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Hydrogen molecules in a superstrong magnetic field: Excitation levels
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We study the energy levels of;Hnolecules in a superstrong magnetic fieBix 10'? G), typically found on
the surfaces of neutron stars. The interatomic interaction potentials are calculated by a Hartree-Fock method
with multiconfigurations assuming electrons are in the ground Landau state. Both the aligned configurations
and arbitrary orientations of the molecular axis with respect to the magnetic-field axis are considered. Different
types of molecular excitations are then studied: electronic excitations, aligiedg the magnetic axis
vibrational excitations, and transverse vibrational excitatimsonstrained rotation of the molecular axis
around the magnetic-field lineSimilar results for the molecular ion,H are also obtained and compared with
previous variational calculations. Both numerical results and analytical fitting formulas are given for a wide
range of field strengths. In contrast to the zero-field case, it is found that the transverse vibrational excitation
energies can be larger than the aligned vibration excitation, and they both can be comparable to or larger than
the electronic excitations. F@&=B,,;;=4.23x 10" G, the Landau energy of the proton is appreciable and
there is some controversy regarding the dissociation energy, ofWWé show that H is bound even foB
>B,,i; and that neither proton has a Landau excitation in the ground molecular state.

PACS numbgs): 32.60+i, 97.10.Ld, 31.15.Ar, 97.60.Jd

I. INTRODUCTION whereB,, is the magnetic-field strength in units of @, is
much larger than the typical Coulomb energy. In the direc-
Since the pioneering work of Schiff and Snydé&t, espe- tion perpendicular to the field, the electrons are confined to
cially during the last 20 years, there has been considerabl@ove on cylindrical Landau orbitals around a nucleus. The
interest in the properties of matter in a strong magnetic fieldorbitals have radii
While the early studief2] were mainly motivated by the fact R
that high magnetic-field conditions can be mimicked in some pm=(2m+1)*%p, m=0,1,2,..., (1.2
semiconductors where a small effective mass and a large . )
dielectric constant reduce the electric force relative to thevherep is the cyclotron radius
magnetic force, the recent interest in this problem has been 2
motivated by the huge magnetic fietd10'? G already dis-  ~ _ (@) —a
covered in many neutron stars and the tentative suggestidpﬁ eB 0
for fields as strong as 19 G. The surface layer of these
neutron stars then consists of highly magnetized matter. UriHereay=7%2/(mec?) is the Bohr radius an8, is the atomic
derstanding the physical properties of atoms, moleculaunit for the magnetic-field strength,
chains, and condensed matter in fields of such extreme mag-

BO 1/2
E) =2.57x107 B }'? cm. (1.3

. ; 2,3
nitude (see Ref[3] for an early general review arjd] for a _mee'c B
recent text on atoms in strong magnetic fi¢ldsimportant Bo= %3 =2.35<10°G, b= 5_0_425512- (1.4

for interpreting the radiation from the neutron stars that may
be observed in the present and future x-ray satelléeg.,  Throughout this paper we consider strong fields in the sense
[5]), and therefore provides important information about theof b>1, so that the Coulomb forces act as a perturbation to
internal structure of neutron stars. the magnetic forces on the electrons, and the electrons are
In superstrong magnetic fields the structure of atoms andonfined to the ground Landau levédo-called “adiabatic
condensed matter is dramatically changed by the fact that thgoproximation”[1]). Because of this extreme confinement of
magnetic force on an electron is stronger than the Coulomblectrons in the transverse direction, the Coulomb force be-
force it experiences, i.e., the electron cyclotron endthg  comes much more effective for binding electrons in the par-
Landau energy level spacing allel direction, therefore giving greatly increased binding en-
ergy. The atom has a cigarlike structure. Moreover, it is
possible for these elongated atoms to form molecular chains

_ eB _ by covalent bonding along the field directip®,6].
hwe=t mec_ll'SB12 keV, (.1 ySignificant effortg havg been devoted to the theoretical
study of atoms in a superstrong magnetic field10'? G)
[4]. The methods that have been employed include varia-
“Electronic address: dong@tapir.caltech.edu tional calculations(e.g.,[7]), Thomas-Fermi-type statistical
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models [8], density functional theorn{9], and the self- istic treatment of bound states is valid for two reasdinshe
consistent Hartree-Fock methptD—12, which we consider energy of a relativistic free electron

to be the more theoretically justified and reliable method.

Accurate calculations of the energy levels of the H atom in E=[c?p2+m2c*(1+2n,B/B,e)) Y2 (1.6)
magnetic fields of arbitrary strength have also been per-

formed[13]. By contrast, there are only limited studies on
molecules in superstrong magnetic field; nearly all of thes
focus on the molecular ion H ( [14-17 and references
therein. As H," is unstable against forming, understand-
ing the physical properties of a,Hmolecule is of greater

practical interest, since Hs likely to exist in the atmosphere theory is the same as in the nonrelativistic the@y we see

of sufficiently cool neutron stafs8,19. f ~
- rom the fact thatp is independent of magsTherefore, as
We have recently calculated the ground-state binding en- 2y < . .
ergies of different forms of hydrogefH. H-, Hy*, Hy,, long asEg/(m.c“)<<1, whereEg is the binding energy of

; S the bound state, the relativistic effect remains a small correc-
Hs, ..., H.) in a strong magnetic fiel®=10 G ([6],

hereafter referred to as paper In particular, reliable elec- tion [23],

tronic di i f atinolecule i i field The paper is organized as follows. In Sec. Il we consider
ronic dissociation energy of a;rinolecule In magnetic neld 0 general features and approximate scaling relations for
of such magnitude was obtained. In this paper, we extend o

. . N Yarious excitation levels. Section Il contains a detailed de-
study to consider various excitation levels of the molecule.

) scription of our method for calculating the interatomic inter-
In the zero-field case, to study the molecular spectra, on P g

" the Born-O hei imation t Sction potential. The numerical results and fitting formulas
usually uses the born-ppenneimer approXimation 0 Sepgg, . yna molecular excitation levels are presented in Sec. IV.

rate the motion of the ions from that of the electrons. Such e study the electronic structure of the molecule in e
procedure is valid if the elgctronlc energy-level spacings arg B, regime and consider the effects of finite proton mass
large compared to the typical energy-level spacings assochy, the energies in Sec. V. Our general conclusion is pre-

ated with the ion motion. In a strong magnetic field, how'sented in Sec. VI. Appendix A summarizes some useful

ever, the separation of motion becomes much more Compllﬁwathematical relations for the Coulomb integrals of Landau

Cﬁ;e”d’ g‘éef?nf"; the Z?Id'cr(())gr]]enrﬁ;@r%;?f:el\lﬂdorteﬁ(;leerﬁgrs W?e fEnctions, and in Appendix B we discuss a refined method
S S€€, | superstrong gnetic Tield, gy-leve r calculating the electronic energy of,H for general ori-

spacings associated with the vibrations of t.he ions can b ntation of the molecular axis.

comparable to or even larger than the spacings of the elec-

tronic excitations. In this paper, we will use the standard

Born-Oppenheimer approximation and focus on calculating 1l. QUALITATIVE DISCUSSION AND APPROXIMATE
the interatomic interaction potential for fixed ion positions SCALING RELATIONS FOR EXCITATION ENERGIES
(Sec. Il)). We then obtain the molecular excitation levels
based on this potential cury&ec. 1V). As in the case of a

neutral atom[20], it is convenient to define a critical field
strength by equating the cyclotron energy of the proto
fiw,=h(eB/myc) to the typical electronic excitation energy
(~Inb in atomic unitg, i.e.,

wherep, is the linear momentum along the field axis, is

%he quantum number for the Landau excitations, reduces to
E=m?+ pﬁ/(Zme) as long as the electron remains in the
ground Landau level and nonrelativistic in thedirection;

(i) the shape of the Landau wave function in the relativistic

In a superstrong magnetic field satisfyihg-1, the spec-
tra of a single H atom can be specified by two quantum
numbers n,v), wherem measures the mean transverse dis-
r%ance[Eq. (1.2)] of the electron to the proton, while is the
number of nodes of the electrorgsvave function(along the
field direction. The wave function of theng,v) state in cy-
m lindrical coordinates g, ¢,z) is given by
Berit= — INbyiy = 1.80x 10%;
Me (1 5) q)mV:Wm(rJ_)me(Z)v (21)

Berit=bcritBo=4.23x 10" G. whereW,, is the ground-state Landau wave function

We shall give quantitative results for the reginBg<<B 1 p "
<B,,i in Secs. -1V, using the standard Born-Oppenheimer Win(r 1) =Wn(p,¢)= ?(ﬁ)
procedure. Rigorous calculations for the molecule when pNemm: i p 2.2
B=B,,, taking account of the quantum mechanics of the '

proton motion, are difficult. Nevertheless, in Sec. V we shall . r
describe an approximate solution to the four-body problemThe states withv#0 resemble a zero-field hydrogen atom

of the H, molecule in theB>B,,;; regime, where the effects with small binding energyE,|=1/(2v*) [24] and we shall

of finite proton mass on the electronic states and the energié]g(())StrI]3(/]| fot(; l:z 08 (t)he t‘ﬂghtl_y bouanndd sLtaLefstr\]/\é M;thﬁ]'.zcor ;hee
of the molecule are strong, and we give a rigorous lowedround s ( ’.)’ sizés z ; Ic wave
limit to the ground-state dissociation energy. function perpendicular and parallel to the field and the bind-

Throughout this paper, we shall use nonrelativistic quan‘"9 energy|E,| (in atomic unitg are given by
tum mechanics, even for extremely strong magnetic field, 1 1
B=B,. = (hc/e?)?By=4.414<10"® G (note that B, is A = _ 2. =
close toB,,;; only by coincidencg at which the transverse Li~p pT2’ L2 [’ |Eq[=0.18%  I=Inb.
motion of the electron becomes relativistic. The nonrelativ- (2.3

e—pzléfpze—iqu_
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TABLE I. Energy levelsE,(m) (in eV) of a hydrogen atom in a superstrong magnetic field. The levels are
specified by the quantum number, while the longitudinal node=0. HereB,,=B/(10" G).

