20 in Type IIP SNe). At this and later times the model He line
is consistently narrower and weaker than observed.

The Ha problem is also seen for SN 1987A; however, in this
case problems in fitting Hoe occur as early as day 3 (e.g. Schmutz
et al. 1990) due to the more rapid cooling of the ejecta from a more
compact progenitor. Schmutz et al. (1990) postulated that clumping
might be the source of the Ha discrepancy. Eastman & Kirshner
(1989) have also modelled SN 1987A (up to day 10) and did not
find any Ho discrepancy. Two effects might contribute to this dif-
ference. First, Eastman & Kirshner (1989) treated many metals
in LTE which could affect the H ionization balance. Secondly, as
shown by Eastman & Kirshner (1989), the Ho emission strength is
sensitive to the density exponent n defined by n = —dlIn p/dInr.
Low n (i.e. n = 7) give much stronger Ho emission than higher
n (i.e. n = 20). Schmutz et al. (1990) used a power law with a
density exponent of 10, while Eastman & Kirshner (1989) used a
density exponent of 9. In the study of Dessart & Hillier (2006) it
was found that while lowering the density exponent down from 10
to 8, and even to 6, led to an increase in the He strength it also pro-
duced a very severe mismatch of the model with observations of the
Can lines.

A related problem is that Schmutz et al. (1990) were unable to fit
the He1 emission in SN 1987A — models predicted no He1 15876
although it is easily seen in the observations (up to day 4). Simple
model changes did not improve the predictions, and hence they
postulated an extra source of ultraviolet (UV) photons. The models
of Eastman & Kirshner (1989) also underestimated He1 A 5876.
They suggested a combination of effects as the likely cause — high
helium abundance, X-rays produced in an interaction zone, density
effects and time-dependence effects.

Mitchell et al. (2001) found that models for SN 1987A, computed
using the code pHOENIX (Hauschildt & Baron 1999; Short, Hauschildt
& Baron 1999), also predicted Ha emission much weaker than
that observed. To explain these discrepancies they invoked mix-
ing of °Ni into the SN’s outer layers — mixing at velocities (v >
5000kms~') larger than predicted in current hydrodynamic mod-
elling (Kifonidis et al. 2006; Joggerst, Woosley & Heger 2009;
Hammer, Janka & Miiller 2010).> The H1 and Her1 lines would
be excited by non-thermal electrons produced by the degradation of
y-rays created by the decay of radioactive nickel. Baron et al. (2003)
also used mixing of °Ni into the SN’s outer layers to explain the
Hr1and He1 lines in early-time spectra of SN 1993W (Type IIP).

The H1 and He1 discrepancies are important — either there is a
fundamental problem with our current spectral modelling of SNe or
there is crucial SN physics missing from current hydrodynamic
models which leads, for example, to an underprediction of the
amount and extent of **Ni mixing. In order to distinguish these pos-
sibilities it is important that we relax assumptions, such as steady
state, in our SN models. Indeed, Utrobin & Chugai (2005) showed
that it was important to include time dependence in the rate equa-
tions for SN 1987A. When such terms are included, it is possible to

2 The recent 3D simulations of Hammer et al. (2010) do produce nickel
mixing out to 4500 km s~!, but this is insufficient. Furthermore, in order
to explain Her, which is the most significant spectral feature in Type II SN
spectra, isolated bullets will not suffice — there has to be global mixing into
the hydrogen photosphere.
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explain the large strength of the Balmer lines without invoking non-
thermal excitation resulting from the mixing of radioactive nickel
from below the hydrogen-rich envelope. This conclusion has been
confirmed by Dessart & Hillier (2008) who showed that inclusion of
the time-dependent terms allowed the He line strength to be better
matched in SN 1999em, particularly at late times (>20d).

The necessity of including time-dependent terms is unfortunate.
With steady-state models we can readily adjust the luminosity, abun-
dances and the density structure to tailor match the observations.
Instead we have an initial value problem requiring us to begin the
calculations at a sufficiently early time such that the adopted initial
model allows the full time evolution to be modelled. On the other
hand, this necessity will allow us to better test both hydrodynamical
models of the explosions, and models for the progenitor evolution.

More recently, Dessart & Hillier (2010) extended their work to
allow for time dependence of the radiation field. This removes is-
sues with the inner boundary condition, and controversies on which
terms can be omitted from the radiative transfer equation (Baron,
Hauschildt & Mezzacappa 1996; Pinto & Eastman 2000). With
their fully time-dependent approach, they were able to successfully
model the early evolution of SN 1987A, from <1 dup to 20d. Over-
all, predicted spectra were in good agreement with observations, and
showed the expected trend from a very high effective temperature at
early times (7. > 30000 K at 0.3 d) to a relatively constant effec-
tive temperature at later times (7. ~ 6000 K at 5 d). The latter is a
consequence of the hydrogen ionization front which sets the location
of the SN photosphere. One deficiency in the models was an excess
flux in the U band. This excess flux could arise from a deficiency
in the model calculations (e.g. insufficient line blanketing) or from
deficiencies in the initial model (e.g. wrong sized progenitor). This
work, with time-dependent radiative transfer and time-dependent
rate equations, showed that standard models for SN 1987A, without
Ni mixing beyond 4000kms~', could explain both the H1 and
He1 lines in SN 1987A. The result is in agreement with explosion
models which require mixing out to ~3000—4000km s~! in order
to explain the observed light curve of SN 1987A (e.g. Shigeyama
& Nomoto 1990; Blinnikov et al. 2000), the appearance of hard
X-rays (e.g. Kumagai et al. 1989) and later nebular diagnostics (e.g.
Hachinger et al. 2009).

Time-dependent radiation transfer has also been included in
PHOENIX (Jack, Hauschildt & Baron 2009), as has the solution of
the time-dependent rate equations (De, Baron & Hauschildt 2010).
A distinction between PHOENIX and CMFGEN is that PHOENIX works pri-
marily with the intensity, while cMFGEN solves for the radiation field
using moments. The latter method has two advantages. It explicitly
allows for electron scattering, and in the time-dependent approach
a factor of Nypge(~Np) less memory is required to store the time-
dependent radiation field. A disadvantage is the generalization to
multidimensions and stability issues.

In our work, we solve the radiative transfer equation, or its mo-
ments, numerically. An alternative technique is to use a Monte
Carlo approach. A major proponent of the Monte Carlo technique
is Lucy, who has devoted considerable effort to its development (e.g.
Lucy 1999a,b, 2002, 2003, 2005). Techniques have been developed
that allow the temperature structure of the envelope to be obtained
(Lucy 1999a; Bjorkman & Wood 2001). Most, if not all, the Monte
Carlo codes use the Sobolev approximation for the line transfer; this
should be an excellent approximation in SN atmospheres although
Baron et al. (1996) argue that the approximation is suspect in SNe
because of the larger number of lines whose intrinsic profiles over-
lap. While it is possible to undertake full non-LTE calculations with
Monte Carlo codes, such calculations are very time-consuming.
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Thus, it is usual to make approximations to determine the ion-
ization structure (e.g. LTE or a modified nebular approximation;
Abbott & Lucy 1985) and/or the line source function (e.g. LTE).

Early applications of Monte Carlo methods to SNe are discussed
by Mazzali & Lucy (1993) and were applied to the modelling of
SN Ia spectra by Mazzali et al. (1993). Since that time the code has
undergone numerous extensions (e.g. Mazzali 2000) and has been
applied to interpreting spectra of many SNe (e.g. Mazzali et al.
2006, 2009). The code is not time dependent, and generally uses a
grey photosphere approximation for the inner boundary condition.
Deviations in the level populations and ionization structure are taken
into account using a nebular approximation (Mazzali et al. 2009).
These Monte Carlo codes are neither LTE nor fully non-LTE. Since
line photons are allowed to scatter, non-LTE is partially treated even
when LTE populations are assumed.

A more recent example of a Monte Carlo code is sepona (Kasen,
Thomas & Nugent 2006). SEDONA calculates emergent spectra, as a
function of time, assuming LTE-level populations. Line transfer for
the ‘strongest lines’ (up to 0.5 million) is treated using the Sobolev
approximation (Sobolev 1960; Castor 1970) while all remaining
lines are treated using an expansion opacity formalism (Karp et al.
1977; Eastman & Pinto 1993). In sepona, photons can be either
absorbed by a line, scatter, or fluoresce (cause an emission in an-
other transition arising from the same upper level). In the study of
the width—luminosity relation for Type Ia SNe, redistribution pro-
cesses were taken into account using a two-level atom approach
with a constant redistribution probability of 0.8 (Kasen & Woosley
2007) whereas in another study it was set to 1 (i.e. pure absorption;
Woosley et al. 2007).% One advantage of the Monte Carlo technique
is the relative ease with which time dependence is treated (Lucy
2005). More recent work using Monte Carlo techniques has been
undertaken by Maurer et al. (2011) and Jerkstrand, Fransson &
Kozma (2011) who solve the non-LTE time-dependent rate equa-
tions, and solve for the radiation field during the nebular phase.
The approach allows for a more accurate treatment of the emergent
flux for quantitative analyses especially since, in the nebular phase,
the coupling between the gas and the radiation is relatively weak.
Monte Carlo codes tend to be inefficient in one dimension but have
the advantage that they can be readily extended to two- and three
dimensions. Given the complexities of SN modelling it is essential
that we have alternative approaches whose results can be compared.

In the present paper we outline the assumptions underlying our
time-dependent radiative transfer calculations, and describe our
solution technique. In our work we have assumed that the SN
flow can be adequately described by a homologous expansion (i.e.
v o r). There are several reasons for doing this. First, SNe approach
a homologous state at late times. For example, Type Ia SNe rapidly
expand to a radius of <10'* cm from an object the size of the Earth
(<10° cm) in 1 d. After such a rapid expansion, the assumption of a
homologous expansion is excellent. This is also true for Type Ib and
Ic SNe which expand, from an object similar in size to the Sun, by
over a factor of 100 in 1 d. For Type II SNe the assumption becomes
a good approximation after a few days for a blue supergiant (BSG)
progenitor and somewhat later (~20d) for a red supergiant (RSG)
progenitor. Several factors contribute to the departure at early times.

3 In many papers, it is referred to as the thermalization parameter, and can be
thought of as the fraction of line photons that are ‘absorbed’ on a given line
interaction (e.g. Hauschildt et al. 1992). This probability not only allows
for true absorption, but also, for example, re-emission of a photon from the
upper level in another bound—bound transition.

First, the progenitor radius is large (particularly for an RSG), and
it takes time for the expanding ejecta to ‘forget’ its initial radius.
Secondly, the energy density of the radiation field at early times is
significant compared with the kinetic energy, and this influences the
hydrodynamics (Falk & Arnett 1977; Dessart, Livne & Waldman
2010a). Thirdly, in Type II SNe, the reverse shock can set up a
non-monotonic velocity field between the core and He/H interface.
Finally, material can fall back towards the core, which is particularly
important for high-mass progenitors.

The second reason for neglecting the departure from a homolo-
gous expansion is that in this complex, but still exploratory work,
we do not wish to be concerned with dynamics. A third reason is
that the radiation transfer equation is simpler and there are compu-
tational advantages in solving this equation compared with the full
transfer equation. In particular, the third moment of the radiation
field does not appear in the moment equations.

