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We study the energy levels of H2 molecules in a superstrong magnetic field (B*1012 G!, typically found on
the surfaces of neutron stars. The interatomic interaction potentials are calculated by a Hartree-Fock method
with multiconfigurations assuming electrons are in the ground Landau state. Both the aligned configurations
and arbitrary orientations of the molecular axis with respect to the magnetic-field axis are considered. Different
types of molecular excitations are then studied: electronic excitations, aligned~along the magnetic axis!
vibrational excitations, and transverse vibrational excitations~a constrained rotation of the molecular axis
around the magnetic-field line!. Similar results for the molecular ion H2

1 are also obtained and compared with
previous variational calculations. Both numerical results and analytical fitting formulas are given for a wide
range of field strengths. In contrast to the zero-field case, it is found that the transverse vibrational excitation
energies can be larger than the aligned vibration excitation, and they both can be comparable to or larger than
the electronic excitations. ForB*Bcrit54.2331013 G, the Landau energy of the proton is appreciable and
there is some controversy regarding the dissociation energy of H2 . We show that H2 is bound even forB
@Bcrit and that neither proton has a Landau excitation in the ground molecular state.

PACS number~s!: 32.60.1i, 97.10.Ld, 31.15.Ar, 97.60.Jd

I. INTRODUCTION

Since the pioneering work of Schiff and Snyder@1#, espe-
cially during the last 20 years, there has been considerable
interest in the properties of matter in a strong magnetic field.
While the early studies@2# were mainly motivated by the fact
that high magnetic-field conditions can be mimicked in some
semiconductors where a small effective mass and a large
dielectric constant reduce the electric force relative to the
magnetic force, the recent interest in this problem has been
motivated by the huge magnetic field;1012 G already dis-
covered in many neutron stars and the tentative suggestion
for fields as strong as 1015 G. The surface layer of these
neutron stars then consists of highly magnetized matter. Un-
derstanding the physical properties of atoms, molecular
chains, and condensed matter in fields of such extreme mag-
nitude~see Ref.@3# for an early general review and@4# for a
recent text on atoms in strong magnetic fields! is important
for interpreting the radiation from the neutron stars that may
be observed in the present and future x-ray satellites~e.g.,
@5#!, and therefore provides important information about the
internal structure of neutron stars.

In superstrong magnetic fields the structure of atoms and
condensed matter is dramatically changed by the fact that the
magnetic force on an electron is stronger than the Coulomb
force it experiences, i.e., the electron cyclotron energy~the
Landau energy level spacing!

\ve5\
eB

mec
511.57B12 keV, ~1.1!

whereB12 is the magnetic-field strength in units of 10
12G, is

much larger than the typical Coulomb energy. In the direc-
tion perpendicular to the field, the electrons are confined to
move on cylindrical Landau orbitals around a nucleus. The
orbitals have radii

rm5~2m11!1/2r̂, m50,1,2,. . . , ~1.2!

wherer̂ is the cyclotron radius

r̂5S \c

eBD
1/2

5a0SB0

B D 1/252.57310210B12
21/2 cm. ~1.3!

Herea05\2/(mec
2) is the Bohr radius andB0 is the atomic

unit for the magnetic-field strength,

B05
me
2e3c

\3 52.353109 G, b[
B

B0
5425B12. ~1.4!

Throughout this paper we consider strong fields in the sense
of b@1, so that the Coulomb forces act as a perturbation to
the magnetic forces on the electrons, and the electrons are
confined to the ground Landau level~so-called ‘‘adiabatic
approximation’’@1#!. Because of this extreme confinement of
electrons in the transverse direction, the Coulomb force be-
comes much more effective for binding electrons in the par-
allel direction, therefore giving greatly increased binding en-
ergy. The atom has a cigarlike structure. Moreover, it is
possible for these elongated atoms to form molecular chains
by covalent bonding along the field direction@3,6#.

Significant efforts have been devoted to the theoretical
study of atoms in a superstrong magnetic field (*1012 G!
@4#. The methods that have been employed include varia-
tional calculations~e.g., @7#!, Thomas-Fermi-type statistical*Electronic address: dong@tapir.caltech.edu
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models @8#, density functional theory@9#, and the self-
consistent Hartree-Fock method@10–12#, which we consider
to be the more theoretically justified and reliable method.
Accurate calculations of the energy levels of the H atom in
magnetic fields of arbitrary strength have also been per-
formed @13#. By contrast, there are only limited studies on
molecules in superstrong magnetic field; nearly all of these
focus on the molecular ion H2

1 ~ @14–17# and references
therein!. As H2

1 is unstable against forming H2, understand-
ing the physical properties of a H2 molecule is of greater
practical interest, since H2 is likely to exist in the atmosphere
of sufficiently cool neutron stars@18,19#.