Blz Ea(o) Ea(l) Ea(z) Ea(3) Ea(4) Ea(5)
0.1 —76.4 —525 —43.3 —38.0 —34.4 —31.8
0.5 —130.2 —-92.8 —-77.8 —69.0 —63.0 —58.6

1 —161.5 —116.9 —98.7 —88.0 —80.6 —-751

2 —198.5 —145.8 —124.1 —111.2 —102.2 —95.5

5 —257.1 —192.6 —165.5 —149.2 —137.8 —129.2
10 —309.6 —235.1 —2035 —184.3 —170.9 —160.7

For the tightly bound excited statem(0) we have similar to this electronic state of the molecule as theakly bound
relations but withp replaced by[(2m+1)/b]¥? and| re-  statg and to the states formed by two electrons in the0

placed byl ,=In[b/(2m+1)], so that orbitals as thdightly bound statesAs we will see below, as
long asl>1, the weakly bound state only constitutes an ex-
E.(m)=-0.162,. (2.4  cited energy level of the molecufe.

We now consider various molecular excitations and derive
Recall that in atomic units, mass is in units of the electronapproximate scaling relations for the excitation energies.
massm,, energy is expressed in unitsef/a,= 2Ry, length
is in units of Bohr radius, and the units for magnetic field

is By [Eq. (1.4)]. The numerical factor 0.16 in Eq$2.3) A. Electronic excitations

and (2.4) is an approximate value fdB,,=1. For conve- The electronic excitations of H are similar to those of
nience, accurate numerical results t65(m) are listed in  the H atom, namely the electron can occupy differaritan-
Table I1 dau orbitals. Thusn=0 is the ground staten=1,2, ... are

In a superstrong magnetic field, the mechanism of formthe excited statealthough they are not necessarily bound
ing molecules is quite different from the zero-field céga-  relative to the free atom in the ground sdate
per 1,[3]). The spins of the electrons of the atoms in a strong There are two types of electronic excitations ig.Hi)
magnetic field are all aligned antiparallel to the magneticThe electrons can occupy different orbitals other than the
field, and therefore two atoms in their ground states do noground state rf;,m,)=(0,1), giving rise to the tightly
easily bind together according to the exclusion principle.bound (v=0) electronic excitations. For example, the first
Thus two H atoms, both in them=0 ground state, do not excited level is (0,2), the second excited level is (0,3), etc.
form a tightly bound molecule. Instead, one H atom has to b@he number of singlen-excitation statesrf; ,m,)=(0,m,)
excited to them=1 state. The two H atoms, one in the which are bound relative to two isolated H atoms in the
ground state fi=0), another in then=1 state, then form ground state is expected to increase as the magnetic field
the ground state of atmnolecule by covalent bonding. Since increases. Doublen excitations are also possible, but as we
the “activation energy” for exciting an electron in the H shall see, they are bound only when the magnetic-field
atom from Landau orbitain to (m+1) is small[see Eq. strength is much higher than $0G. The energy spacing
(2.4)], the resulting molecule is stable. The interatomic sepabetween the two adjacent electronic statesmj0,and
ration Z, and the dissociation enerdy of the H, molecule  (0m-+1) is
scale approximately as
2m+3

2m+1

| |2 AEm"‘| In

3 &
Zo=éL,~ 7, DWZ_ONE’ (2.9

. (2.6

Thus asm increases, the energy spacing decreasgsThe
molecule is formed by two electrons in the(v) = (0,0) and
(0,1) orbitals. The dissociation energy of this weakly bound
state is of order a Rydberg, and does not depend sensitively
gn the magnetic-field strength. Note that for relatively small
magnetic field B,,=0.2), the weakly bound state actually
has lower energy than the tightly bound stafese Sec. IV

where the dimensionless factéidecreases very slowly with
increasingB [e.g., £&=2.0 for B;,=0.1 and ¢=0.75 for
B,,=100; see Table | of paper | and our E§.2)].

Another mechanism of forming a,Hnolecule in a super-
strong magnetic field is to let both electrons occupy the sam
m=0 Landau state, while one of them occupies the0
orbital and another the=1 orbital. This costs no “activa-
tion energy.” However, the resulting molecule tends to have

small dissociation energy, of order a Rydberg. We shall refer , o
In several recent papef&5] on the molecular binding in strong

magnetic field, Korolev and Liberman failed to identify the tightly
L bound states. Also, their variational calculation of the weakly bound
A more accurate fitting formula for the ground state binding en-state significantly underestimates the binding energy because it ne-
ergy of a H atom igE,|=0.16Al7, with glects the overlapping of the electron wave functions. As a result,
1+1.36< 107 2[In(1000b)]1?>®  if b<10® their claim that hydrogenlike gas in a strong magnetic field can
=11+1.07x10 {In(b/1000]*6  if b=103. form Bose-Einstein condensate is incorrésgte alsd26,27).
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A), i.e.,b=10" is required for the “strong field” regime to is still retained. To study the transverse vibration spectrum,
apply fully. we need to estimate the order of magnitude of the excess
potential SU(R,)=U(Zy,R,) —U(Z,,0).
B. Aligned vibrations As mentioned before, the factbrin the expression/Z,
. L . for the dissociation energ® [Eq. (2.5] comes from a Cou-

In the Born-Oppenhe|mer approximation, the_ motion pflomb integral over the electron charge distribution. This in-
the two protons is goverrjed by the interatomic ,pOtent"?‘ltegral is of the form In(,/p), wherep=b~2is the typical
L.J(Z’Ri)’ i.e., the electronic energy Whe_n the.rela_'uve POSI5i7e of the electron wave function perpendicular to the field
tions of the protons are kept_atalong the field dlrgctlon a_nd for R, =0. When the protons are displaced Ry from the
R, perpendlc_:ular fo It. We f_|rst consider the a"gf?‘?d .V'bra'electron distribution axis, the Coulomb integral can be ap-
tional e?<C|tat|ons for. oscillations of about the gqunlbrlum proximately obtained by replacing with (132+Rf)1/2- our
separatiorZ,. For this purpose we need to estimate the X order of magnitude expression ot is then
cess potentiabU (6Z)=U(Zy+ 62,0)—U(Z,,0).

SinceZ, is the equilibrium position, the sum of the first 1
order terms inéZ, coming from proton-proton, electron- 5U(RL)~iln(1+;3‘2Rf)~§‘1 lIn(1+bR?). (2.9
electron, proton-electron Coulomb energies, and quantum 0
mechanical electron kinetic energy, must cancel. Thus we
have U= (5Z)? for small 5Z. Consider various contribu- Equation(2.9) holds for anyR, <Z,~ ¢l ~1, but it can be
tions to the energy of the molecule: The proton-proton interapproximated by a quadratic expression for the small-
action is 1Z (in atomic unitg without a logarithmic factor; amplitude case OR, =p=b~2<Z,. In this approximation
but the dominant contribution is the proton-electron Cou-we have5U~§*1Ibe. The energy quanta for the small-
lomb energy~1/Z, where the logarithmic factde>1 comes amplitude transverse vibration is then
from the Coulomb integral over the “cigar-shaped” electron
distribution. Bothl andZ~* change aZ,— Z,+ 6Z, but the
largest change comes from the quadratic term
8(Z~Y~(62)?1Z3. Thus the excess potential is of order

fiw, o~ (& b)Y 12 (2.10

(52)° where the subscript O indicates that we are at the moment

34 2 neglecting the magnetic forces on the protons which, in the

ou(6z)~| zg ~(£719(02)%. 2.7) absence of Coulomb forces, lead to the cyclotron motions of
the protons. Note thaiw, o in Eq. (2.10 increases ab'/?