This paper is organized as follows. In Section 2 we briefly char-
acterize how time dependence can affect the modelling of SNe. The
radiative transfer equation, its moments and associated boundary
conditions in space and time are discussed in Section 3. The time-
dependent rate and radiative equilibrium equations are discussed in
Section 4, while the deposition of radioactive energy is discussed
in Section 5. A brief description of the numerical method used to
handle the Lagrangian derivative is provided in Section 6. As in
other cMFGEN modelling, we use a partial linearization method to
facilitate the simultaneous solution of the radiative transfer equa-
tion, and the rate and radiative equilibrium equations (Section 7).
The use of super-levels, which reduces the size of the non-LTE
model atoms, and problems introduced by the use of super-levels
are discussed in Section 8. Model convergence is discussed in Sec-
tion 9 while code testing is discussed in Section 10. The computation
of the observed spectrum, which is done in both the comoving and
observer’s frames, is discussed in Section 11. In Section 12 we dis-
cuss the time-dependent grey transfer equations, which can be used
to provide an initial estimate of the temperature structure. From
these equations we derive a global energy constraint (Section 12.1).
Finally, in Section 13, we discuss additional work that is needed to
improve 1D modelling of SNe.

2 TIME-DEPENDENT EFFECTS IN SNe

Time dependence enters into the radiative transfer equation because
the speed of light is finite. To characterize its importance, we can
consider three separate cases.

(i) Consider an atmosphere with a scale height AR. In the opti-
cally thin limit, the characteristic light-travel time is simply AR/c.
For an SN, the characteristic flow time is R/v and hence the ratio of
the light-travel time to the flow time is
ARv

R ¢’
which for v = 10000kms~' and AR/R = 1/10 [appropriate for
0 = po(ro/r)'°] we have tight /thow ~ 1/300. Because this is much
less than 1, it is generally assumed that the time dependency of
the radiative transfer equation can be ignored when modelling the
photosphere. This will generally be reasonable even when the scale
height of the photosphere approaches the local radius.

(i1) In the optically thick regime the effective light-travel time
will increase since photons cannot freely stream — instead they per-
form a spatial random walk, mediated by absorption and scattering
processes. In this random walk, photons will travel a distance AR
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from their origin on a time-scale of t AR/c, and hence
TARV
R ¢

That is, the random walk of the photons through the medium in-
creases the light-travel time by a factor of t. Thus, as soon as
the optical depths become large (e.g. T > 100) the random-walk
time will approach, or exceed, the flow time-scale. In this case, the
time-dependence terms are crucial and will control the temperature
structure of the SN ejecta. The preceding statement applies to all
SN ejecta and their light curves, i.e. optical depth effects system-
atically require a time-dependent treatment. However, the effect is
most pronounced, and lasts longer, in those SNe (i.e. Type IIP) with
large ejecta masses.

The random-walk time-scale is equivalent to the diffusion time-
scale, but the use of the word diffusion in this context is somewhat
of a misnomer, since ‘classical’ diffusion normally refers to the case
where we have a temperature gradient. However, in core-collapse
SNe the temperature gradient is imposed by the shock, and may be
positive, negative or zero. At large optical depths the photons are
trapped by the optically thick ejecta. If the SN were not expanding,
some of these photons would eventually ‘diffuse’ to the surface,
and would impose a temperature gradient on the ejecta. However,
in the ‘optically thick’ regions of Type II SN ejecta the expansion
time is shorter than the diffusion time, and the temperature is set by
the influence of expansion (adiabatic cooling) on the initial tempera-
ture structure, and photon escape from depth is primarily determined
by the contraction of the photosphere to lower velocities. Initially
the light curve reflects the cooling induced by adiabatic expansion;
later the light curve is controlled by the escape of thermal energy
as the recombination front moves into the SN ejecta (e.g. Eastman
et al. 1994; Arnett 1996).

The relative importance of the different energy sources will de-
pend on the mass of Ni created, and the mass and the initial
radius of the ejecta. For example, Type Ia SNe differ significantly
from Type II SNe. In Type Ia SNe the explosion occurs in such a
small object (approximately the size of the Earth) that the initial
explosion is never seen* — rather the entire visible light curve of
Type Ia SNe is dictated by the re-heating of the SN ejecta by the
%Ni/*®Co decay. In the unmixed Type IIb/Ib/Ic models of Dessart
et al. (2011) the re-brightening caused by the diffusion heat wave
arising from the decay of °Ni was not seen until about 10d — prior
to this the light curve exhibited a plateau. Models without **Ni
showed a similar plateau, but subsequently faded. The light curve of
SN 1987A, because it stems from the explosion of a BSG, is ini-
tially controlled by adiabatic cooling, but then, as in Type Ia SNe,
it becomes dominated by the energy released from nuclear decay
(e.g. Shigeyama & Nomoto 1990; Blinnikov et al. 2000).

(iii) A third case to consider is where the photospheric properties
are changing rapidly. Even if #;en/fow < 1, and light-travel time
effects are unimportant for the transport of radiation in the photo-

tight/Tow =

4 Hoflich & Schaefer (2009) have studied whether the explosion could be
seen in X-rays and y -rays. Their studies suggest that the Burst and Transient
Source Experiment (BATSE) should have seen about 13 =+ 4 nearby SNe Ia
but none were detected. They suggest that absorption by the accretion disc
can account for this discrepancy. The optical light curve, arising from the
shock breakout, should be detectable, with an optical/UV luminosity of the
order of 10°—107 Lo (Piro, Chang & Weinberg 2010; Rabinak, Livne &
Waxman 2011).
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sphere, light-travel time effects can still influence observed spectra.
This occurs because photons arising from an impact parameter p =
0 (i.e. the observer’s line of sight striking the SN centre of mass)
will arrive at the observer at a time Rpno/c earlier than photons
arising from rays from an impact parameter with p = Ry, (i.€. the
observer’s line of sight tangent to the photosphere). An example of
this effect can occur near shock breakout where the photospheric
conditions are changing rapidly. An RSG has a radius of ~10'* cm,
and hence the travel time across the radius of the star is 1 h, which
is comparable to the variability time-scale, and hence light-travel
times effects would significantly affect the early light curve (e.g.
Gezari et al. 2008; Nakar & Sari 2010). While the above discussion
is primarily related to early photospheric phases, it may also be
relevant at late times. At late times, the evolution of the properties
of the SN ejecta and light curve are controlled by the deposition of
radioactive energy, and the relevant time-scale to compare the light-
travel time with is the smaller of the decay time and the flow time.
For the photospheric phase, the dominant nuclear energy sources
are the decays of “°Ni and 3°Co, and these have decay times of the
same order as the flow time.

In the following, we will be primarily concerned with effect (ii).
Case (i) is difficult to handle because of the very short time-scales.
In our studies the effects are likely to be small, even allowing
for the extension of the SN ejecta. While we do treat time depen-
dence, the large time steps (2—10 per cent of the current time) mean
that the (small) influence of freely travelling light is smoothed in
time —in a 10 per cent time step the light can travel the whole of the
grid. To accurately treat such an effect, if important, we would need
to consider time steps comparable to the light-travel time across
grid points. For our studies it is the flow time that is crucial, since it
is the primary factor determining the time-scale on which the ejecta
properties and radiation field change with time. In the limiting case
of a very thin photosphere (i.e. the atmosphere can be treated in
the plane-parallel approximation), case (iii) is more a bookkeep-
ing exercise — the observed spectrum is simply the weighted sum
of spectra from a series of steady-state plane-parallel atmospheres
computed at different time steps. That is,

271 Rmax
Fv(t0+d/c)= ﬁ/ Pl:r(ln— AZ/C, Rmax’ P) dp (1)
0
with
Az = ( Rmux2 - Pz) s (2)

where 7, is the time the observed light is emitted for an impact
parameter p = Ry, d is the distance to the SN, and for simplicity
we have ignored the expansion of the photosphere during the time
interval At = Ryax/c.

In our simulations, R,y is the same for all frequencies, and is
chosen so that at the outer boundary the SN ejecta are optically
thin. While the latter condition cannot always be met (e.g. in the
continuum of the ground state of a dominant ion or for a strong
resonance transition) extensive tests with Wolf—Rayet (WR) and O
star models, and a lesser number of tests with SN models, show
that this does not affect the observed spectra in the important (i.e.
the regions containing the flux) spectral regions (see Section 3.2 for
further discussion). At early epochs, the outer boundary typically
lies at a velocity of 0.1-0.2 v/c.
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3 RADIATIVE TRANSFER

The transfer equation in the comoving frame, to first order in v/c,
and assuming a homologous expansion (so that dv/0r = v/r) is

101, pc+vol, (1—u?ol,
c ot c or r ou
vvol, 3v

- — + ilu =N — X\JIV (3)

rc 9v  rc

(Mihalas 1978; Mihalas & Mihalas 1984), where I, = I(¢, r, 1, V),
Xv = x(t, r, v) is the opacity, n, = n(t, r, v) is the emissivity, and
I, x, n, n and v are measured in the comoving frame. 1, and x,
are assumed to be isotropic in the comoving frame, and we have
dropped the subscript o (which denotes comoving frame) on I, yx,
n, u and v for simplicity. The moments of the radiation field are
defined in terms of the specific intensity by

1
[J,H,K]:/ (1, w, W2 1(t, 7, @, v) du. “4)
J—1

Integrating over the transfer equation, and rearranging terms, we
obtain the zeroth and first moments of the radiative transfer equa-
tion:

1 D(*J,) 1 03(*H,) wdl, ; 5
cr® Dt r2  or rc Ov DA
and

| D(3H,) 1030°K,) K,—J, vvdH,

— oy + - = _XUHU7
cr3 Dt rz  or r rc 0v 6)

where D/Dt is the Lagrangian derivative which for spherical ge-
ometry is

D 0 0
th = a + Ua. (7)
An alternative formulation of equations (5) and (6) is

1 DG*J,) 1 0(r*H,) v ovJ,
ot Dt 2 dr  rc dv ==X ®)
and

1 D*H,) 103(0*K,) K,—J, v 0vH,
cr* Dt 2 or + r e v _XVHV(9)

These equations more directly show the connection to the grey
problem (the frequency derivatives integrate to zero; see Section 12)
and the importance of adiabatic cooling due to expansion in the
optically thick regime. That is, J o 1/r* and hence T o< 1/r. We
utilized equations (5) and (6) in our formulation, primarily because,
in the absence of the D/Dr terms, they are identical to those we use
to solve the transfer equation in stellar winds (at least if v o r).

3.1 The Eddington factors, f,

The two moment equations discussed in Section 3 (equations 5 and
6) contain three unknowns (J,,, H, and K, ), and are thus not closed.
To close these equations we introduce the closure relation f, =
K,/J, (see e.g. Mihalas 1978), where f, is obtained from a formal
solution of the transfer equation (Section 3.3). Since the formal
solution depends on S, which in turn depends on J,, we need to
iterate. As is well known, convergence of this iteration procedure is
rapid.