We have recently calculated the ground-state binding en-
ergies of different forms of hydrogen~H, H2, H2

1 , H2 ,
H3 , . . . , H̀ ) in a strong magnetic fieldB*1012 G (@6#,
hereafter referred to as paper I!. In particular, reliable elec-
tronic dissociation energy of a H2 molecule in magnetic field
of such magnitude was obtained. In this paper, we extend our
study to consider various excitation levels of the molecule.

In the zero-field case, to study the molecular spectra, one
usually uses the Born-Oppenheimer approximation to sepa-
rate the motion of the ions from that of the electrons. Such a
procedure is valid if the electronic energy-level spacings are
large compared to the typical energy-level spacings associ-
ated with the ion motion. In a strong magnetic field, how-
ever, the separation of motion becomes much more compli-
cated, even for the hydrogen atom@20–22#. Moreover, as we
shall see, in a superstrong magnetic field, the energy-level
spacings associated with the vibrations of the ions can be
comparable to or even larger than the spacings of the elec-
tronic excitations. In this paper, we will use the standard
Born-Oppenheimer approximation and focus on calculating
the interatomic interaction potential for fixed ion positions
~Sec. III!. We then obtain the molecular excitation levels
based on this potential curve~Sec. IV!. As in the case of a
neutral atom@20#, it is convenient to define a critical field
strength by equating the cyclotron energy of the proton
\vp5\(eB/mpc) to the typical electronic excitation energy
(; lnb in atomic units!, i.e.,

bcrit[
mp

me
lnbcrit51.803104;

~1.5!

Bcrit5bcritB054.2331013 G.

We shall give quantitative results for the regimeB0!B
!Bcrit in Secs. II–IV, using the standard Born-Oppenheimer
procedure. Rigorous calculations for the molecule when
B*Bcrit , taking account of the quantum mechanics of the
proton motion, are difficult. Nevertheless, in Sec. V we shall
describe an approximate solution to the four-body problem
of the H2 molecule in theB@Bcrit regime, where the effects
of finite proton mass on the electronic states and the energies
of the molecule are strong, and we give a rigorous lower
limit to the ground-state dissociation energy.

Throughout this paper, we shall use nonrelativistic quan-
tum mechanics, even for extremely strong magnetic field,
B*Brel5(\c/e2)2B054.41431013 G ~note that Brel is
close toBcrit only by coincidence!, at which the transverse
motion of the electron becomes relativistic. The nonrelativ-

istic treatment of bound states is valid for two reasons:~i! the
energy of a relativistic free electron

E5@c2pz
21me

2c4~112nLB/Brel!#
1/2, ~1.6!

wherepz is the linear momentum along the field axis,nL is
the quantum number for the Landau excitations, reduces to
E.mec

21pz
2/(2me) as long as the electron remains in the

ground Landau level and nonrelativistic in thez direction;
~ii ! the shape of the Landau wave function in the relativistic
theory is the same as in the nonrelativistic theory~as we see
from the fact thatr̂ is independent of mass!. Therefore, as
long asEB /(mec

2)!1, whereEB is the binding energy of
the bound state, the relativistic effect remains a small correc-
tion @23#.

The paper is organized as follows. In Sec. II we consider
some general features and approximate scaling relations for
various excitation levels. Section III contains a detailed de-
scription of our method for calculating the interatomic inter-
action potential. The numerical results and fitting formulas
for the molecular excitation levels are presented in Sec. IV.
We study the electronic structure of the molecule in theB
@Bcrit regime and consider the effects of finite proton mass
on the energies in Sec. V. Our general conclusion is pre-
sented in Sec. VI. Appendix A summarizes some useful
mathematical relations for the Coulomb integrals of Landau
functions, and in Appendix B we discuss a refined method
for calculating the electronic energy of H2

1 for general ori-
entation of the molecular axis.