In atomic (electron units the reduced mass of the proton with increasing field strength, faster than the logarithmic be-
pair in H, is u=m,/(2m,), wherem, and m. are proton havior ofiw andD, but slower than the linear behavior of
and electron mass¢for HD the factor 1/2 is replaced by the cyclotron energy. For sufficiently large>1 we have
2/3). For small-amplitude oscillations in the potential of Eq.% w, ¢>% . However, the quadratic harmonic oscillator ap-
(2.7), we obtain a harmonic oscillation spectrum with exci- proximation is valid only forR? up to ~p?=b~1, i.e., for

tation energy quantaw| given by 8U only up todUp,~ £ 1, which is less than the maximum
Cama 1 possible potentiah U ,,~D~¢& 2. The number of har-
ho~§ 710 (2.8)  monic oscillation levels in the quadratic regime is then

for a molecule in the ground electronic state. The scaling 12 "

with B of e is thus almost the same as the dissociation I 6Uno ~§1/2(M_|) ~<bcrit) (2.12
energyD in Eqg. (2.5. The number of aligned vibrational Lho " 7w, o b b ’ '
levels is Njma~D/fwy~(£n) Y2 where ¢ decreases even

more slowly with increasing field strength than' does.

The degeneracy of the, th harmonic oscillation level is
o n, . Forn, ,,>1, the statistical weight of all harmonic os-
C. Transverse vibrations cillation levels is of orderif, no)2. If we neglect the differ-
The strong magnetic field breaks the rotational symmetryence betweeg and unity(and betweenw andm,/m), we
for the molecular axis and, instead of rotations of the field-see thah, ,, would be less than unity whel=B;; , where
free case we have oscillations in the two-dimensional plan®.,;; is defined in Eq(1.5).
of the R, vector® The degeneracy in the azimuthal angle We now consider large amplitude transverse oscillations
assuming that the magnetic force on the proton can be ne-
glected. For a transverse oscillation wave function where the
SStrictly speaking, the transverse vibration and the aligned vibramaximum valueRpax of R, (the outer classical turning
tion are coupled, and they are governed by the two-dimensiongpoint) satisfiesp=Ry,,=Z,, we must use the logarithmic
potentialU(Z,R,). Since the transverse vibrational excitation en- form of Eq.(2.9) for the potentialdU (R, ). The energy level
ergy is larger than the aligned vibrational excitation, the time scaléspacing decreases with increasiRg,,x. We can calculate
for the protons to adjust the# positions is much longer than the the number of nodes, (R, Of the wave function as a
time scale for oscillations withR, #0 and we can consider trans- function of R, from a WKB integral of the wave number
verse vibrations with fixed values & However, since’Z<Z, an  k(R,) overdR, . Since we only need an order of magnitude
approximate separation is possible wiZhreplaced byZ, for the  estimate, we replace the integral BYR 1) Rmax, Where
transverse vibrations. k(R,)~[xdU(R,)]¥2 Using Eq.(2.9 this gives
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m(Rmax)N[Mf_”|n(1+be2na>)]1/2Rmax- (2.12 Hgz=0. With the electron wave function given by_
D o(r) =W, (r ) fo(2), we average over the transverse di-

The maximum number of nodes . can be obtained by rection and obtain a one-dimensional Salinger equation

substitutingZy~ &/1 for R,4. Neglecting Ih compared with

| itself, we haven, . (£u)¥2 independent of field h?  d? e .

strength and the same order of magnitud@@s. N m Efmo_ ?Vm(z)fmo:smome' 3.4
Because of the azimuthal symmetry in the two- €

dimensionaR, plane, the total statistical weight of the trans- Here the averaged potential is given by

verse excitation levels is- nfmax~ Ep. If b>bgir, Npoin

Eq. (2.11) would be much less than unity and the zero-point Y, (Z):f o2 W, (1,2

energye, ,,, i.e., the spacing between the lowest levels, is m LITEmTL

not given by Eq.(2.10. Formally, one could use Ed@2.9)

and estimate the zero-point vibration amplitude as the value —v (z— <

of Ryax for which Eq.(2.12 givesn, =1. This would give a m 2

zero-point energy which is less thén but this expression is

incorrect, since the neglect of the magnetic forces on th&here

protons is unjustified wheB>B,,;; . The cyclotron energy 1

of the proton isfw,=%eB/(m,c)=(me/m,)b (a.u). The EJ 2 1

ratio w,/w, ¢ is of order (ome/plmp)m:(b/pbcm)l’2 (omit- V(D)= | 07, [Win(r)| r’ 3.6

ting the factor¢). Whenfi o, is much larger thah o, ¢, the

magnetic forces on the protons are important. We will returdVhich can be evaluated numericallyaper ). In Egs.(3.4)—
to this subtle issue in Sec. V. (3.6) and henceforth we employ as the length unit in all

wave functions and average potentidkxcept otherwise

noted. We solve the eigenvalug, by integrating Eq(3.4)

numerically fromz=+« to z=0 subject to appropriate

boundary conditiongpaper ). The total electronic energy is
In the Born-Oppenheimer approximation, the interatomicthen given by

potential U(Z,R,) is given by the total electronic energy

E(Z,R,) of the system when the relative positions of the

protons areZ along the field direction an®, perpendicular

to it. OnceE(Z,R,) is obtained, the electronic equilibrium

state can also be determined by locating the minimum of th&learly, m=0 is the ground state, while=1,2, ... are the
E(Z,0) curve. excited electronic states. We also note that the excited state

of H; in which the electron occupies the>0 orbital is not
A. The aligned caseR, =0 bound relative to the free atom in the ground state.

1 1
_+_
A Ip

Z
+Vi, Z+§ , (3.5

IIl. METHODS FOR CALCULATING THE INTERATOMIC
POTENTIAL

e2
EZ0=emot 5 (3.7

I. It can also be used to obtain the energy curves for the
excited electronic states. Here we summarize and extend our 70" He, we use the Hartree-FodtiF) method to take
method to take account of “configuration interaction” in accpunt of the mteracpon between the electrons. The Hamil-
H, more accurately. tonian of the system is
2 2
1. H,* molecular ion H:Ho(1)+Ho(2)+—+%,
For H,*, the Hamiltonian for the electron is f12

(3.8

whereH, is given by Eq.(3.1) andr,=|r;—r,|. For the

Ho=Hp— =— —5— —— —, (3.0) (my,my) electronic state i, #my), the two basis wave

2me 9z° rp g functions(orbitalg for the electrons are
wherer , andrg are the distances between the electron and D, o(N) =W, (r ) fmo(2), (3.9
the two fixed protons, located at = Z/2 along thez axis. ' ! !
In Eq. (3.1, Hg is the magnetic part of the Hamiltonian D o(1) = Wi (1) Fn 0(2). (3.10

2
HB:Z_ P, + EA + B-S, (3.2 The two-electron wave function is then given by
Me c meC

: . 1
where A=BXr/2 andS is the electron spin operator. Note W(r;,ry)=—[® o(r1)Pm o(r2)—Pm o(r2)Pmo(r)].
that for electrons in the ground Landau level, we have J2o M 2 ' 2 @10

31

Hg[ Win(r ) x(1)]=0, 3.3 , -
After averaging over the transverse direction, the standard
wherey(]) is the electron spinor with the spin aligned in the HF equations reduce to a set of one-dimensional equations
—z direction (antiparallel to the fiel[d Thus we can set for fmlO andfmzoz
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#2 g2 e?. e? The Hartree-Fock method discussed above can be used to
- m a2~ ? m(2) + ?Km(z)_sm fmo(2) obtain accurately the electronic energy near the equilibrium
© separatiorZ,. However, as noted in paper |, Zsincreases,
e? the resultingE(Z,0) becomes less reliable. Moreover, as
= ;Jm(z), m=m,my, (312 7z ., E(z,0) doesnotapproach the sum of the energies of

two isolated atoms, one in the;th state, another in the
where V,, is given by Eq.(3.5); the direct and exchange M:th state. The reason is that Asincreases, a second con-
potentialsk andJ are given by figuration of electron orbitals becomes more and more de-
generate with the first configuration in E@.11), and there
) o , must be mixing of these two different configurations. This
Kml(z):f dZ'fm,0(2' ) Dmym,(z—2"), (313  “configuration interaction” also occurs in the zero-field, H
molecule[29]. Here the electron configuration that mixes
with V.=V [Eg.(3.1D] is
In (D= To(2) [ 021,02 (2 (22, )

Gl wyry,ry)= SO P12 = (1) Pra(r)],
and similarly forKy, andJp,. In Egs.(3.13 and (3.14, (3.20
Dm,m, and Em,m, are the direct and exchange interaction

kernels defined by which is the same a¥ ; exceptr=1 in the electron orbitals.