The Eddington factor, f,, which provides a measure of the
isotropy of the radiation field, is a ratio of moments. As such they
are relatively insensitive to the radiative transfer, and we therefore

compute the Eddington factors using the fully relativistic, but time
independent, moment equations. By solving the time-dependent
moment equations we correctly allow for the trapping of radiation
in the optically thick SN envelope. Thus, the temperature structure
is correct and we compute the correct level populations. Near the
surface we are neglecting light-travel time effects, but this will only
be important in the event that it affects the angular distribution of
the radiation, and in particular the Eddington factor f,.

3.2 Boundary conditions

3.2.1 Outer boundary

For the solution of the moment equations we assume

H,=h,J, 10)

at the outer boundary where 4 is computed using the formal solu-
tion. This assumption is used in equation (6) which is differenced
in the usual way. The use of this boundary condition can sometimes
generate instabilities in the solution, particularly at longer wave-
lengths (in the infrared). One manifestation of this instability is
that a numerical/differencing error introduced into the solution may
remain constant (or even grow). Since J declines with increasing
wavelength, the percentage error in J increases. The instability is
monitored using the formal solution, and can be reduced/eliminated
by choosing a finer resolution at the outer boundary such that At <
AT,, where the indices start at 1 at R,,, and are incremented in-
wards until N, at the innermost grid point.

In the formal (i.e. ray) solution we have two choices at the outer
boundary. In the simplest approach we adopt /- = 0 at the outer
boundary. Depending on the size of the model grid, this choice
can create model difficulties because v, > 1 at some frequencies
implying that I,- ~ S,. Using I, = 0 we obtain J, — S, = §,/2
rather than J, — S, < S, for these frequencies, and this causes
rapid changes in level populations at the outer boundary. In order to
treat the boundary region correctly it would be necessary to resolve
the outer boundary using many additional grid points. In practice,
this is unwarranted — the outer boundary condition (provided it is
reasonable) does not affect the solution, and the sharp truncation at
the outer boundary is an artefact of the model construction.

As an alternative, we can set /7 = 0 at an extended outer bound-
ary, and solve the transfer equation in this extended region to obtain
I~ at the true outer boundary. In SN models, the extended region
typically extends a factor of 1.5 larger in radius, and opacities and
emissivities in this region are obtained by extrapolation. In order to
limit the velocity to less than ¢ [the SN 1987A models discussed by
Dessart & Hillier (2010) had v(Ruax)/c = 0.205 and (Rex/c = 0.29]
we use a beta-law extrapolation of v [v(r) = (1 — Reor/r)P], rather
than a pure homologous expansion. The technique of extrapolating
the radius produces a much smoother behaviour in the level popula-
tions at the outer boundary. It has previously been used successfully
for the modelling of WR stars, luminous blue variables, and O stars
(e.g. Hillier 1987; Hillier & Miller 1998, 1999).

3.2.2 Inner boundary

For core-collapse SNe, the inner boundary represents the innermost
ejecta layer that sits at the junction of the ejecta and fallback material
(deemed to fall on to the compact remnant). Depending on the
model, and in particular the binding energy of the progenitor helium
core (Dessart, Livne & Waldman 2010b), the inner ejecta velocity

© 2012 The Authors, MNRAS 424, 252-271
Monthly Notices of the Royal Astronomical Society © 2012 RAS



can be <100kms~' for standard explosions while for energetic
explosions, or explosions of low-mass progenitors, the velocities
can be an order of magnitude larger. For Type Ia SNe, for which no
remnant is left behind, the inner core velocities are of the order of
>1000km s~! (Khokhlov, Mueller & Hoeflich 1993), and still little
mass travels at such low velocities compared to those obtained in
Type II SN ejecta.
For simplicity we adopt

H,=0 11

(in actuality we tend to adopt a small non-zero value for H,, but
such that H, < J,,). For models with an optically thick core, this
assumption will produce a smooth run of level populations and
temperature with depth near the inner boundary. Our assumption of
H, = 0 ignores the possible influence of magnetar radiation etc. In
reality (and assuming we have the correct SN density structure), the
flux at the inner boundary is determined via symmetry arguments.
The inward intensity at the inner boundary is the outward intensity
at the inner boundary redshifted in frequency space and from an
earlier time step. Thus

I(f, Fmins Hos Vo, ) = (VD/V1)3I(Z - zlerin/C, Tmins —Mo> Ul) (12)

with v; = v,(1 + uB)/(1 — uB), and where we have ignored the
distinction between p and p, since v < c.

Thus, H, has a complicated frequency variation and would need
to be determined in the iteration procedure. However, when inte-
grated over frequency, H ~ BJ and thus from the grey perspective
the assumption of H = 0 is accurate.

In practice, it is reasonably easy to take the frequency shift into
account. In the comoving frame technique we iterate from blue
to red, and thus the intensity information at the high frequency is
always available. In the formal solution we can either use H, =
0 (and thus It = I7) or we specify I} taking into account the
frequency shift. Doing the latter is of importance when the core
is optically thin, and we are computing the observed spectrum.
When computing an observed spectrum, and with an optically thin
envelope, the frequency shift is potentially important for obtaining
an accurate spectrum.

We have also implemented the non-zero H, case into the mo-
ment solutions. The straightforward approach of using H, = h,J,
at all frequencies introduced some numerical instabilities into the
solution, and it was found that it was better to use this approach
only in frequency regions where the core was optically thin. We
also find some convergence difficulties at the inner boundary as
we transition from optically thick to optically thin, and these are
still being investigated. The cause of the difficulty is most likely
related to resolution issues and the large variation in optical depth
with frequency. When H, is no longer small, we effectively have
a ‘photosphere’ at the inner boundary, and in this ‘photospheric’
region populations will change rapidly.

Accounting for the time difference in the inner boundary condi-
tion is more problematic (since the intensities at earlier time steps
would be needed) but its effect is likely to be small since the relevant
time-scale is very small [Af < 2Ryin/c = 2ty5e (V(Rmin)/c), where
fage 1s the time since the SN exploded]. Theoretically, it could be
taken into account using /, computed at previous time steps.

Our adopted boundary condition is physically realistic, and is
a much better approach than applying a boundary condition at
some intermediate depth below the photosphere. It also allows a
better handling of the spectral evolution at late times when some
spectral regions start becoming transparent while others remain
thick.
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3.2.3 Time

The radiative transfer problem represented by equations (3), (5) and
(6) is an initial-value problem in time. Thus, to solve these equa-
tions, we need to fully specify I, (finit, 7, ;) and the corresponding
moments. The computation of /,(#,, r, 1) can only be done in
conjunction with a full hydrodynamical simulation. This is beyond
the scope of the present work. We therefore proceed as follows.

(i) We adopt the temperature, density and abundance structure
from a full hydrodynamical model. In the past, Stan Woosley (pri-
vate communication) has supplied us with models computed with
the Kepler code (Weaver, Zimmerman & Woosley 1978). As these
models, which are for RSG or BSG progenitors, are not fully re-
solved in the outer layers, we stitch a power law on to the hydro-
dynamical models at some suitably chosen velocity (e.g. 10000—
30000 kms~'). As our choice may affect spectra, particularly at
early times, we now obtain/compute models that more accurately
describe the outer layers. The issue is less of a problem for Type Ia,
Ib and Ic SNe after 1 d, because the outermost layers of these mod-
els have been greatly diluted by the huge expansion the ejecta have
undergone.

(i) We solve for the radiation fields using a fully relativistic
transport solver ignoring time-dependent terms (0J,/0¢, 0 H, /0t).
In performing this calculation we allow for non-LTE, and we iterate
to obtain the populations simultaneously with the radiation field
(i.e. we undertake a normal non-time-dependent CMFGEN calcula-
tion). The temperature is held fixed at the value obtained from the
hydrodynamical model.

At depth this procedure is more than adequate for Type II SNe,
since J, is close to B,. However, closer to the photosphere, effects
may be seen since J, departs from B,, and the diffusion time can
be significant relative to the age of the SN. The long-term effects of
this inconsistency are probably small but need to be examined. We
can examine errors introduced by the starting solution by comparing
CMFGEN results at some future time with the hydrodynamic solution
at that time, and by comparing models at the same epoch but which
begin with different starting solutions.

A second issue is that the temperature structure from the hydro-
dynamical structure will not be exact — typically the temperature has
been determined assuming LTE and a grey opacity approximation.
Only on the second time step will the temperature structure of the
outer layers adjust itself to be more fully consistent with our more
accurate treatment of the radiation field, and the non-LTE opaci-
ties and emissivities. Since the LTE approximation is valid for the
inner layers, inconsistencies in the outer temperature structure will
only affect the earlier model spectra — with time these outer lay-
ers become optically thin and no longer contribute to the observed
spectrum. A comparison of the different temperature structures for
Type Ib/Ic SNe computed using different assumptions is shown by
Dessart et al. (2011).

For the time step, we typically adopt At = 0.1¢. Tests show that
this is adequate over most of the time evolution. Exceptions will
occur at shock breakout (not currently modelled) and at the end of
the plateau phase in Type II SNe as the photosphere passes from
the hydrogen-rich envelope into the He core. As the plateau stage
ends, the luminosity can change by a factor of a few on a time-scale
of 10d. As this is roughly 0.1 times the age of the SN, a smaller
step size needs to be used. In the Type IIP core-collapse models of
Dessart & Hillier (2011), time steps of 2—-5 d did a much better job
of resolving the end of the plateau phase (see fig. 10 of Dessart &
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Hillier 2011). At present, the time step is set by hand, with 10 per
cent being the default.

3.3 Formal solution

In order to solve for the moments of the radiation field, we need
to compute the Eddington factors, which are used to close the mo-
ment equations. These are computed using the fully relativistic, but
time independent, transfer equation. The fully relativistic transfer
equation is

1 orl
PO g0
c ot
+ oyl — ){ *hu A}Qﬂ
m
v{Mﬂm}ﬂ
r ov
)
+3VPQ—EQ+M41=U—XL (13)
r

where 8 = v/c,

y=1/v1-p% (14)

op

21
yA+pwob Vit o, (15)

c ot
and it is explicitly assumed that / = I(¢, r, u, v) with /,  and v
measured in the comoving frame (Mihalas 1980).

To solve the transfer equation, we will assume that we can ignore
all time-dependent terms. This is reasonable, since we are not using
this equation to compute the temperature structure of the ejecta.
Rather, we will use its solution to compute the Eddington factors
for the solution of the moment equations. As discussed in Sec-
tions 2 and 3.1, errors introduced by this approximation are likely
to be small. For the computation of the observed spectrum, we are
ignoring the light-travel time for freely flowing photons, but the
errors introduced by this assumption will generally be small, except
near shock breakout (Section 2). The technique we use to solve
equation (13) closely follows that of Mihalas (1980).

Using the method of characteristics, the transfer equation can
be reduced from a partial differential equation in three dependent
variables (r, v, i) to a series of equations in two dependent variables
(s, v). From equation (13) it follows that the characteristic equations
are

A=

dr

5 =retp) (16)
A

and

d 1

L]
A r

We choose N, rays to strike the stellar core, while the remaining
rays are set by the impact parameter ‘p’ which is defined by the
radius grid. To obtain the curved characteristics, we integrate the
above equations using a Runge—Kutta technique. The accuracy of
the integration can be checked by using the relation between i, and
o, and noting that i is simply /[1 — (p/r)?].