II. QUALITATIVE DISCUSSION AND APPROXIMATE
SCALING RELATIONS FOR EXCITATION ENERGIES

In a superstrong magnetic field satisfyingb@1, the spec-
tra of a single H atom can be specified by two quantum
numbers (m,n), wherem measures the mean transverse dis-
tance@Eq. ~1.2!# of the electron to the proton, whilen is the
number of nodes of the electron’sz wave function~along the
field direction!. The wave function of the (m,n) state in cy-
lindrical coordinates (r,f,z) is given by

Fmn5Wm~r'! f mn~z!, ~2.1!

whereWm is the ground-state Landau wave function

Wm~r'![Wm~r,f!5
1

r̂A2pm!
S r

r̂A2D
m

e2r2/4r̂2e2 imf.

~2.2!

The states withnÞ0 resemble a zero-field hydrogen atom
with small binding energyuEnu.1/(2n2) @24# and we shall
mostly focus on the tightly bound states withn50. For the
ground state (0,0), the sizesL' andLz of the atomic wave
function perpendicular and parallel to the field and the bind-
ing energyuEau ~in atomic units! are given by

L';r̂5
1

b1/2
, Lz;

1

l
, uEau.0.16l 2; l[ lnb.

~2.3!
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For the tightly bound excited states (m,0) we have similar
relations but withr̂ replaced by@(2m11)/b#1/2 and l re-
placed byl m[ ln@b/(2m11)#, so that

Ea~m!.20.16l m
2 . ~2.4!

Recall that in atomic units, mass is in units of the electron
massme , energy is expressed in units ofe

2/a052Ry, length
is in units of Bohr radiusa0 , and the units for magnetic field
is B0 @Eq. ~1.4!#. The numerical factor 0.16 in Eqs.~2.3!
and ~2.4! is an approximate value forB12*1. For conve-
nience, accurate numerical results forEa(m) are listed in
Table I.1

In a superstrong magnetic field, the mechanism of form-
ing molecules is quite different from the zero-field case~pa-
per I, @3#!. The spins of the electrons of the atoms in a strong
magnetic field are all aligned antiparallel to the magnetic
field, and therefore two atoms in their ground states do not
easily bind together according to the exclusion principle.
Thus two H atoms, both in them50 ground state, do not
form a tightly bound molecule. Instead, one H atom has to be
excited to them51 state. The two H atoms, one in the
ground state (m50), another in them51 state, then form
the ground state of a H2 molecule by covalent bonding. Since
the ‘‘activation energy’’ for exciting an electron in the H
atom from Landau orbitalm to (m11) is small @see Eq.
~2.4!#, the resulting molecule is stable. The interatomic sepa-
rationZ0 and the dissociation energyD of the H2 molecule
scale approximately as

Z05jLz;
j

l
, D;

l

Z0
;
l 2

j
, ~2.5!

where the dimensionless factorj decreases very slowly with
increasingB @e.g., j.2.0 for B1250.1 and j.0.75 for
B125100; see Table I of paper I and our Eq.~5.2!#.

Another mechanism of forming a H2 molecule in a super-
strong magnetic field is to let both electrons occupy the same
m50 Landau state, while one of them occupies then50
orbital and another then51 orbital. This costs no ‘‘activa-
tion energy.’’ However, the resulting molecule tends to have
small dissociation energy, of order a Rydberg. We shall refer

to this electronic state of the molecule as theweakly bound
state, and to the states formed by two electrons in then50
orbitals as thetightly bound states. As we will see below, as
long asl@1, the weakly bound state only constitutes an ex-
cited energy level of the molecule.2

We now consider various molecular excitations and derive
approximate scaling relations for the excitation energies.

A. Electronic excitations

The electronic excitations of H2
1 are similar to those of

the H atom, namely the electron can occupy differentm Lan-
dau orbitals. Thusm50 is the ground state,m51,2, . . . are
the excited states~although they are not necessarily bound
relative to the free atom in the ground state!.

There are two types of electronic excitations in H2 . ~i!
The electrons can occupy different orbitals other than the
ground state (m1 ,m2)5(0,1), giving rise to the tightly
bound (n50) electronic excitations. For example, the first
excited level is (0,2), the second excited level is (0,3), etc.
The number of singlem-excitation states (m1 ,m2)5(0,m2)
which are bound relative to two isolated H atoms in the
ground state is expected to increase as the magnetic field
increases. Doublem excitations are also possible, but as we
shall see, they are bound only when the magnetic-field
strength is much higher than 1013 G. The energy spacing
between the two adjacent electronic states (0,m) and
(0,m11) is

DEm; l lnS 2m13

2m11D . ~2.6!