Both ¥, and¥, have the same symmetry with respect to the
Hamiltonian in Eq.(3.8): the total angular momentum along

Dm,m,(Z1—22) = f d?r 1, Ao, (Wi (F10) %[ Wi, (r20)[? thez axis isM ,= 1, the total electron spin i§lg,= — 1, and
both ¥, and ¥, are even with respect to the operation
1 ri——r;. As a result, the matrix eleme(W ,|H|¥,) is non-
Xf_lz' (3.19 Zero.

To take account of the mixing of these two configurations,
we need to extend the standard HF method involving one
Emlmz(zl—zz)zf dzrllderLWml(rll)sz(ra) configuration toHF with multiconfigurationgHFMC). This
is done as follows. We calculate the energies and wave func-
1 tions for both¥'; and ¥, using the HF equatiori€q. (3.12)
X\/\/ﬁql(fzﬂ\/\/:qz(ru)r—lz- (318 with v=0 andv=1]. The matrix elementsi;; (i,j=1,2) are
then calculatedH ;,=(W¥,|H|¥,) is given by Eq(3.19 and
The functionsDp m (2) and Ep, m (2) are related to the the expression foH 5= (W,|H|W>) is similar. The mixing
Coulomb interaction potentiaf,, [Eq. (3.6)] by matrix element is given by

Hio=(Vq|H|P,)

my +my 1 z
Prund?)= &, Hmmo) GV ﬁ)’ o =%2 | 4202, 20 (22 Tmo(22) a2
M 1 z e2
Emym,(2)= 520 eS(ml'mZ)EVS E) (3.18 XDmlmz(Zl_Zz)_?J dz,dz,f m 0(21) fm,1(21)
where the coefficientsl and e; are given in paper 1. We X tm,0(22) fm 1(22) Em m, (21— Z2). (3.21

solve Eq.(3.12 numerically using a shooting algorith(for
details, see papeyj.lOnce the wave functiof,o(z) and the
eigenvalues o are obtained, the total electronic energy of
the system is calculated via

The total electronic energy in this HFMC scheme is obtained
by solving the secular equation fiéf;—E&;|=0, which
yields, for the lowest energy state,

1 1
E=(W¥[H|¥) E= 5 (HirtHap) — 5[(Hii—Hap)? + 4H3 (3.22
e’ e?
=7 Temotemo~ ?f d2,d2,f m,0(21)*Fm,0(22) In Fig. 1, we show the electronic energy curves of &

B,=1, obtained using our HFMC method. The tightly

e? bound electronic states arem{,m,)=(0,1), (0,2), and
XDmym,(Z1=22) + ?f d2,d2,f m 0(Z1) fmy0(Z2) (0,3). These are the only states for which the minimum in
the energy curves is less than the ener§y2 —323 eV of
X fm,0(Z2) fm,0(Z1) Em m,(Z1— Z2), (3.19  two isolated atoms in the ground state. Notice thaZ ds-

creases, the molecular electronic energy becomes larger than
where the fourth term on the right-hand side represents th2E,, reflecting the fact that, in a superstrong magnetic field,
electron direct interaction{EY"), and the fifth term the forming such a tightly bound molecule requires first activat-
exchange interaction-{ E®*°"). ing one of the atoms to an excited state. HoweverZas
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FIG. 2. The electronic energy curvé$Z,0) of H, molecule at
B=10"2G when the molecular axis is aligned with the magnetic
FIG. 1. The electronic energy curvd¥(Z,0) for the tightly  field axis. The solid line corresponds to the tightly bound state in
bound states of Himolecule aB=10"> G when the molecular axis Which the electrons occupy then(v) =(0,0) and (1,0) orbitals, the
is aligned with the magnetic field axis. The electrons occupy thedashed line corresponds to the weakly bound state in which the
(m,v)=(m,,0) and (n,,0) orbitals (n,# m,). The solid line is for ~ €lectrons occupy the (0,0) and (0,1) orbitals.
the state h;,m,)=(0,1), the short-dashed line for (0,2), the long-
dashed line for (0,3). The dotted line is from the fitting using thean upper limit for the transverse vibrational excitation energy
Morse potentialEq. (4.2)]. The dark solid line corresponds to the quantafw,,. We consider two ansatzes, appropriate for
energy of two isolated H atoms in the ground stalig, 2 — 323 eV. smallR, , and largeR, , respectively.

increases, the energy of then{,m,) state does approach 1. Ansatz A

E.(m;) +EL(m,). Near the equilibrium separation, the en- S
. . : uppose the two protons are located at

ergy obtained using HFMC agrees well with that of the stan- . : :

dard HF(the difference is less than 1%Thus the standard (*R,/2,0=2/2) in a rectangular coordinate system. For

. oo S .sufficiently smallR, , the transverse wave function is ex-
HF is adequate for determining the equilibrium electronic y L

energy of the molecule. However, the HFMC method is cru-peCtEd to be close tV(r, ). Thus we assume the electron

‘o + e o —
cial to obtaining the correct largg behavior of E(Z,0), Ve function in H is given by ®mo(r)=Wm(r1) fmo(2).

therefore the aligned vibrational energy levels of the moI-The equation fof , is the same as E¢3.4), except that the

ecule(Sec. IV B. potential\?m(z) is replaced by
: - ~ Z| R Z| R
3. H, molecule: Weakly bound statém,») =(0,0),(0,1) Vo ZR2) =V |2— E‘?L Vo |2+ > %)
These states can be similarly calculated using the HF

method. Instead of Eq$3.9) and(3.10), the electron orbitals 323
are®y, and®dy;. Figure 2 shows an example of the energy h

curve atB,,=1. Clearly, theE(Z,0) curve of such a state is where

much shallower than those of the tightly bound states dis-

cussed in Sec. lll A 2. In the limit aL— oo, the energy curve Von(z,R /Z)EJ d2r, |Wir(r,)|? 1
approaches B,, i.e., no “activation energy” is needed to mm ST HEM =R, /2|

form a molecule in the weakly bound state.

o 1
=f dqexp( - qu—qIZI)
B. General molecular axis orientation: R, #0 0
Unlike the case of Sec. Il A when the molecular axis gR, 1,
coincides with the magnetic-field direction, where we can X Jo 2 Lm 24 (3.24

obtain the interatomic potenti&(Z,0) with great accuracy,

in the case wh.en 'Fhe molecular a?ds deviates from thE(see Appendix A HereJ, is the Bessel function of zeroth
magnetic-field direction, the electronic energyZ,R,) is order andL, is the Laguerre polynormial of orden [30].
much harder to calculate. This is because the azimuthal SYMVe use a standard quadrature algoriteny.,[31]) to evalu-

metry of the transverse wave function of an electron is bro-ate Eq.(3.24. The Schidinger equation similar to Eq3.4)
ken. Although the electrons still stay in the ground Landau.,, pe solved to determine the eigenvaiyg(Z,R, ) and
level, m in the Landau wave functiow,(r,) [Eg.(2.2)]is B

the total electronic energy is then given by
no longer a good quantum number, and the transverse wave

function of an electron must involve mixing of different 2

states. Nevertheless, we can still obtain a reasonable upper Eno(Z,R)=emo(Z,R,) + ———15
- . A . ol £,y TR 2312
limit for the interatomic potential curvE(Z,R, ), and hence " " (Z2+R))Y?

(3.29
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As noted before, in this general situatian,is not a good the condition for the ansatz to be validRs <1%p, i.e., the
quantum number, but we nevertheless use it to distinguisproton transverse displacement must be smaller than
different electronic states.