As an aside, we note that the 08/9¢ term may be written as
Dp/Dt — voB/0r. Thus, for a Hubble flow A reduces to

op

A=ps (18)

Along a characteristic ray the transfer equation reduces to

oI oI
— —vll—=n—(x+3I)/ (19)
os ov
with
1— 2
M=y {Mﬂm]. (20)

Using backward differencing in frequency, and using k to denote
the current frequency, we have

dly
dfsk =mtaliy — G+ 31T +a) I 2n
with
Vi
a = —2 . (22)
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This may alternatively be written as

df, -

d‘L’k

with

dfk = — (Xk + 311 + ak)ds (24)
and

Se =+ arli—1)/ O+ 3T + ap) . (25)

Since equation (23) is the standard form of the transfer equation
along a ray it can be solved by the usual techniques. Our approach
is to assume that S; can be represented by a parabola in t; over
three successive grid points, and we analytically integrate the trans-
fer equation using this representation. We first integrate inwards
to obtain I, then outwards to obtain 7}. The radiation moments
are obtained by numerical quadrature assuming /,, is a linear func-
tion of u — this is preferred over higher accuracy schemes because
of stability.

More recently, an alternative approach has been suggested. In
this mixed-frame approach the transfer equation is written in terms
of an affine parameter, and the comoving frequency (or wavelength;
Chen et al. 2007; Baron, Hauschildt & Chen 2009). Its advantage
is that the transfer equation is solved along geodesics (straight lines
in our models), allowing the approach to be easily generalized to
three dimensions. Like the method of Mihalas (1980), the opacities
and emissivities are evaluated in the comoving frame.

4 TIME-DEPENDENT RATE AND RADIATIVE
EQUILIBRIUM EQUATIONS

The time-dependent rate equations can be written in the form

Dn,-/,o 1 D(r n)
P o = —E: —niRij). (26)

where p is the mass densny, n; is the population density of state i
for some species, and R;; is the rate from state j to state i. In gen-
eral, R;; are functions of 7. (the electron density), temperature and
the radiation field (see e.g. Mihalas 1978), and when charge ex-
change reactions are included they are also dependent on #;. Thus,
the equations are, in general, explicitly non-linear, although with the
exception of the temperature, this non-linearity is only quadratic.
Of course, there is a strong implicit non-linearity resulting from
the dependence of the radiation field on the populations. In cMmF-
GEN we allow for the following processes: bound—bound processes
(including two photon decay in H and He 1), bound—free processes,
collisional ionization and recombination, collisional excitation and
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de-excitation, charge exchange (primarily with H1 and He1) and
Auger ionization (Hillier 1987; Hillier & Miller 1998).
The energy equation has the form

P, — T, 47T/dv(XvJv —m)+ édec"lyv (27)

where e is the internal energy per unit mass, P is the gas pressure
and égecqy is the energy absorbed per second per unit volume. When
y-ray deposition is assumed to be local (see Appendix A), it is sim-
ply the energy emitted by the decay of unstable nuclei (excluding
the energy carried off by neutrinos). To improve numerical con-
ditioning, continuum scattering terms are explicitly omitted from
the absorption and emission coefficient in equation (27). e can be
written in the form

e=¢ex +ey, (28)
where
kT
o = KL Ane) 29)
2umn
and
n; E;
= —, 30
“ Z umn 30)

In the above, n is the total particle density (excluding electrons),
m is the atomic mass unit, © the mean atomic weight, 7 is the gas
temperature and E; is the total energy (excitation and ionization) of
state i.

The influence of the time-dependent terms in the rate and radiative
equilibrium equations on ejecta properties and synthetic spectra has
previously been discussed by Dessart & Hillier (2008). They found
that these terms are crucial for explaining the strength of the H1lines
in Type IIP spectra during the recombination epoch. Importantly,
the terms also increase the He1 line strengths in early spectra so
that their line strengths are in better agreement with observations.
However, the terms do not just influence H and He lines — other
lines are also affected since the electron density changes (Dessart
& Hillier 2008). As noted earlier, Utrobin & Chugai (2005) showed
that the time-dependent terms were also important for modelling
the H1lines in the Type II-peculiar SN 1987A. More detailed work
on the influence of time dependence on Type IIP SN spectra has
been presented by Dessart & Hillier (2010).

5 DEPOSITION OF RADIOACTIVE ENERGY

During an SN explosion radioactive elements are created (for a re-
view see e.g. Arnett 1996). Type II SNe produce between 0.01 and
0.3M¢ of *°Ni (e.g. Hamuy 2003) while a Type Ia SN can eject
anywhere from 0.1 to 1.0M¢ of %Ni (e.g. Hoflich & Khokhlov
1996; Stritzinger et al. 2006). The influence of the radioactive ma-
terial on the light curve (and spectrum) very much depends on the
36Ni mass and distribution, the size of the progenitor and the ejecta
mass. Radioactive decay powers the light curve of all SN types
during the nebular phase (excluding those powered by an external
source such as a magnetar). The decay of *°Ni (and its daughter
nucleus, *°Co) powers the entire light curve of Type Ia SNe. For SN
1987A, associated with the explosion of a BSG progenitor star, *°Ni
heating begins to become apparent at approximately day 10, and is
responsible for the broad maximum, which lasts for approximately
100d (Shigeyama & Nomoto 1990; Blinnikov et al. 2000).
The most important nuclear decays are

¥Ni - %Co+y (half life = 6.075d,
AE = 1.7183 MeV per decay)
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and
%Co — °Fe + y+ e (half life = 77.23d,
AE(y-rays) = 3.633 MeV per decay;
A E(positrons) = 0.1159 MeV per decay).

The energies and lifetimes are all from http://www.nndc.bnl.
gov/chart/, which for S6Ni and *°Co, are based on the work of Huo
et al. (1987). Energy release in the form of neutrinos is neglected,
since ejecta densities at the times of interest are all well below the
neutrino-trapping densities.

To implement the decay of the radioactive elements, we analyti-
cally solved the two-step decay chains. As a consequence, the ac-
curacy of time-dependent abundances is not affected by our choice
of time step. Another corollary of our approach is that we do not
use the instantaneous rate of energy deposition — rather we use the
average rate of deposition over the time step. In practice, the differ-
ence between the two values is small. Our nuclear-decay reactions
are currently being updated so that we can accurately follow the
evolution of the SN ejecta abundances.

In Type II SNe it is reasonable to assume that all the energy,
emitted as y-rays or positrons, is deposited locally. At later times
(but well after maximum brightness) this assumption breaks down
and y-rays can travel long distances, depositing energy elsewhere
in the SN or escaping entirely. On the other hand, in Type I SNe,
the small ejecta masses mean that non-local y-ray energy deposi-
tion, and y-ray escape, especially in models with extensive mix-
ing, needs to be taken into account even at relatively early times
(e.g. Hoflich, Khokhlov & Mueller 1992). We have developed a y-
ray transport code (see Appendix A), to allow for non-local y-ray
energy deposition.

At present, we simply assume that the energy from radioactive
decays goes into the thermal pool. This is likely to be valid for
modelling the early light curve of most Type II SNe (but well
beyond maximum brightness) but may fail relatively early for other
SNe.> One factor limiting the influence of non-thermal processes at
earlier times is the mass of the ejecta (Dessart et al. 2012). Type IIP
SNe have much greater ejecta masses than do most Type I SNe,
and hence the photosphere at early times is confined to the outer
layers where *°Ni has not been mixed. Non-thermal ionization and
excitation processes, for example, are believed to be important for
explaining the appearance of Her in SNe Ib (Lucy 1991; Dessart
et al. 2011), and for the production of H1 lines in the nebular phase
of Type II SNe and in SN 1987A (Xu & McCray 1991; Kozma &
Fransson 1992, 1998a,b). Non-thermal excitation and non-thermal
processes have recently been incorporated into cMFGEN (Li, Dessart
& Hillier 2012) and we are currently investigating their influence
on the spectra of SN 1987A (Li et al. 2012), Type Ibc SNe (Dessart
et al. 2012) and Type Ia SNe (Dessart et al., in preparation).

6 NUMERICAL SOLUTION

To handle the Lagrangian derivative, we adopt an implicit approach
(Stone, Mihalas & Norman 1992; Hoflich, Mueller & Khokhlov
1993) which is explicitly stable, for both the radiative transfer equa-
tion, the rate equations and the radiative energy balance equation.

3 Type II SNe have much larger ejecta masses than do Type I SNe. As a
consequence, radioactive material is generally hidden from view for much
longer. Deep below the photosphere, conditions are highly ionized and close
to LTE, and any radioactive energy deposited will be thermalized.
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Thus, we write

DX _ X; — Xy 31
Dt /, t—ti_

where i refers to the current time step and i — 1 refers to the previous
time step. As our approach is only first-order accurate in time, the
time step must be kept ‘small’. An explicit approach cannot be used
as the conditions on the time step would be unnecessarily restrictive
(e.g. Stone et al. 1992).

All other terms in the radiative transfer equation and rate equa-
tions are evaluated at the current time step. Since the quantities at
the previous time step are known, the Lagrangian derivative simply
introduces extra source terms into the equations. With the above
scheme, the zero-order moment equation, for example, becomes

1 9r%H, vv 0J,
r2 or ; rc ov /,
3
rict\~ Jui-
= (M) +( - ) Az

1
- v . Jvi- (32)
(X " CAt)i .

This has exactly the same form as the equation normally solved in
CMFGEN and can be differenced in the usual way (Mihalas, Kunasz
& Hummer 1975, 1976). The only difference is that there is a
modification to the opacity and emissivity arising from the radiation
field at the previous frequency. The solution of the rate equations
has previously been discussed by Dessart & Hillier (2008).

An alternative approach would be to choose a semi-implicit ap-
proach with all terms evaluated at the midpoints of the time step.
This would be second-order accurate and should also be stable. Its
disadvantage is an increase in complexity — additional terms would
need to be saved from the previous time step. Hoflich et al. (1993)
use an adjustable differencing approach, controlled by a parameter
6, which allows for an implicit approach, a semi-implicit approach,
or a fully explicit approach. Another possibility, utilized in some
evolutionary codes and by Lucy (2005), is to generate a difference
formula using the two previous time steps.

At depth the opacity and emissivity are large, and generally the
time terms in the ‘modified opacity’ and ‘modified emissivity’ are
almost negligible (unless a very small time step is used), and their
influence on the radiation transfer at a given frequency could be
neglected if one were only interested in the formal solution of the
transfer equation. However, the terms are of crucial importance for
the energy balance, since their importance is enhanced when we
integrate the transfer equation over frequency (Section 12). In par-
ticular, if we assume that radiative equilibrium holds, the opacity and
emissivity are ‘analytically’ cancelled from the integrated transfer
equation, and thus the time-dependent terms can be very impor-
tant. As can be seen from the grey transfer equations (Section 12),
the temperature at large optical depths is almost set entirely by the
time-dependent term, and for a homologous flow without energy
deposition from radioactive decay it simply scales as 1/z.