Thus asm increases, the energy spacing decreases.~ii ! The
molecule is formed by two electrons in the (m,n)5(0,0) and
(0,1) orbitals. The dissociation energy of this weakly bound
state is of order a Rydberg, and does not depend sensitively
on the magnetic-field strength. Note that for relatively small
magnetic field (B12*0.2), the weakly bound state actually
has lower energy than the tightly bound states~see Sec. IV

1A more accurate fitting formula for the ground state binding en-
ergy of a H atom isuEau50.16Al2, with

A5H111.3631022@ ln~1000/b!#2.5 if b,103

111.0731022@ ln~b/1000!#1.6 if b>103.

2In several recent papers@25# on the molecular binding in strong
magnetic field, Korolev and Liberman failed to identify the tightly
bound states. Also, their variational calculation of the weakly bound
state significantly underestimates the binding energy because it ne-
glects the overlapping of the electron wave functions. As a result,
their claim that hydrogenlike gas in a strong magnetic field can
form Bose-Einstein condensate is incorrect~see also@26,27#!.

TABLE I. Energy levelsEa(m) ~in eV! of a hydrogen atom in a superstrong magnetic field. The levels are
specified by the quantum numberm, while the longitudinal noden50. HereB125B/(1012G).

B12 Ea(0) Ea(1) Ea(2) Ea(3) Ea(4) Ea(5)

0.1 276.4 252.5 243.3 238.0 234.4 231.8
0.5 2130.2 292.8 277.8 269.0 263.0 258.6
1 2161.5 2116.9 298.7 288.0 280.6 275.1
2 2198.5 2145.8 2124.1 2111.2 2102.2 295.5
5 2257.1 2192.6 2165.5 2149.2 2137.8 2129.2
10 2309.6 2235.1 2203.5 2184.3 2170.9 2160.7
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A!, i.e., b*102 is required for the ‘‘strong field’’ regime to
apply fully.

B. Aligned vibrations

In the Born-Oppenheimer approximation, the motion of
the two protons is governed by the interatomic potential
U(Z,R'), i.e., the electronic energy when the relative posi-
tions of the protons are kept atZ along the field direction and
R' perpendicular to it. We first consider the aligned vibra-
tional excitations for oscillations ofZ about the equilibrium
separationZ0 . For this purpose we need to estimate the ex-
cess potentialdU(dZ)[U(Z01dZ,0)2U(Z0,0).

SinceZ0 is the equilibrium position, the sum of the first
order terms indZ, coming from proton-proton, electron-
electron, proton-electron Coulomb energies, and quantum
mechanical electron kinetic energy, must cancel. Thus we
have dU}(dZ)2 for small dZ. Consider various contribu-
tions to the energy of the molecule: The proton-proton inter-
action is 1/Z ~in atomic units! without a logarithmic factor;
but the dominant contribution is the proton-electron Cou-
lomb energy; l /Z, where the logarithmic factorl@1 comes
from the Coulomb integral over the ‘‘cigar-shaped’’ electron
distribution. Bothl andZ21 change asZ0→Z01dZ, but the
largest change comes from the quadratic term
d(Z21);(dZ)2/Z0

3 . Thus the excess potential is of order

dU~dZ!; l
~dZ!2

Z0
3 ;~j23l 4!~dZ!2. ~2.7!

In atomic ~electron! units the reduced mass of the proton
pair in H2 is m5mp /(2me), wheremp andme are proton
and electron mass~for HD the factor 1/2 is replaced by
2/3). For small-amplitude oscillations in the potential of Eq.
~2.7!, we obtain a harmonic oscillation spectrum with exci-
tation energy quanta\v i given by

\v i;j23/2l 2m21/2 ~2.8!

for a molecule in the ground electronic state. The scaling
with B of \v i is thus almost the same as the dissociation
energyD in Eq. ~2.5!. The number of aligned vibrational
levels is nimax;D/\v i;(jm)1/2, where j decreases even
more slowly with increasing field strength thanl21 does.