In this ansatz, the equations for, Hire also similar to
those in Sec. Il A. We still assume the electron orbitals to be
given by Egs.(3.9 and (3.10. The HF equation$3.12—
(3.14) remain valid except the ion-electron interaction poten- At largeR, , the molecule should become two individual
tial V,(2) is replaced byV,(z,R,/2). The electron- atoms(or atom plus ioh Here we set up a rectangular coor-
electron interaction kernels are unchanged. The totaflinate system so that the two protons are located at
electronic energy is still given by E43.19 with e/Z re-  (0,0,2/2) and R,,0,—Z/2). The electron wave function of
placed bye?/(Z?+R?)2, H, is assumed to b& ,,o(r) =Wpn(r,) fmo(2), i.e., the elec-

We now estimate the regime of validity of this ansatz. Astron cloud is centered on one of the protons. Then the prob-
an example, let us consider the ground electronic state gém is essentially equivalent to calculating how an atom is
H,". In general, the transverse wave function of the electronffected by an external ion. The Schioger equatior(3.4)

:(i n?:tif)l:lzezpeosmon of different Landau ground-state wave applies except that the potentfa]n(z) is replaced by

2. Ansatz B

<1n<rl>=§ ArW(r)), (3.26

z
z+ —‘ ,Rl>, (3.32

V[

~ A
Vr,nm(zaRL):Vm< Z— E
and®(r)=®, (r,)f(z) is the total wave functiorisee also
Appendix B. For simplicity, just consider the first two terms
in the expansion (3.2, i.e., @, (r)=AWy(r,) where the function®/,, and V,,,, are defined in Eqs(3.6)
+ AW, (r,), with |A;|<|A,| for the ground state. Substitut- and(3.24), respectively. The eigenvalue can again be solved
ing ®(r) into the Schrdinger equation and average over and thus the total energy(Z,R,) can be obtained.
r,, we obtain(in atomic unit$ In this ansatz, since the electron wave function is not
symmetric with respect t@— —z, the numerical method
2 . A - used in Secs. Il A and Ill B Isee paper)Ineeds modifica-

5 g2 Vol + A—OVm(Z)f:Sf, (3.27  tion. Here we integrate the equation from bethand — .
The eigenvalue is obtained by matching the solution=-a0
(se€g[31]). We also note that the classical quadrupole formula
for the ion-atom interaction is not applicable here, since we
always consideR, <L, for a bound state.
5 For H,, we choose the two electron orbitals centered on
where Vi is defined similar to Eq.(3.24. Since each of the protons:
[Voil <|Vod and [Voq|<|Vy4, from Egs.(3.27 and (3.28
we haveA;/Ay=Vqo/(V11— Vo). Substituting this into Eq.
(3.27), we have

10|2f \"/()f+A°\7()f f,  (3.29
-5 —V(2)f+ —=Vio(2)f=¢f, .
2 dZ2 11 A, 10

Dy (1) =Wy, (1) 0(2), (3.33
d2 ~ \701\710
_Ed—zzf_VO()f‘l‘ Qll_{/oof_é:f. (329) I
®p (1) =W (1, —R ) o(2)e" BRYZ (339
Comparing with the zeroth order eigenvalué;?) (which
does not take into account the mixjnghe corrected eigen- i8R v
value for the ground state is then given by The extra factore™ ™="¥'* in &, (r) comes from a gauge
transformation, so that the displaced Landau wave function
YRV YRV W,..(r,—R,) is still an eigenstate of the magnetic Hamil-
(0) VoiVio (0) VoiVio 2 . . .
go=gy t| == ) ~¢g —o 0 | - (3.30 tonian with a fixed gauggEq. (3.2)], i.e.,
V11— Voo o T &1
where(- - -) denotes expectation value. Requiring the second _
term to be smaller than the first, we haW,,)?/1 <12, where Hg[ W, (r.— R,)e BRY2y(])]=0. (3.35
we have usede{Y|~12 and|e?)—&{®|~1. Since
Y -1 X NE With this ansatz for the basis wave functions, the HF equa-
{Vov <RL'V_>01 RL<r_§>01 RLp<r_3> tions given in Sec. Il AEq. (3.12] can be applied, except

that V,(z) must be replaced by, (z,R,) given in Eq.

_ i (3.32. Also, the direct and exchange kerngigs.(3.15 and
~ ~R,, (3.3)

L,p (3.16] are replaced by
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(3.36

(3.37

12

The functionﬁmlmz(z,Ri) can be expressed as a sum of theZ=Z.4(R,). We see that this equilibrium position is almost

function V,,,, (see Appendix A
mq+my,

- 1
Dmym(zR)= 2 da(My, M)~ Ves

z R,

V2' V2]
(3.38

thus it can be evaluated using E®.24). For R, >p, the

independent oRy, i.e., Z¢((Ro) =Z¢((0)=2Z,. The curves
E(Zy,R,) with a fixed value ofZ, are calculated using both
ansatzes discussed above. Ror less than a few timeg,
ansatz A yields lower energy, while for larggr , ansatz B
gives the correct behavior for the energy curve, i.e.,
E(Zy,R,)—E, asR, increases. Similar behavior for,td¢an
also be obtained. It is evident from Fig. 2 that the curves

exchange interaction between electrons can be neglectdeZo.R.) are much steeper thaB(Z,Ro). Thus the mol-

since the electron clouds are separated, i.e., we can

Emlmz(ZvRL):O- Therefore, we only need to solve the cor-

responding Hartree equations:

2 d®2 e?. e? .
[— Mt a2 er'nm(Z, R+ ?Km(Z, R)—&m|fmo(2)
:O; m_m1!m2! (339
wherelzm is given by
kml(z,RL)zf dZ'frn,0(2') 2D m (2= 2Ry, (3.40

and similarly forkmz.

In Fig. 3, we show the energy curve for,Hat B;,=1.
The electron is assumed to be in tile=0 state. The elec-

tronic energy curve&(Z,R,) are calculated using ansatz A
with a fixed value oR;, =R,. Each curve has a minimum at
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sggule is tied much more “rigidly” to the magnetic-field line

than along the field axis.

IV. RESULTS FOR THE MOLECULAR EXCITATION
LEVELS

In this section, we present our numerical results for the
excitation levels of H. The results for H* are also included
for completeness and for comparing with previous calcula-
tions (no previous results for Hare availablg

A. Electronic excitations

The equilibrium electronic state is determined by the
minimum in the energy curveE(Z,0) (cf. Fig. 1). For
H,*, the electronic state is characterized by a single quan-
tum numberm. For H,, there are two types of electronic
excitations: the “tightly bound” levels correspond to elec-
trons in the m,v)=(m.,0) and (n,,0) orbitals, and the
“weakly bound” excitation corresponds to
(m,»)=(0,0),(0,1). We have calculated all the electronic
bound states of 5 and H, for 0.1<B;,<10. The results
for H, are summarized in Table Iifor the tightly bound
state$ and Table llI(for the weakly bound statewhile the
results for § are given in Table IV. Here, by “bound” we
mean that the equilibrium electronic energy, of the mol-
ecule is less thak,=E_(0), theenergy of a single atom in
the ground statéfor H,"), or 2E,, the energy of two atoms
(for Hy). Clearly, H, has more electronic excitation levels
than H*. As B increases, the number of bound levels in
H, increases. FoB,,<10, only single-excitation tightly
bound levels, i.e., those wittm; =0, are bound. The double-
excitation levels, such as (1,2) are not bound until the field
strength increases tB,,=50. Excluding the zero-point os-
cillation energy of the proton&ee Sec. Y, the dissociation
energy of the H molecule is given by =2E,—E,,.

We have also calculated the ground-state energy of the

FIG. 3. The electronic energy curves for the ground state ofmolecule in the stronger field regime. FB§,= 10, our nu-

H," atB=10'2G. The light lines show th&(Z,R,) curves with a
fixed R, =R, for Ry=0 (solid line), Ry=p (dotted ling, and

Ro=2p (dashed ling The dark lines show the function
E(Zy,R,) for a fixed value ofZ, given by the equilibrium separa-

merical results can be well fitted to the form

En=—0.09%Inb)%>" (a.u). 4.1

tion of the protons. The solid line is calculated using ansatz A, the A more general fitting formula foB*) is given in Eq.

dotted line using ansatz Bee Sec. Il B.

(5.2.
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TABLE II. The tightly bound energy levels of a Hmolecule in which the electrons occupy the
(m,v)=(my,0) and (n,,0) orbitals m;+m,). HereB;,=B/(10*? G), E, is the ground-state energy of the
H atom,m; ,m, are the quantum numbers specifying the electronic excitatibpss the electronic energy of
the molecule,Z, is the equilibrium interatomic separatiomay is the Bohr radiug D, is defined by
Dn=Ea(m;)+Ea(my) —En(m;,m,), o) is the aligned vibrational energy quanta, @, , is the trans-
verse vibrational energy quantaeglecting the magnetic forces on protpns

B, 2E, (eV) m;,m, E, (eV) Zy (units of ag) D, (eV) fiw) (eV) how, o (eV)
0.1 —152.8 0,1 -161 0.52 31.7 3.0 2.6
0.5 —260.4 0,1 —291 0.30 67.5 7.2 8.7
0,2 —264 0.32 55.7 6.3
1 —-323.0 0,1 —369 0.25 91.0 9.8 14
0,2 —337 0.26 76.5 8.8
0,3 —-323 0.26 73.0 8.3
2 —-397.0 0,1 — 466 0.20 121 13 23
0,2 —425 0.21 103 12
0,3 —408 0.21 98.3 11
0,4 —398 0.22 96.8 11
5 —-514.2 0,1 —623 0.15 173 19 42
0,2 —573 0.16 150 18
0,3 —550 0.16 143 17
0,4 —537 0.16 142 16
0,5 —527 0.17 141 16
0,6 -519 0.17 140 16
10 —-619.2 0,1 —769 0.12 224 25 65
0,2 —-709 0.13 196 23
0,3 —682 0.13 188 22
0,4 — 666 0.14 185 22
0,5 —654 0.14 183 21
0,6 —645 0.14 183 21
0,7 —638 0.14 182 21
0,8 —632 0.14 182 20
0,9 —-627 0.14 182 20
0,10 —-623 0.14 181 20

We note that a8 increases, the energlg,| of the tightly
bound levels of H increases rapidly, while that of the

B. Aligned vibrational excitations

In the standard Born-Oppenheimer approximation, the

weakly bound level does not change appreciably. Foamiltonian describing the relative motion of the protons is
[=Inb>1, the weakly bound state is indeed an excited Stat%imply H,=P%(21)+U(Z,R,), where x is the reduced
of the H, molecule. FoB;,=<0.2, however, we find that t_he mass of the proton pair, and the interatomic interaction po-
weakly bound state actually has lower energy than the tightlyantialU is given by the total electronic ener@Z,R, ), as

bound level (n;,m,)=(0,1). Thus for such relatively small

calculated in Sec. IIl. For the vibrations along thdirection,

magnetic-field strength, the weakly bound state is the actughgre is no magnetic force on the protons, and @dl) is a

ground state of the molecule.