For most of our calculations we have set the time step to be
10 per cent of the current SN age (Section 3.2.3). At some epochs,
a smaller time step may be needed. Since we need to iteratively
solve the radiative transfer equations in conjunction with the rate
equations, a factor of 2 reduction in the time step does not mean
a factor of 2 extra computational effort, since each time step will
require fewer iterations (because the starting solution will be closer
to the final solution).

As we are considering SN ejecta in homologous expansion, we
use the velocity as our Lagrangian coordinate.

Before beginning our simulations, the hydrodynamical models
are mapped on to a revised grid optimized for the computation of
the radiation transfer. The new grid is defined in terms of Rosseland
optical depth, and generally we require at least five points per decade
of optical depth. Similar grids are generally used in the modelling
of stellar atmospheres, and are preferred to a grid defined in mass
and optimized for the hydrodynamic calculations. At present, we
generally perform a new mapping at each time step (although the
mapping is done using the calculations at the previous time step
rather than a hydrodynamical model). Two problems can potentially
arise with our mapping scheme.

(i) In standard 1D SN models there are often rapid changes in
spatial composition and density distribution. Due to the numerous
re-mappings, these rapid changes suffer from numerical diffusion
in space. At present, we do not make any special attempt to limit
this diffusion. Numerical diffusion is less of a problem in mixed
models because the spatial gradients are smaller. The steep density
gradients are also stronger in core-collapse SN ejecta because of
the chemically stratified progenitor envelope structure.

(i1) Insome models (particularly for SN 1987A) ionization fronts
can arise. Because the optical depth (e.g. in the Lyman continuum)
can vary rapidly across the front, complications arise in the radiative
transfer and in model convergence. To overcome these problems
we semi-automatically revise the grid across the front. Crudely, we
adjust the grid so the front is better resolved. A control file, which
can be altered while cMFGEN is running, is used to specify parameters
for adjusting the grid. If necessary, the grid can be adjusted at each
iteration.

7 LINEARIZATION

The transfer, energy and rate equations are a coupled set of non-
linear equations. Thus, their simultaneous solution requires an it-
erative technique. As described by Hillier (1990), we adopt a lin-
earization approach. While cumbersome to implement, we have
found that this technique works extremely well for the modelling of
hot stars and their stellar winds. Another common approach is to uti-
lize approximate lambda operators to allow for the coupling of the
level populations with the radiation field (e.g. Werner 1986; Lanz
& Hubeny 1995; Hauschildt & Baron 1999). In some cases, this is
combined with other approaches — Hoflich (2003) also utilizes an
equivalent-two-level-atom approach in his SN modelling.

The linearization of the radiative transfer equation and the rate
equations is straightforward, and as it is very similar to that pre-
sented by Hillier (1990) it will be described only briefly. In our
approach we linearize both the rate equations and the radiative
transfer equation. Using the linearized radiative transfer equation
we can solve for 8/, in terms of 8 x,, and §n,, and hence in terms
of ény, ény, dns, ..., 8N, and 8T. In principle, §J, depend on the
perturbed populations at every depth; however, we only allow for
the coupling locally (diagonal operator) or between adjacent depths
(tridiagonal operator). Using these equations we eliminate the radi-
ation field (6/,) from the linearized rate equations. For the diagonal
operator we obtain a set of Ny simultaneous equations (where Ny
is the total number of variables) at each depth. For the tridiag-
onal operator we obtain a block tridiagonal system of equations
(Np x Ny in total, where N is the number of grid points) that can
be efficiently solved using a block-matrix implementation of the
Thomas algorithm for Gaussian elimination. In a typical SN model,
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Np = 100 and Ny ~ 2000, yielding 200 000 equations. The 2000
super-levels typically represent S000-10 000 atomic levels.

Starting estimates for the temperature and level populations are
obtained as follows. For the temperature structure, we either adopt
a scaled version of the grey temperature structure (see Section 12),
or simply adopt the temperature from the previous solution. For
the level populations, we adopt the departure coefficient from the
previous time step, although we also have the option to adopt LTE
values (useful only for the first model of a time sequence).

To solve the linearized rate equations, we use LU decomposition
followed by backward substitution utilizing standard LAPACK®
routines (Anderson et al. 1999). As discussed by Hillier (2003), we
improve stability by doing the following.

(i) We scale the simultaneous equations so that we solve for the
fractional correction dn;/n;.

(ii)) We use the LAPACK routine DGEEQU to pre-condition the
matrix.

These two procedures work very well, and we (generally) have no
difficulty in solving systems of equations with Ny = 2000. When
problems do occur it is usually because of poor starting estimates.

The advantage of the diagonal operator is that the construction of
the linearization matrix is faster; each depth can be treated indepen-
dently; in the early stages of the iteration procedure convergence
can be more stable; and it requires less memory (nominally down
by a factor of 3 but because of our implementation we save only a
factor of 2). The advantage of the tridiagonal operator is its speed
of convergence — far fewer iterations are needed to reach a specific
convergence criterion. With both operators, Ng acceleration (Ng
1974; Auer 1987) can be used to accelerate the convergence.

The time taken per iteration is very model dependent and is
strongly influenced by the type of iteration. Iteration steps (for
Np = 125, Ny = 2319, ~400000 bound-bound transitions) in
which the linearization matrix is held fixed take about ~15 min,
A-iterations take somewhat longer (~20 min) while a full iteration
may take 4 h. The computations were formed using four processors
(Quad-Core AMD Opteron[tm] Processor 8378; 800 MHz), and
the computational times are about a factor of 2 longer than those
obtained using a Mac Pro. The computational time-scales as Np2.

8 SUPER-LEVELS

To reduce the complexity of the non-LTE problem, it is usual to
use super-levels (SLs), or a variant thereof, to reduce the number
of variables, and hence the number of rate equations that need to
be solved (e.g. Anderson 1989; Dreizler & Werner 1993; Hubeny
& Lanz 1995; Hillier & Miller 1998). In the procedure adopted
by Hillier & Miller (1998), SLs are used as a means of reducing
the number of level populations that need to be determined, while
all transitions are still treated at their correct wavelength. Within
an SL we assume that the states have the same departure from LTE
(although more complicated assumptions can also be adopted); thus,
this procedure can be considered to be the natural extension of LTE.

However, SLs can introduce inconsistencies which may adversely
affect convergence. Consider a three-level atom, with two excited
levels which are relatively close in energy, and which are treated as
a single SL in the rate equations.

6 LAPACK is a software library for numerical linear algebra. Documentation
and the routines are available at http://www.netlib.org/lapack/
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The rate equation for the SL contains terms of the form
n2A21 Zy + n3Az Zs,

while the radiative equilibrium equation will contain terms of the
form

hvynyAz Zoy + hvain3 Az Zsy,

where Z;; is the net radiative bracket, A;; is the Einstein A coefficient,
his Planck’s constant and v;; is the transition frequency. When levels
2 and 3 are part of the same SL, and if the bound—bound transitions
are the dominant transitions determining the population of the SL
and are a significant coolant, an inconsistency arises since the ratio
my/ns is fixed by the assumption that two levels have the same
departure from LTE. In extreme cases, this inconsistency can cause
models not to converge.

As noted by Hillier (2003), another manifestation of this incon-
sistency is that when radiative equilibrium is obtained the electron-
energy balance equation will not be satisfied. The level of inconsis-
tency gives an indication of the errors introduced by the use of SLs.
To overcome the inconsistency, Hillier (2003) simply replaced vs;
and v, by an average frequency ¥ in the radiative equilibrium equa-
tion. This procedure overcame convergence difficulties and yielded
better consistency of the electron-energy balance equation with the
radiative equilibrium equation. Detailed tests, performed by split-
ting the important SLs, confirmed the validity of the procedure in
the atmosphere/winds of massive stars. At high densities the scaling
approximation can be switched off.

In SNe the simple scaling described above has potential diffi-
culties. First, the lower densities and higher velocities increase the
importance of line scattering compared with continuous processes.
Secondly, the radiative equilibrium equation appears on the right-
hand side of the zeroth moment of the grey equation. Since the above
scaling is not done in the transfer equation there is an inconsistency
between the transfer equation and the energy balance equation. In
the present case, the assumption of radiative equilibrium is untrue,
due to the work done on the gas, and the deposition of energy from
nuclear decays, but there will still be an inconsistency between the
transfer equation and energy balance equation.

To remove the inconsistency, but at the same time retain the
benefits of the SL approach, we now simply scale the line opacity
and emissivity. The emissivity and opacity due to the transition 1-3
are scaled by ¥/v,3 —it is necessary to scale both the emissivity and
opacity so that B = n/y at depth. Most of the scalings are less than
10 per cent, and thus of the same order of accuracy as metal line
transition probabilities. In principle, the influence of the assumption
is easily tested by altering the SL assignments — in practice, this
can be difficult because of memory requirements. Alternatively,
after the temperature has converged, the scaling can be switched
off, the temperature can be held fixed and the populations can be
updated. With this technique the direct influence of the scaling on
the observed spectrum can be removed. No scaling is used when
computing observed spectra with cMr_rLUx (Section 11).”

7 As noted by the referee, it is possible to define an average A and Z value
for a transition between two super-levels. In practice, this would remove the
inconsistency when the radiative equilibrium equation is defined in terms of
the net rates although in practice it will yield results similar to our frequency
scaling procedure. However, this procedure does not solve the problem with
the radiative equilibrium equation on the right-hand side of the transfer
equation where there is no distinction between lines and continuum.
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9 CONVERGENCE

In Type II SNe we expect the temperature at large optical depths to
evolve adiabatically® as 1/r from the initial configuration, and as this
is a local scaling we expected convergence to be achieved despite
the extremely high optical depths. However, initial models failed to
converge, with the temperature stabilizing at the grey temperature
adopted for the initial estimate. Convergence was only an issue with
the temperature structure. When the temperature was held fixed,
populations would converge rapidly at all depths.

The lack of convergence was traced to two issues, and both are
inherently linked to the large optical depths. Because of the large
optical depths, any term included in the linearization of the energy
balance equation must be accurately linearized in order that the
correct cancellation can occur.

Consider the following contribution, by a single line at a single
frequency, to the radiative energy balance equation:

ARE =47t (xc + ¢dx) (J — S) (33)

=41t (xe +Px)J — (e + dm) . (34)

In the above equation, the subscripts ‘c’ and ‘1’ are used to denote the
continuous and line contributions, respectively, and ¢ is the intrinsic
line emission/absorption profile. As the medium is optically thick
we have J = S and hence

J— ne + om (35)
Xe+ox
S+ 048
T 1469 (36)

with 6 = xi/xc.. Obviously, x(J — S) = 0. However, if S, #
S; the line and continuum terms will make contributions that are
identical in magnitude, but of opposite sign. This cancellation must
also be maintained in the linearization. The continuum contribution
X (J — So) to x(J — 9) is, for example,

¢(711 - 977c)
1+0¢

In our original version of cMFGEN we integrated the line contribu-
tion to the linearization over the full line before adding it to the lin-
earized energy balance equation. For simplicity, and computational
requirements, we added the linearized continuum contribution to
this term using data at the final frequency in the line. However,
as the continuum varies across the line, full cancellation was not
achieved. Since cancellation was not achieved we effectively over-
estimated the effect of any change in the temperature on the energy
balance. This, in turn, meant that the corrections needed to achieve
balance were severely underestimated, and hence stabilization of
the temperature structure occurred. The problem was solved by per-
forming the continuum linearization at each frequency in the line
(although this is only necessary, and is only done, for the energy
balance equation).

A similar problem arose from the use of impurity levels. The con-
cept of impurity levels was introduced into CMFGEN to minimize the
number of levels that were fully linearized. The levels are linearized
for rates associated with their own species, but their influence on
other species is neglected in the linearization. The use of impurity
levels does not affect the solution; it only has an influence on the
convergence of the code. In our implementation, exact cancellation

8 Radioactive decay will modify this simple scaling.

+++++
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Figure 1. Illustration of the corrections to the temperature at a depth of
TRoss = 1.5 x 10° in a Type II SN model. The model, at time 2.3 d after the
explosion, is similar to those used by Dessart & Hillier (2008, 2010) to model
SN 1987A. The convergence shown is fairly typical of the convergence
behaviour at depth. The temperature correction for iterations 1-39 is zero.
All models begin with A iterations until the corrections stabilize, and then
a mixture of A and non-A iterations with 7 fixed at all depths is performed.
An Ng acceleration was performed after iteration 93 (hence the spike at
iteration 94).

was not achieved for terms involving impurity levels, and the rate
of convergence was severely curtailed in the inner region.

To illustrate the convergent properties of the models we illustrate
in Figs 1 and 2 the convergence properties of a typical Type II
SN model. Only the temperature is shown. In general, it is the
temperature that determines the global convergence properties of
the model — when the temperature is held fixed, convergence is
usually rapid. For the model shown, convergence is achieved in
100 full iterations, with an iteration defined as any step which
changes the populations (e.g. a A iteration, a full iteration or an
Ng acceleration).

While the temperature corrections in Fig. 1 are small, they help to
illustrate that our linearization procedure does achieve convergence
at large optical depth. As noted above, in early work temperature
corrections stabilized, and it was unclear whether convergence was
being achieved. When we use the grey temperature solution at depth
for the initial temperature estimate, the predicted temperature cor-
rections are small. However, when we use the temperature from the
previous time step, the error in 7 is of the order of 10 per cent (for
a 10 per cent time step) and we find good convergence provided
we keep the populations consistent with the current temperature
structure. It should also be noted that the actual error achieved at a
given iteration depends on both the size of the correction and the
rate at which the correction is changing. In Fig. 1, the true error,
as estimated over iterations 55-60, is approximately a factor of 10
larger than the current correction. In Type II SNe, it is the sharp H
ionization front, which moves to smaller velocities as the SN ages,
that controls convergence of the model.

Corrections to the populations are generally much larger than
the temperature corrections and tend to behave more erratically,
especially in the early iterations. Experience has allowed us to arrive
at the following iterative procedure.

(i) Perform A iterations until the maximum correction is less
than 50 per cent. The temperature is held fixed.

© 2012 The Authors, MNRAS 424, 252-271
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Figure 2. Same as Fig. 1, but now showing the convergence at a depth Tress of ~1000 (left), ~1 (middle) and ~0.001 (right). The two types of symbols (x, +)

are used to indicate the sign of the correction.

(ii) Perform full iterations, with the temperature held fixed, until
the maximum correction is less than 50 per cent. If the maximum
correction is greater than 200 per cent, we revert to A iterations.

(iii) When the maximum correction on a full iteration is again
less than 50 per cent, allow the temperature to vary. If the maximum
correction is greater than 200 per cent, we revert to A iterations.
When we are no longer switching between full and A iterations, we
only compute the variation matrix (i.e. the linearized rate equations)
every third iteration.

(iv) When the maximum correction is less than ~x per cent (x is
an adjustable parameter typically set to five) we hold the variation
matrix fixed. It is recomputed if the maximum correction becomes
larger than 3 x x per cent.

(v) When four successive iterations are less than a few per cent
(typically), we perform an Ng acceleration. We repeat Ng acceler-
ations every 10-20 iterations.

This procedure is automatically handled by cMmrGeN, although it
is also possible to manually force a different behaviour by restarting
the code. Many of the control parameters are adjustable, although
in practice we tend not to change them very much.

In hot-star models we also have the option to fix the temperature
automatically in the outer region until the populations have stabi-
lized. This generally works well in hot-star winds, but in SN models
it caused convergence problems around ionization fronts.

A typical model is stopped when the maximum convergence is
less than 0.1 per cent, although most levels have already achieved
a higher convergence. Several output files can be checked to verify
that true convergence has been achieved. Some models in a se-
quence are converged to a much higher accuracy (e.g. 0.001 per
cent) to further prove convergence. Convergence to higher accuracy
is generally not time-consuming since the variation matrix can gen-
erally be held fixed — it is the initial iterations, with a mixture of A
and full iterations, that take the most time.

In Type II SN models, two factors can affect the speed of conver-
gence.

(1) At a few depths (often only a single depth), a few levels
may oscillate and fail to converge. These levels are generally unim-
portant, and do not affect the spectrum. However, they can affect
convergence since it is the maximum change that controls the it-
eration procedure and ultimately determines the convergence. Ng
accelerations, averaging the last two full iterations and forcing mul-
tiple A-iterations, can overcome the problems. More recently, we
have implemented a procedure to use negative relaxation at the
problem depths — that is, we scale all corrections at those depths by
a scale factor (typically 0.3). This procedure is often successful at
accelerating convergence.
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(2) Ionization fronts. These tend to show rapid changes over
a few successive points. The position of the front oscillates and
there is often a strong coupling between the front location and the
temperature. In these cases the most reliable technique to facilitate
convergence is grid refinement in the neighbourhood of the front.
This is done semi-automatically in CMFGEN — a parameter file (which
can be changed during the run) controls if, when and how, the
refinement is done.

10 TESTING

With a code as complicated as CMFGEN, there is no easy way to fully
test the code. However, numerous checks have been performed to
test individual components. For example, solutions obtained with
different transfer modules have been compared, and found to agree
(in limiting cases such as small v/c). At depth (e.g. T > 10), the so-
lution to the grey and non-grey transfer equations also agrees. Light
curves of Type II SNe computed with cMFGEN show reasonable
agreement with those computed using the hydrodynamics code v1p
(Livne 1993; Dessart & Hillier 2010). A strong check, although not
definitive, is also provided by our modelling of SN 1987A. The time
sequence of models for SN 1987A, begun at 0.3 d, shows a remark-
able agreement to observations of SN 1987A (Dessart & Hillier
2010) — remarkable since there were no adjustable parameters in
the modelling.

Additional checks are provided by auxiliary files which list and
check various processes and rates such as the ionization balance
of all species and the electron heating/cooling balance modified
for advection, adiabatic cooling and nuclear energy deposition. As
noted by Hillier (2003), the electron heating/cooling equation, in the
absence of SLs, is a linear combination of the radiative equilibrium
equation and rate equations. In the presence of SLs this equality no
longer holds, and thus the electron energy balance equation provides
a check on possible problems with SL assignments.

11 COMPUTATION OF OBSERVED SPECTRA

The computation of the observed spectrum can be done in three
ways:

(i) Compute the observed spectrum using a Lorentz transfor-
mation of the comoving-frame boundary intensities computed by
CMFGEN (Section 11.1).

(i) Compute the observed spectrum using the comoving-
frame boundary intensities computed using a separate calculation
with cmrF_FLux. The advantage of this technique over the cmF-
GENcalculation is that we can use a finer spatial and frequency grid
to improve the accuracy of the computation, we include all spectral
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Figure 3. Comparison of the predicted observed spectrum computed using the observer’s frame code (red), cMr_FLuX (blue), and cMFGEN (green) for an SN
1987A-like model at an age of 7.9d. The main characteristics of the spectra are in very good agreement but the observer’s frame calculation is of higher
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Figure 4. As for Fig. 3 but showing the logarithm of the flux over a broader wavelength range.

lines for the adopted model atoms, and we use the technique of
Rybicki & Hummer (1994) to compute the electron-scattering
source function. In this technique the redistribution of photons
in frequency space due to the thermal motions of the electrons
is explicitly treated. The redistribution by the bulk motion of the
gas is automatically allowed for by performing the radiative trans-
fer calculations in the comoving frame. In the computation of the
level populations (i.e. in cMFGEN) we generally treat the scatter-
ing coherently in the comoving frame — that is, we only allow for
redistribution caused by the bulk motion of the gas. With the coher-
ent scattering approximation the radiation is not explicitly coupled
to that at other frequencies by a complex weighting function, and
hence convergence is more stable.

(iii) Using the emissivities and opacities computed in the co-
moving frame, compute the observed spectrum using an observer’s
frame calculation. This calculation has a higher accuracy than the
calculation done in the comoving frame. This occurs since, along a
given ray, we are solving a differential equation in a single variable
(z) whereas in the comoving frame we are solving a partial differen-
tial equation in two variables (z, v) (Section 11.2). The difference in
accuracy is particularly noticeable for O stars — their narrow photo-
spheric features become broadened as they are propagated (in both
space and frequency) to the outer boundary.

Ideally these techniques should give identical answers but in
practice differences arise because the different techniques have dif-
ferent accuracies (as they use different numerical techniques; Figs 3
and 4).

At present, we also ignore time dependence when computing ob-
served spectra. This will be rectified in the future, but, for the same
reasons as outlined above (Section 2), it is unlikely to have a large
effect on observed spectra, except at the earliest times for H-rich
core-collapse SNe when J and H are varying rapidly. For Type I
SNe, the effects will be smaller since by 1d the SNe have already
cooled, and their spectra are slowly evolving. Note that time depen-
dence is taken into account in the calculation of the moments, and
observer’s frame spectra computed with these moments do differ
from those computed where the time dependence of the moments is
ignored (Fig. 5). The computation of the observer’s frame spectrum
is outlined in Section 11.2.

11.1 Comoving frame computation of the observed spectrum

As we integrate from blue to red we store I,(#, Ruax, Mo, Vo) at the
outer boundary of the model. After the completion of each comov-
ing frequency, we check whether we can compute /;(¢, Ryax, s, Vs)
for all u, for the next observer’s frame frequency. If so, we
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Figure 5. Comparison of the predicted observed spectrum computed allowing for time dependence in the moment equations (red) with the solution for the
moments computed using the fully relativistic solution but ignoring time dependence (blue). Both spectra were computed in the observer’s frame.

compute I(Rmax, 4, v) from Io(¢, Riax, Mo, Vo) Using the transfor-
mation from comoving to observer’s frame (equation 42) and linear
interpolation in frequency. Because of the way we constructed the
ray grid there is a one-to-one correspondence between 1, and s,
and hence no interpolation in p is necessary. The observed flux,
F(t, v), at distance d is then computed using

27-[ Pmax
Fi(t, Vs)zﬁ/ pls(t_d/Q Rmaxypv Vs)dp- 37
0

This integration is performed using numerical quadrature with 4
as the integration variable (note that p dp = Rﬁm s dits).