TABLE Ill. The energy of the weakly bound state of, Hn
which the electrons occupy then(v)=(0,0) and (0,1) orbitals.
Here B,,=B/(10'? G), E,, is the energy of the molecule,
D,=|E.|—2|E,| is the dissociation energy of the lev@leglecting
the zero-point oscillation energy of the protprendZ, is the equi-
librium interatomic separationag is the Bohr radius

By, E., (eV) D, (eV) Zy (units ofag)
0.1 —167 14 1.5
0.5 —279 19 1.3
1 —344 21 1.1
2 —421 24 0.99
5 —542 28 0.89
10 —649 30 0.72

good approximation. The aligned vibrations are governed by
the potentiall(Z,0)=E(Z,0), which we can fit to a Morse
potential(e.g.,[28])

U(Z,0=Dn{1-exd—B(Z-Z)}*+En, (4.2
whereg is a fitting parameter, and
Dp=U(x,00—E,,. 4.3

Thus D,=E,(m)—E, for H,", and D,=E,(m,)
+E,(my) — E,, for H, (we consider the tightly bound states
only). The aligned vibrational energy levels are then given
by

2

, (4.4

1) (hep?
nH+§

4D,

En”:ﬁwﬂ n+ >
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TABLE V. Bound-state energy levels of f1. HereB,,=B/(10'? G), E, is the ground-state energy of
a H atomm is the quantum number specifying the electronic excitations of the moldeylis,the electronic
energy of the molecul&, is the equilibrium interatomic separatioa(is the Bohr radius D ,, is defined by
Dm=Ei(m)—En, fiw is the aligned vibrational energy quanta, ahaé, , is the transverse vibrational
energy quantdneglecting the magnetic forces on protpns

B E,(€eV) m E., (eV) Z, (units ofag) D, (eV) fiw| (eV) hw, o (eV)

0.1 —76.4 0 —-99.9 0.62 23.5 2.0 3.1
0.5 —130.2 0 —182 0.35 51.8 4.9 9.8
1 —161.5 0 —232 0.28 70.5 6.6 16
1 —-162 0.40 44.8 4.4
2 —198.5 0 —293 0.23 94.6 9.0 25
1 —207 0.32 61.5 59
5 —257.1 0 —393 0.18 136 13 45
1 —284 0.24 91.1 8.6
10 —309.6 0 —486 0.15 176 17 70
1 —356 0.19 121 12
where the vibrational energy quanta is we obtain it by fittingE(Z,0) to a Morse potential, while
" they obtained it by e\_/qlu_ating the s_econd deriyative of
ho—hp 2D 5 E(Z,0) around the equilibrium separation. Le Guillou and
I o ' Zinn-Justin also considered the effects of nonadiabaticity

(i.e., mixing of different electron Landau levglThis is neg-
The values ofi | andD, for different bound electronic ligible for the field strength of interest in this paper
states and different magnetic-field strength are given in Tablé¢bs>1). The variational calculation of Khersonskii6] gave
Il for H, and in Table IV for H™. In Fig. 1, the numerical somewhat smallefby about 20%) values fob w). This is
E(Z,0) curve is compared with the fitted cur{Eq. (4.2]  due to the inaccuracy in his atomic binding energy.
for the (0,1) state of KHat B;,=1. We see that the fitting is
indeed very good, especially for the bound regibelow the

dark line in Fig. 2. For H,, our results for: w are accurate C. Transverse vibrational excitations
to within about 5%. The Morse potential fits tf&Z,0) Neglecting the magnetic forces on the protons, the trans-
curves of H less well, but the resultinw is still accurate  verse oscillations of the molecule are governed by the poten-
to within about 10%. tial U(Zy,R,)=E(Zy,R,). Our calculation of this function

As discussed in Sec. Wiw\b[Cf- Eqg. (2.8)] is approxi- is less accurate than the aligned case, and yields only an

mately proportional to (In)?« %2 times a slowly increasing upper limitto the exact potential. For small-amplitude oscil-
function of B. Our numerical results confirm this approxi- lation (see Sec. )| we fit this potential to a harmonic form
mate 5s/<2:alir1<732 relation. A better empirical scaling i, L
o =
(,322)18'; We. h;tl/gs for the (n;,m,)=(0,1) state of H 5U(RL):U(201RL)_U(2010)=EﬂwioRi- 4.9
fiw;=0.13Inb)%%, "2 (' a.u)=0.12Inb)5? (eV) (H,).
(4.6 The transverse vibrational motion of the protons is therefore
N described by a two-dimensional harmonic oscillator. The nu-
For the ground statenf{=0) of H,", we have merical values for the transverse vibrational energy quanta
_ are tabulated in Table I(for H,) and in Table IV (for
fiw)=0.085Inb)%, Y2 (a.u) H,"). Only the results for the ground electronic states are
=0.076Inb)%?2 (eV) (H,"). (470  given.
Note thatfiw,q is larger thanfiw| for B;,=1. Also,
Both Egs. (4.6) and (4.7) are accurate to within about 7w, andfw| can be comparable or even larger than the
10%. These fitting expressions are indeed very satisfactorglectronic excitation energy spacing€,,,. This is in con-
considering the approximation introduced when we use thérast with the zero-field cases, where one Wd5,>% w,y,
Morse potential to fit the numeric&(Z,0) curves. >fw, o . Although the actual values dfw, o may be some-
There is no previous reliable calculation for, Hnol-  what smaller than our results, the qualitative features re-
ecules. For H*, our results for the ground-state electronic vealed in our calculations are expected to be valid in general.
energy, interatomic spacing, and aligned vibrational energy The  discussion in  Sec. Il  gives fiw g
quantaf w agree with those obtained by Wunner, Herold, ~ (& 'binb)2. =2 [Eq. (2.10], where ¢ ! increases
and Ruder[15], and those of Le Guillou and Zinn-Justin slowly with increasing@. Our numerical results confirm this
[17], who used a similar method as ours in the aligned casespproximate scaling relation anfkw, o<b¥?(Inb)u =22 fits
The slight difference irk w| between our results and theirs is better the results in Table Il and Table IV. For the
likely due to the different ways of extracting this quantity: (m;,m,)=(0,1) state of H, we have
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fiw, 0=0.12%Y%(Inb) .2 (a.u) where the zero-point vibration amplitudes and the magnetic
force on the protons are small. The two electrons, both in the
lowest Landau level, are in cylindrical orbitats; and m,
centered on the proton field line with radii given by Eq.
(1.2). The Pauli principle require®, # m, so that the ground
(4.9 state hasn; + m,=1. As thep-p separatior¥ is allowed to
increase, the system tends to two free H atoms, one in orbital
statem; and anothem,. The standard procedure for treating
U2 the two-body problem of a hydrogen at¢@0,21] deals with
) Inb (a.u) states where the transverse pseudomomentum of each atom
is zero, in which case the protons must have Landau excita-
tions m; and m,, respectively. The simplest state for the
molecule with electronic orbitals; andm, is then the state
0 its forh FH.* al loselv with th wh.ere the protons have these Landau excitations at aI.I sepa-
ur results fom w, o 0T, ~ also agree Closely wi ose rations(even though the transverse pseudomomentum is con-
of Le Guillou and Zinn-Justi17] obtained using their soneq only for the total molecule, not individual atoms
.stanc approximation,” which is §|mllar to ansatz A'adopted This choice adds a Landau excitation energy
in our paper(Sec. Ill B 1). Their improved calculations in- (My+my)hw,, i.e., even the electronic ground state would
dicate that the real value dfw, o can be lower by tens of pave an additional positive enerdyw, and would be un-
percent(from about 10% fOfBlZZO.l to about 40% for bound (re|ative to two ground-sta’[e atob‘n&)r B> Bcrit-
B1,=5). We expect our results forjHo have similar accu- This molecular state has the simplest wave function but not
racy. However, as noted in Sec. Il C, the present results applyecessarily the lowest energy, since there are states where
only to the small-amplitude R, =p) vibrations and rela- pseudomomentum is not zeftoorresponding to finite sepa-
tively weak field B=B,,;;). For sufficiently large field ration of the guiding centers of the electron and proton; see
strength, the magnetic forces on the protons become impoRef.[20]). States without the additional enerfiw, are dis-
tant and can change the transverse vibration energy signifcussed in Sec. V B.