11.2 Observer’s frame calculation of the observed spectrum

To compute observed spectra we use a modified form of cMF_FLUX,
which has been described by Busche & Hillier (2005). The calcu-
lation of the observed spectrum proceeds as follows.

(i) We solve the transfer equation in the comoving frame using
the assumption of coherent electron scattering in the comoving
frame. This allows us to compute the mean intensity in the comoving
frame. Along each ray we insert extra grid points — typically we have
a grid point every 0.5 Doppler velocities. The finer frequency grid
adopted in cMF_FLUX generally has only a minor influence on the
computed spectra for Type II SNe.

(i) Using the technique of Rybicki & Hummer (1994) we com-
pute the full, non-coherent and frequency-dependent, electron-
scattering source function.

(iii) We resolve the transfer equation in the comoving frame, but
this time we assume incoherent electron scattering, and hence use
the electron-scattering source function previously computed.

(iv) We repeat steps (ii) and (iii) until convergence is obtained.
This generally only requires a few iterations, although in modelling
the Type IIn SN 1994W a much larger number of iterations was
needed. This was necessary because of the much higher line optical
depths, at a given electron density, induced by the lower SN ve-
locities (Dessart et al. 2009). In most SNe, frequency redistribution
to the red, associated with the bulk motion of the gas, dominates
and the non-coherence of electron scattering due to thermal mo-
tions is subdominant. In SNe where the spectrum formation region
expands slowly, this non-coherent scattering is key and requires
careful computation to yield accurate line-profile shapes.

(v) We map the comoving frame emissivities and opacities into
the observer’s frame using the following relations (see e.g. Mihalas
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1978):

B =v/c, (38)
y=1/V/1-p, (39)
Xs(rs 1, 1) = (V6/ V) Xo(r, o), (40)
(s s, v5) = 05/ 00)” 1o(r, Vo), (41)
(s g, v0) = (03/Vo) Lo(r, o, Vo), 42)
v = vy (1 4 110f), 43)
Vo = vsy (1 — psp). (44)

In the above equations, we use ‘0’ to denote the comoving frame
and ‘s’ to denote the observer’s (static/rest) frame. This mapping
provides the emissivities and opacities necessary to solve the trans-
fer equation in the observer’s frame using the usual (p, z) coordinate
system. Along each ray (i.e. for each impact parameter p) we insert
extra grid points so that the rapid variation of opacity and emissivity
is adequately sampled — typically we have a grid point every 0.25
Doppler velocities.
(vi) We compute the observed flux using equation (37).

12 GREY TRANSFER

To improve the speed of convergence it is desirable to have a good
estimate of the temperature at each time step. In the inner, optically
thick regions, this is provided by solving the time-dependent grey
transfer problem. The solution of the time-dependent grey transfer
also provides a check on the solution of the full-moment equations.

Integrating equations (5) and (6) over frequency and regrouping
terms, we obtain

1 DC*T) 1 002H) 00
— - = v v]v d
crt Dt + r2  or /0 =X v

= / X\)(Sv - Ju) dv
0

= XP/ (Sv - Jv) dv
0

~ xp(S = J), 43)
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and

1 D(r*H) 1930r*K) K-—1J o
— - + = - xvH,
cr Dt r or r 0

00
= _XR/ HU
0

~ —xrH, (46)

where xR is the Rosseland mean opacity and yp is the Planck mean
opacity. Assuming LTE holds at depth we have S, = B,. Using
equations (27) and (45) we obtain

1 D@*J) 1 0(r*H) 1 /. De PDp
i +7 = edecay_pi'f'*i s
crt Dt r>  or 4 Dt p Dt (47)

which follows from equation (27). After solving for J we need to
relate J to B. Using equation (27), and since S = B, we have

/Xva dv:/XvJv dv

1 De PDp
— | ldecay — p— + — — 48
tan (ede‘y th+le) )
and thus
BeoT = J+—— (¢ De  PDp (49)
=0 = R e, — —_— _—— s
47t xp decay = 0 Dt p Dt

where we have assumed J, ~ B,.

The solution of equation (47) is complicated by the presence of
the p De/Dt — PD1n p/Dt (= W) term, which depends on the un-
known temperature structure. We handle the term by iteration — that
is, we compute the temperature structure for a given W by solving
equations (47) and (49), update W and then resolve equations (47)
and (49). Because of stability issues in the outer regions, we found
it necessary to limit the changes in W to achieve convergence. To
determine the change in e we assume that the departure coefficients
are constant — in practice this is equivalent to assuming LTE in the
inner regions where the grey approximation is valid.

Equations (46), (47) and (49) represent three equations in four un-
knowns (J, H, K, T). As for the frequency-dependent transfer equa-
tions, we eliminate K using the Eddington relation K = fJ, where f
is obtained by solving the time-independent transfer equation, and
for simplicity we neglect the curvature of the characteristics.

Since the Rosseland mean opacity also depends on temperature,
we perform several iterations of the grey solution with updated
Rosseland mean opacities. As the grey solution only provides a
starting solution, high accuracy is unnecessary, and practical expe-
rience shows that the above procedure provides a very acceptable
starting solution. As the grey solution does not hold everywhere,
we only apply the grey temperature structure to regions with an
optical depth above T,,. Below 7, we use T from the previous
time step. Around 7.,;, we use a simple interpolation procedure so
as to switch smoothly between the two approximations. The choice
of Thin 1s somewhat problematical. In O and WR stars, we found
that it was reasonable to adopt 7, ~ 1; however, for Type II SNe
we found that 7, ~ 5 (or 10) provided better starting solutions.
A comparison between the actual model temperature structure and
the grey temperature structure is shown in Fig. 6.

12.1 Global energy constraint

A global energy constraint can be obtained by integrating equa-
tion (47) over volume. Multiplying equation (47) by r* and inte-
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Figure 6. Comparison of the profiles for the initial grey temperature 7g
and the final model temperature Tr. At depth the agreement is excellent.
The maximum difference between the two temperatures is about 10 per
cent. At v =10000kms~! the Rosseland optical depth is ~12, while at
30000kms~! itis ~0.000 35. Corrections for v > 30000 kms~! are small
because this model has an enforced minimum temperature.

grating over r we obtain

r2 H(rma) = rzH(r)

max
. \//'nmx r? ) De N P D,O
: 4n €decay P Dt 0 Dt

1 D(r*J)
- — dr.
cr? Dt " (50)
In a static atmosphere, with v = 0 this simply reduces to

r*H = constant; and this is often used as the energy constraint
in stellar atmosphere calculations at large 7 (tr 2 1). This con-
straint has real physical meaning — the flux at the outer boundary is
set by the flux imposed at the inner boundary. However, for time-
dependent SN calculations at early times, the constraint equation
is, in some sense, merely a mathematical constraint. Because of the
finite speed of light coupled with the effects of diffusion, the outer
flux is independent of the inner atmosphere at the current time step
when the envelope has a ‘large’ optical depth. Nevertheless, equa-
tion (50) does allow a consistency check, and in complex codes
consistency checks are always useful. In the outer envelope, and
as the envelope thins, and in Type Ia SNe with their much lower
envelope masses, the constraint represented by equation (50) be-
comes much more physically meaningful. Of course, depending on
the balance between adiabatic cooling and other heating and cool-
ing processes, errors in the temperature of the inner envelope may
manifest themselves at a later time.

In our original formulation, we integrated from rp,;, to r. How-
ever, we found that numerical errors (at large optical depths) tended
to limit its usefulness. These numerical errors arise from the dis-
cretization (J, is defined on the grid while H, is defined at the
midpoints), from the evaluation of the integrals, from the need for
very high convergence and from the technique used to difference
the moment equations. For example, when we difference the zeroth
moment equation we effectively replace

/ XV(SU - Jv) dv
0
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Figure 7. Illustration of the global energy constraint for a Type Ia SN model with local energy deposition at an age of 60 d. In the left-hand plot we see the
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luminosity (blue: ——). The model was computed using 126 depth points.

at each depth d by did not significantly change predicted spectra, especially at earlier
epochs.

/ (XV)(S]) - ]\J) dU,
0

where (x,) is now averaged over several depths.” By integrating 13 FUTURE WORK
inwards, we can more directly compare the constancy of the right-
hand side of equation (50) with the quantity of interest — the flux ) ; X
(or luminosity) at the outer boundary. dependent modglhng of horpologous SN ejecta.. Wlth our work, we

In Figs 7 and 8 we illustrate the global energy constraint as a s.olve selfl-con51stently the time-dependent r..aldlatlve transfer equa-
function of depth for a Type Ia SN model and an SN 1987A-like tion and its Z?mth and ﬁ.rst moments, thé tlme—dep ender'lt energy
model, respectively. In the outer regions, constancy of the right- balan.ce equation and the time-dependent kinetic rate equations. Qur
hand side is excellent, although small departures in the inner regions technique has been succe.ss.fully used to model the Type II-peculiar
can be seen. These departures often arise from sharp changes in the SN 19'87A (Dessart & Hillier 2010), Type II-Plateau SNe (Dessart
material properties such as the H ionization front in Type I SNe and & Hllh?r 291 1) and Type ITb/Ib/Ic SNe (Dessart et alz 2011). W? are
changes in composition. By improving the resolution across these also using it to model T}'/pe Ia SNe (Dessart et al., in preparation)
features we improve the accuracy of the global energy constraint. and to extend our modelling of Type Ib/Ic SNe (Dessart et al. 2012).
Through extensive testing we found that, in general, improving With recent advances in hydrodynamic simulations there is in-

the accuracy with which the global energy constraint was satisfied creasing ev1denc.e that SNe are nf)t spher{cally symmetric or hom(.)-
geneous. There is also observational evidence for non-symmetric

ejecta and for mixing in SNe. Ultimately, 3D radiative transfer mod-
els may be needed to accurately model SNe ejecta. However, for
9 The averaging in x occurs because of the definition of the optical depth a variety of reasons, 1D models still have a very important role.
increments. As our own work has shown, 1D models can be used to identify

We have described the procedure we use to undertake time-
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important fundamental physics such as the importance of time de-
pendence in the rate equations for modelling Type II SNe (Dessart
& Hillier 2008) or the prediction that He1 emission lines can be
excited in early spectra of Ib SNe without the need for non-thermal
processes (Dessart et al. 2011). They can also provide fundamental
insights into the abundance and physical structure of ejecta — infor-
mation which is missing for most SN ejecta. Discrepancies between
1D models and observations can also provide crucial insights into
the need for missing physics, and for features which can only be
explained by 3D effects. Since hydrodynamical modelling cannot
yet accurately predict the 3D structure of ejecta, 3D modelling is
necessarily rich in free parameters which can limit crucial insights.
Importantly, 1D models also provide a testbed against which more
complex models can be developed.

The present models are restricted to the case of SN ejecta in
homologous expansion. This is of little consequence for Type Ia
SNe, but restricts modelling for Type II-peculiar objects like SN
1987A to ¢ 2 1d, and to even later times (+ 2 10d) for ‘generic’
Type I SNe of the plateau type. In order to overcome this limitation,
work on a full-relativistic time-dependent solver is in progress.