b 1/2
=o.55:<b ) Inb (a.u)=0.11bY4Inb) (eV) (H,).
crit

For them=0 state of H", we have

fiw, =0.140"Inb) =2 (a.u)= 0.62(
bcrit

=0.13Y4Inb) (eV) (H,™). (4.10

cantly, as we discuss below. For infinite proton mass, the dissociation energy ofis
given by D) =2E_(0)—E,,. Our numerical results for the
V. EFFECTS OF FINITE PROTON MASS (m4,m,)=(0,1) ground state can be written in the following
ON THE ELECTRONIC ENERGY form:
AND MOLECULAR DISSOCIATION ENERGY b
: : . : D(°°)=0.10%1+T In ( ) (Inb)? (a.u),
Our calculations and results in the previous sections are Derit

based on Born-Oppenheimer approximation where the pro- 0.2

ton positions are fixed when we consider the electronic en- 7=0.1(Inb)">% (5.2
ergy of the molecule. For finite proton mass, one can rescalgnere  varies slowly withb (7=0.14 for b~10® and
the electronic energy by replacing the electron mass with an_q 17 for b~105). For field strengttb=b,,;, the square
appropriate reduced mass. This only introduces a small colyracket in Eq.(5.2) can be replaced by unity. As shown in
rection (of order me/m,), and is neglected in our paper. Sec. Il B and Sec. IV B, the aligned proton vibrations have
However, as noted in Sec. |, the separation of the proton angh energy spacing of Ordém)”NM—l/ZD(w) and a small vi-
electron motion in a strong magnetic field is much morepration amplitude of ordebZ~ = 4Z,, whereZz, is the
complicated, especially in the regime B&B,;; when the  equilibrium separation between the protdis). (2.5)]. The

cyclotron energy of a proton, inequality ;<D does not depend appreciably on the
magnetic-field strength, so for the ground molecular state we
fiop,=1fi(eB/myc)=(b/bei)Inber; (a.u)=6.3B1, (eV), should be able to uskw) in Eq. (4.6) for the aligned vibra-

(5.)  tions even wherB>B,,; ; furthermore, sinceSZ<Z,, we
, . ) do not need to consider the Pauli principle explicitly for the
is comparable with or larger than the spacing of the elecyansverse wave functions of the protons. For treating this
tronic energy levels. The “standard procedure” for separatransverse motion, however, the magnetic force becomes
ing the proton and electron motion leads to some ambiguitiefnportant whenb=b,,;;, as can be seen from the ratio
regarding the binding energy of,Hn the strong field re- of the expressions in Egs.(5.1) and (4.9,
gime; these are discussed in Sec. V A. An alternative schem@,w, /fiw, o=1.810/be,i) “(Inb /INb). We can give at
which is more suitable foB=B,,;;, is described in Sec. V least a plausibility argument for the inclusion into the “stan-
B. An approximate expression for the “corrected” dissocia-dard scheme” of the magnetic effects on the transverse mo-
tion energy of H in the ground state is given by E¢.7). tion from the following consideration: A free proton in the
magnetic fieldB has a zero-point energyw,/2. This can be
thought of as the ground-state energy in a “magnetic restor-
ing potential” (1/2)mpw,23(RL/2)2, which gives a ground-
In Secs. Il and Ill we have followed the “standard proce- state wave function of sizR, ~p (independent of masss
dure” for molecules, where one first considers the two pro4n the Landau wave functiofEq. (2.2)]. Thus the total re-
tons as infinitely massive fixed at equilibrium separalfgn  storing potential for the protons in,Hs given by the sum of
along the same field line, with their motion included only asthe “electronic potential”’sU(R,), which we have calcu-
an “afterthought.” This is strictly valid only foB<B,,;;, lated in Sec. IIl, and twicéfor two protons of the magnetic

A. Unbound states from the standard scheme wheB =B,
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restoring potential. FOR, =p, we have seen thaiU(R,) to the true ground-state energy of the molecule according to

can be approximated by the quadratic form in E§8), so  the variz_itional principle. This “trial energy”_ can _be calcu-
that the total potential i&(wfoerS) R?/2. The size of the lated using the Hartree-Fock method described in Sec. Il A,

ground-state wave function is themp, the approximation is  Subjected to two modificationdi) the averaged electron-
justified, and the excitaton energy quanta isProton interaction potentiaf,(z) in Eq.(3.5) is replaced by
fi(wf o+ w) M Since the energy dfw,/2 also exists in an

is_ola_ted H atom, the zero-point energy for the transverse os- \”/m(z)_)f d2r¢e|Wm(Ue)|2f d3rp|W0(rip)|2
cillation of the molecule can be written as

Z 1
ﬁwLZﬁ(wfo-l—wg)l/z—ﬁwp. (5.3 x| 8 ZP_E +a Zp+§ |re—rp|
z z
Forb<b,; we havefiw, =hw | ¢ as expected, and E¢b.2) =Doml| z— > +Doml| z+ ik (5.5

shows thathw, /D) ~5(b/b.i) Y% Inb<1. For b>by;,
on the other handfiw, =fhw’y/(20,)=0.016% so that whereDy(2) is defined in Eq(3.17); (i) the proton-proton
hw, ID)~0.15. Thus the transverse zero-point energyinteraction terme?/Z in Eq. (3.19 is replaced byDgn(Z2)
hw, remains less than the dissociation energy for the statéalthough this modification has a negligible effect on the en-
given by the standard scheme, but the Landau enkigyof  ergy except wheiZ—0).
the excited proton has to be added to the molecular energy The molecular energE @'Y obtained by this alternative
also. The “corrected” dissociation energy in this scheme isscheme is larger than the resut,, obtained using the
then given by scheme of Sec. lll Awhere the protons are treated as infi-
nitely massivg, by some amounae @Y. The weakening of
1 the electron-proton interaction is due to the spread of the
DED=D — Shwj— A, proton wave function by an amount of ordgr However,
since Z>p the change involves only the logarithm of the
(5.4 Coulomb energy. This can be characterized by chanigimg
A8<Std):ﬁ(wf0+ wg)lfz_ Eq. (4.1) to b/(2C), where C is of order unity, i.e.,
EQ@Y=—0.091 [In(b/2C)]?>". To leading order in In(@),

Clearly, D® becomes negativé.e., the state is unbound ' C then have

asb increases beyonld,;; . We shall see in Sec. V B that an

alternative scheme gives molecutzsundstates with lower Dl =D~ Ehw”_AS(am;
energy forb=b,;; . °?
Ae@V=0.24I2C)(Inb)*7 (a.u), |
B. The alternative scheme as an alternative to E45.4).
The alternative scheme we propose for the rhblecule We have performed numerical calculations and found that

ground state is a generalization of the scheme for the H atorthe “trial” ground-state energy thus obtained agrees with the
described in Sec. IV of Ref20]. In this scheme the trans- result using the scheme of Sec. Ill A to within 15%. For
verse pseudomomentum is not chosen as a good quantuiz=50, 100, 500, 13 we foundAs'V=162,191, 258,
number, and our approximate wave function will not be an294 eV, corresponding t6=0.8 for B;,=50 andC=0.9 for
exact eigenstate of the Hamiltonian. However, it does proBi,=10°. The numerical values foke@'") can be fitted by
vide a suitable trial wave function and enables us to obtain &&®'Y=0.06(Irb)>. This has the same scaling with as
rigorous lower limit to the dissociation energy. In the #w, defined in Eq.(5.3). With this value of Ae@'), the
absence of Coulomb interaction between the four particlegjissociation energy given by E@5.6) is larger than that
there are eight quantum numbers specifying the transverdeom Eq. (5.4), and therefore represents the true molecular
degrees of freedom of the system: the Landau excitatioground state for alb=b.,;. Our numerical calculation of
numbern and the orbital numbem for each of the four As@®" used a particularly simple trial wave function and a
particles. For the K ground state we then chooge=0 for  better wave function with the variational method would pre-
both electrons and both protofso there is ndiw, contri-  sumably lowerAe@'") somewhat. This would lower the nu-
bution to the electronic energy of the moleguleand