Another issue which we are addressing is the influence of non-
thermal ionization and excitation. Such processes are believed to
be important for explaining the appearance of He1 lines in Type Ib
SNe (Lucy 1991; Dessart et al. 2011, 2012), and for the production
of H1 lines in the nebular phase of Type II SNe and in SN 1987A
(Xu & McCray 1991; Kozma & Fransson 1998a,b).

In our work we treat the whole ejecta. For Type I SNe, with
their relatively low ejecta masses, this is a reasonable approach.
However, for Type II SNe, with their large ejecta masses, our ap-
proach may be an overkill. The inner layers of these models can be
adequately described using a time-dependent LTE grey model. A
superior approach might be to combine a grey model with CMFGEN
modelling for optical depths T < Ty, (Where 7,,,x may be of the
order of 100), and use the grey solution to provide a lower boundary
condition for cMrGEN. This would reduce the number of depth points
in the cMFGEN models and potentially the computational effort (since
the model computation time-scales as the square of the number of
grid points).

With these tools we will be able to address many important
questions related to SNe, their progenitors and their mechanisms of
explosion. For example, do stellar-evolution and hydrodynamical
models of SNe agree with observations? What progenitors give rise
to what SN types? Do SN IIb/Ib/Ic arise from binary—star evolution?
Does the composition of the outer unburnt ejecta correspond to
predictions of stellar evolutionary models and stellar-atmosphere
calculations of their progenitor class? Do we really understand the
homogeneity of Type Ia SNe and the origin of the width—luminosity
relation? Is there some signature in the spectra of Type Ia SNe that
may distinguish their origin from a single- or double-degenerate
scenario?
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APPENDIX A: y-RAY MONTE CARLO
TRANSPORT FOR SN EJECTA

We have two possibilities for the treatment of the decay energy in
CcMFGEN. We may deposit the entire decay energy locally and neglect
any y-ray transport, as described in Section 5. This approximation
is very good for hundreds of days in Type II SNe because unsta-
ble isotopes are produced explosively within the slower-expanding
higher-density innermost layers of the massive ejecta. This is par-
tially supported by the nebular-phase observations of SN 1987A,
which show the luminosity fading expected for full y-ray trapping
for up to ~300d after the explosion (Arnett et al. 1989). On the
other hand, y-rays were detected as early as day 200, indicating
that some y-rays were escaping at that epoch and, by inference,
that some non-local deposition was also occurring at that epoch.
This, and the subsequent evolution of the y-rays and X-rays from
SN 1987A, provide strong constraints on the mixing that has oc-
curred (e.g. Arnett & Fu 1989; Fu & Arnett 1989; Kumagai et al.
1989; Burrows & van Riper 1995).

However, in the lower mass ejecta that characterize Type I SNe,
either of thermonuclear or core-collapse origin, non-local energy
deposition and even y-ray escape can occur on a much shorter
time-scale (Dessart et al. 2011). In Type Ia SNe, the deflagra-
tion/detonation produces *°Ni at much larger velocities than in
core-collapse SNe, in layers that can be well above the ejecta base
depending on the details of the explosion (Khokhlov 1991). This
property leads to y-ray escape as early as the peak of the light curve
(Hoflich et al. 1992). Hence, to model such SN ejecta, one really
needs to solve for the transport of y-rays produced in the decay of
unstable isotopes.

Since our Monte Carlo code is to provide an energy-deposition
distribution for cMFGEN runs, it uses the same model atoms (i.e.
species and ions) and spatial grid, and assumes homologous ex-
pansion. The code treats only two-step decay chains but as many
as desired, as in cMFGEN. The main focus for now though is on the
decay chain associated with 3°Ni. The decay lifetimes, y-ray line
energies (and probabilities) and positron energies are all taken from
http://www.nndc.bnl.gov/chart/, themselves based on the work of
Huo et al. (1987). For °*Ni and 3°Co decays, these are in close
agreement with the values given by Ambwani & Sutherland (1988)
and Nadyozhin (1994). The total decay energy for each channel,
obtained by summing over all y-ray lines and including positron
energy, is used in CMFGEN when assuming local energy deposition.
For non-local energy deposition, the Monte Carlo code is used
instead to treat all individual contributions. This ensures energy
consistency whether we assume local or non-local deposition.

At present, we do not use the Monte Carlo procedure to select
y-ray lines but instead treat all important y-ray photons associated
with a given decay. This is more time-consuming but produces better
statistics for weaker and/or improbable y-ray lines. In practice, to
reduce the burden on the number of y-ray lines we follow, we treat
only y-ray lines with a probability higher than 1 per cent. This
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corresponds to six y-ray lines for the decay of an *Ni nucleus and
to 15 for °Co. For the 3°Co decay, the missing y-ray lines cause a
<3 per cent deficit in the decay energy, which we compensate by
scaling all 3Co y-ray line energies accordingly.

The Monte Carlo procedure we follow is analogous to that de-
scribed by Ambwani & Sutherland (1988), while the numerical
approach closely follows Hillier (1991). Although our SN models
assume spherical symmetry, our calculations are performed on a
3D spatial grid. In the Monte Carlo technique, one has first to build
probability functions for all important processes. For a given event
described by the function f of a variable x over the interval [xp,,
Xmax], We can generate x from

Xmin Xmin

g= ] f@dx / " @ dr, (A1)

where ¢ is a random number uniformly distributed between 0 and
1 (Hillier 1991). One can also bias the sampling of f(x) by a user-
specified function b(x) so that x is drawn from

q= / D)0 dy / / bW f@ dx, (A2)

and that decay is then given a weight of 1/b(x).

‘We thus build probability distributions to describe the total num-
ber of decays, the relative number associated with each two-step
decay chain considered, the relative number associated with each
nucleus in each chain, and finally the radial distributions of such
decays.

For the simulation of y-ray spectra, it is advantageous to bias
the sampling of decaying nuclei to favour emission from the outer
ejecta regions and thus enhance the statistics (reduce the noise) of
the emergent y-ray spectrum. This can help at early times when
the bulk of unstable isotopes are located at large optical depths
so that a very small fraction of y-rays manage to escape. When
biasing y-ray emission for escape, we use the bias function b(r) =
exp (—t(r)), where 7(r) = f;’o k() p(r') dr'. For simplicity, we
use a fixed mass-absorption coefficient k =0.03cm? g~! (Kozma
& Fransson 1992; this value does not need to be accurate). The
associated energies for this decay at r are then weighted by 1/b(r).
In practice, this option is rarely used. Indeed, we are interested
in the energy fraction that is deposited, not that which escapes.
Furthermore, the eventual detection of y-rays from SNe will most
likely occur for an extragalactic event when the bulk of the released
energy escapes as the ejecta become transparent to y -rays — biasing
emission is no longer needed at such times.

Using a series of random numbers g, we select the decay chain, the
nucleus that decays and the decay location in spherical coordinates
(r, 0, @). r is selected according to equation (A1) with x = r and
f(x) = 47rr’n, where 7 is the emissivity. The angles are selected
using

cosd =2g—1 and ¢ =712qg—1),

and a similar procedure is used to determine the original orientation
of y-ray emission.

We then proceed to transport all y-ray photons associated with
that decay (note that we neglect the expansion of the ejecta over the
life of such y-rays — the expanding ejecta appears as frozen to those
y-rays). If the decay also produces positrons, these are deposited
locally as heat. The location of the next scattering/absorption is con-
ditioned by the opacity. We consider the two processes of Compton
scattering and photoelectric absorption (we neglect the opacity as-
sociated with pair production) and adopt the analytical formulae

of Kasen et al. (2006). Given an orientation we compute the total
optical depth along the ray to the outer boundary of the ejecta. We
assume a hollow core for rays that cross the inner boundary of the
ejecta. Using another random number ¢, the location of the next
scattering/absorption is at an optical depth T given by ¢ = 1 —
exp (—t)or T = —log (¢ — 1). In calculating the optical depths, we
account for Doppler effects (redshifts) associated with expansion
and include both scattering and absorption opacities. If 7 is greater
than the maximum optical depth along the ray in the selected direc-
tion, the y-ray photon escapes. Otherwise, we step along the ray to
find the new location, change the photon energy to the scatterer’s
frame and generate another random number to determine whether
the photon is absorbed or scattered at that location. If the latter case
is drawn, a new direction of scattering is sampled from the differ-
ential cross-section for Compton scattering and the new energy of
the photon is computed (the energy loss in the scattering is then
deposited locally).

In our calculations, we typically use 100 000 decays, which cor-
respond to about 10 times as many y-ray photons depending on the
post-explosion time (i.e. whether it is primarily *°Ni or **Co nuclei
that decay). The agreement between the local (computed analyti-
cally) and non-local (computed numerically with the Monte Carlo
code) energy deposition profiles at very early times agrees to within
a fraction of a per cent in most regions. The two can depart in re-
gions where the original *°Ni mass fraction is very low since too
few decays will be triggered in those regions. Since we are mostly
concerned with the bulk of the energy that is effectively deposited
(and in appreciable amounts to influence the gas properties), we are
confident that the (originally) *Ni-rich regions are well sampled
and the actual distribution profile is accurately determined.

We illustrate some interesting observable properties produced by
such transport calculations. In Fig. A1, we illustrate the evolution of
the total, deposited and escaping decay energy from ‘representative’
SN Ia (the model with 0.49 M of *°*Ni of Kasen & Woosley 2007)
and IIP (the model s15e12 from Dessart & Hillier 2011) models.
In the Type IIP model, the larger mass, the slower expansion and
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Figure A1. Bolometric y-ray light curve from 210d until 1500d after the
explosion for an SN Ia model (the model from Kasen & Woosley (2007)
with 0.49 M@ of %Ni initially) and an SN IIP model (the model s15e12
from Dessart & Hillier 2011, endowed with 0.087 M of SONi initially). We
show the evolution of the total decay energy (solid), the total decay energy
deposited in the ejecta (dotted) and the escaping y -ray energy (dashed). The
orange line traces the radioactive decay power of 1 M of S6Ni produced
initially in an explosion.
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Figure A2. y-ray spectra for the SN IIP (black) and the SN Ia (red) models
shown in Fig. A1l at post-explosion times of 60 and 700d. At such times,
one sees primarily the y-ray transitions associated with >°Co decay. For the
calculations we assumed an SN distance of 10 Mpc.
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the deeper location of *Ni produced by the explosion lead to a
much delayed emergence of y-rays at a few hundred days after the
explosion. In contrast, the SN Ia model lets y-rays start to escape
as early as two weeks after the explosion. In each case, we illustrate
(Fig. A2) the y-ray spectrum one would observe at an epoch when
y-ray escape becomes strong. Because of the relatively short half-
life of *°Ni nuclei, the y-ray lines stem primarily from the °Co
nuclei decay.

We do not treat time dependence in the Monte Carlo code. This
is a reasonable approximation since the light-travel time is small
compared with the flow time, and because y-rays do not diffuse.
As discussed by Swartz, Sutherland & Harkness (1995) a y-ray
deposits half if its energy, on average, per scattering, and hence after
a few scatterings most of the y-ray energy has been deposited.
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