(m¢,m,)=(0,1) for the electrons. We can choase=0 for

both protons since, as mentioned, the pratavave function “The only good quantum number for the transverse degrees of
can be antisymmetrized to satisfy the Pauli principle withfreedom is the total orbital angular momentum along thaxis,
little energy contribution. As a trial wave function we assumeL,=3;sgn,)(m,—n;), where sgn¢)=1 for proton and
that the charge distribution of protons consists of two sheetsgn(,) = —1 for electron[20]. Forb> b, , the Landau excitation
separated in the axis by distanceZ, with surface density numbersn for both electrons and protons are “adiabatically” con-
given by |Wy(r,)|?. Obviously, when the Coulomb poten- served and can be set to O for the ground state. In this case
tials between the particles are restoracandm for the in-  L,=m;,+m,,—my,—mj,.. Thus the true ground state of the mol-
dividual particle cease to be good quantum numBérs, the  ecule for B>B,,, involves a mixing of many different
trial wave function thus constructed will give an upper bound(m;e,m,e,my,,m,,) states with the same, .
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TABLE V. The dissociation energy of a Hmolecule in the There is no question that the exotic molecules considered
ground state in a superstrong magnetic figlff:) is the dissociation  in this paper exist on the surfaces of some neutron stars with
energy assuming infinite proton mass, whideincludes the(ap-  B,,=10'2 G and temperatur&~10°— 10° K [18]. For very
proximate correction of the molecular zero-point energiq. low surface temperatureT&10° K), the atmosphere is
(5.7]. By,=B/(10%?G), fiw)/2 is the zero-point energy for the jikely to condensate into a metallic state, since the hydrogen
aligned vibration, andiw, is the zero-point energy for the trans- ,atal has the largest binding energy. However, for the astro-
verse vibratiorEqg. (5.3)]. Note that forB;,<0.2, the ground state physically more interesting temperature rang'&(los K),

Is actually t_he “weakly bound” statesee Secs. Il A aqd IVAand 420 outer layer of a neutron star will exist predominantly in
Fhe zero-point energy has been neglected. All energies are expressed, ¢ of nondegenerate gas of individual atoms and small
In ev. molecules: e.g., whef~3x 10 K, the photosphere of a
Bi» 0.1 0.5 1 5 10 100 500 neutron star is dominated by atomsBf,=1, while it is
o) 4 31 16 109 150 373 615 dominated by_lzl if_ Blz_= 10. The ex?stence o_f 1_—|in the _
atmosphere will give rise to appreciable radiative opacity.
D =14 21 32 79 110 311 523 por example, since the proton separation ixisl different
fra/2 3.6 49 9.5 12 22 31 from that in H™" (see Table Il and Table IV the photoion-
hol 61 91 21 28 45 61 jzation cross section from the ground state ofisiexpected
to be small according to the Franck-Condon principle. How-
ever, photoionization from an excited vibrational state or
lectronic state, for which the proton separation is close to
hat in the B* ground state, can provide significant con-
tinuum opacity. These issues may warrant further study, es-
ecially in light of the increasing possibility of the spectro-
copic studies of isolated neutron stars by future x-ray and
EUV satellites.

merical value ofb above which the true ground state is the
state with no Landau excitations for either proton, obtaine
by the present “alternative scheme.”

The fact thatAe (@'Y scales similarly withb as# e, sug-
gests that for practical purposes, the “corrected” dissociatio
energy of B in the ground state can be approximated by

1
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In this paper, we have studied and characterized the en-
ergy excitation levels of a Hmolecule in a superstrong mag- APPENDIX A: COULOMB INTEGRALS
netic field B= 10'? G) which exists on the surfaces of many FOR THE LANDAU WAVE FUNCTION
neutron stars. The main theoretical uncertainty of our calcu- . . . .
lations lies in the nontrivial separation of the ?/notion of the In_thls appendn.(, we derive Eq$3.24) and (3.38). First
protons and that of the electrons. Nevertheless, we find tha‘t‘t()nS'der the function
in such a strong magnetic field, the, Hinolecule exhibits
completely different energy excitation levels as compared to Vim(Z,F o) = < m
its well-known zero-field counterpart. The fact that the exci-
tation energies associated with the oscillations of the protons .
are comparable to the electronic excitations indicates that th&ith r'e=roX. Since
statistical weight of a K molecule is not much larger than 3
that d a H atom. This greatly simplifies the calculations of E: if d_qeiq-r (A2)
the chemical equilibria of various forms of H in a neutron ro2m*) o '
star atmosphergl 8.
Larger hydrogen molecules and chains can also form in &€ have
superstrong magnetic field. Their ground-state binding ener-
i i i 1 (d® . . _
gies have been calculated in paper I. It is expected that thev (Z)Tg)= = _qe,.q.r()e.qzz<m|e.qin|m> (A3)
larger molecules possess qualitatively similar energy excita- "™~ %" 272 ] 2 '
tion levels as those of Hconsidered in this paper, with one
exception: For a long chain molecule ,Hwith 1<n Using the general result for the matrix elemgs2]
<[b/(Inb)’]*®, the spacingZ, along a field line between
adjacent protons decreases with increasingpproximately , ) [ m! vz 2 . qf
2. The fractional zero-point vibration amplitude (M’[€'%"+[m)=(=1)mm"™ e AL

VI. CONCLUSIONS

1
[r—ro|

m> , (A1)

as n 2. >
AZ/Z, is of order (ng/m,)*n*2 The aligned vibrations

thus become more pronouncedrascreasegand can lead
X(

!

m —m

q_i ei(m’_m)¢9q (m'Bm), (A4)

V2

to “internal pycnonuclear reactions” which will be discussed
in [18]).
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where 0, specifies the angle af, in the g,—q, plane, and
L[ is the Laguerre polynomial of order [30], we have

q?

<m|e‘qrri|m>=e‘qf/2Lm(7 . (A5)

Substitute Eq.(A5) into (A3), and integrate outlg, and
dé, using

_%eiqzzz le_qi‘zl (AG)
qz+qj_ a.
and
| dogaeen—migarg, @
we obtain

- ~q?12—q, |7 1,
Vim(Z,To) = 0 dg,e 9 qu\.JO(qJ_rO)I-m EQJ_ )
(A8)

i.e., Eq.(3.24. Note that using Eq(A4), a more general
expression can be obtained for the matrix element

g

Virm(Zfo)={ m' | ——
mm{ o < r=rdl

mt |\ Y2 e q o
] el %
m’! 0 \/E
2 , 1
xe 972=dldy . (qroLm ™ qu)
(m'=m).  (A9)

Next considerl5mlmz defined in Eq.(3.36. Changing
variable ¢, —R,)—r,,, we have

By (2222, R) = [ 011,00 (W (1)
><|Wm2(ru)|2m-
(A10)

Using Eq.(A2), we have

d*q _
_2e

q

X{my|e'dTi[my).

Dmymy(ZR) = 52 9 Rogld22(m, |9 my)
(A11)

Again, using Eq(A4), and integrating outig, andd 6, with
Egs.(A6) and (A7), we obtain

] . .
B2~ dqe“‘z“‘Z'Jo<qu>Lml(§q2>
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2}
Lm2 Eq . (AlZ)

Now defining the coefficientls(m;,m;,) via (see paper)l
X X my+my
Lml<§> Lmz(ﬁ) = 2 ds(my,my)Lg(x), (A13)
s=0

Eqg. (A12) then becomes

mp+my

ISmlmz(zv R)= 520 dg(my,my)

X f dge 9~ a43,(qR, )Ly(q?)
0

m1+ my

= 5240 dg(my,my)

qR,
J2

% J'ooﬂe—qz/z—qzwiJo
02

q2
oL

(A14)

which reduces to E(3.38 after using Eq(A8).

APPENDIX B: MORE ACCURATE CALCULATION
OF H,*

An “exact” treatment of H* for general orientation of
the molecular axis proceeds as follows. Consider the coordi-
nate system of ansatz A in Sec. Il B 1. Whigk 1, the most
general electron wave function for the=0 state can be
written as

<I>mo(r>=§ Won(r ) mo(2). (B1)

Substituting this into the Schdinger equation and averaging
over the transverse direction, we obtain a set of differential
equations forf ,o(2):

% d? e ~
T 2mep? Efmo(z) - ?%; Vi (Z,R 1 2) fmro(2)
:Smofmo(Z), m=0,1, ey (BZ)
whereV,,y is defined similar to Eq(3.23:
= RJ_ Z RL
Vi (Z,R12) =V | |2— 21" + V| |2+ 2" 2 |

and the functionV,,,y can be evaluated using E@A9).
Equation (B2) is subject to the boundary conditions
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df,o/dz=0 atz=0 andf,,—0 asz—». The normaliza- Sults can be obtained by using an increasing number of terms

tion condition requires in the sum in Eq(B1). The lowest energy state corresponds
to the solution satisfying
” 2_ o o o0
D B " ddten> | ddtgaP> [ ddtaga
(B5)

The set of equationd2) can be solved numerically using

an iterative scheme similar to that used for solving theGeneralization of this method to a,Hnolecule is much
Hartree-Fock equatiofpaper ). Successively accurate re- more complicated.
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