C. Transverse vibrations

The strong magnetic field breaks the rotational symmetry
for the molecular axis and, instead of rotations of the field-
free case we have oscillations in the two-dimensional plane
of theR' vector.3 The degeneracy in the azimuthal anglef

is still retained. To study the transverse vibration spectrum,
we need to estimate the order of magnitude of the excess
potentialdU(R')[U(Z0 ,R')2U(Z0,0).

As mentioned before, the factorl in the expressionl /Z0
for the dissociation energyD @Eq. ~2.5!# comes from a Cou-
lomb integral over the electron charge distribution. This in-
tegral is of the form ln(Lz/r̂), wherer̂5b21/2 is the typical
size of the electron wave function perpendicular to the field
for R'50. When the protons are displaced byR' from the
electron distribution axis, the Coulomb integral can be ap-
proximately obtained by replacingr̂ with ( r̂21R'

2 )1/2. Our
order of magnitude expression fordU is then

dU~R'!;
1

2Z0
ln~11 r̂22R'

2 !;j21 l ln~11bR'
2 !. ~2.9!

Equation~2.9! holds for anyR'!Z0;j l21, but it can be
approximated by a quadratic expression for the small-
amplitude case ofR'* r̂5b21/2!Z0 . In this approximation
we havedU;j21lbR'

2 . The energy quanta for the small-
amplitude transverse vibration is then

\v'0;~j21lb !1/2m21/2, ~2.10!

where the subscript 0 indicates that we are at the moment
neglecting the magnetic forces on the protons which, in the
absence of Coulomb forces, lead to the cyclotron motions of
the protons. Note that\v'0 in Eq. ~2.10! increases asb1/2

with increasing field strength, faster than the logarithmic be-
havior of\v i andD, but slower than the linear behavior of
the cyclotron energy. For sufficiently largeb@1 we have
\v'0@\v i . However, the quadratic harmonic oscillator ap-
proximation is valid only forR'

2 up to;r̂25b21, i.e., for
dU only up todUho;j21l , which is less than the maximum
possible potentialDUmax;D;j21l 2. The number of har-
monic oscillation levels in the quadratic regime is then

n'ho;
dUho

\v'0
;j21/2S m l

b D 1/2;S bcritb D 1/2. ~2.11!

The degeneracy of then'th harmonic oscillation level is
n' . For n'ho@1, the statistical weight of all harmonic os-
cillation levels is of order (n'ho)

2. If we neglect the differ-
ence betweenj and unity~and betweenm andmp /me), we
see thatn'ho would be less than unity whenB*Bcrit , where
Bcrit is defined in Eq.~1.5!.

We now consider large amplitude transverse oscillations
assuming that the magnetic force on the proton can be ne-
glected. For a transverse oscillation wave function where the
maximum valueRmax of R' ~the outer classical turning
point! satisfiesr̂*Rmax*Z0 , we must use the logarithmic
form of Eq.~2.9! for the potentialdU(R'). The energy level
spacing decreases with increasingRmax. We can calculate
the number of nodesn'(Rmax) of the wave function as a
function ofRmax from a WKB integral of the wave number
k(R') overdR' . Since we only need an order of magnitude
estimate, we replace the integral byk(Rmax)Rmax, where
k(R');@mdU(R')#

1/2. Using Eq.~2.9! this gives

3Strictly speaking, the transverse vibration and the aligned vibra-
tion are coupled, and they are governed by the two-dimensional
potentialU(Z,R'). Since the transverse vibrational excitation en-
ergy is larger than the aligned vibrational excitation, the time scale
for the protons to adjust theirZ positions is much longer than the
time scale for oscillations withR'Þ0 and we can consider trans-
verse vibrations with fixed values ofZ. However, sincedZ!Z, an
approximate separation is possible withZ replaced byZ0 for the
transverse vibrations.
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n'~Rmax!;@mj21l ln~11bRmax
2 !#1/2Rmax. ~2.12!

The maximum number of nodesn'max can be obtained by
substitutingZ0;j/ l for Rmax. Neglecting lnl compared with
l itself, we have n'max;(jm)1/2, independent of field
strength and the same order of magnitude asnimax.

Because of the azimuthal symmetry in the two-
dimensionalR' plane, the total statistical weight of the trans-
verse excitation levels is;n'max

2 ;jm. If b@bcrit , n'ho in
Eq. ~2.11! would be much less than unity and the zero-point
energy«'zp , i.e., the spacing between the lowest levels, is
not given by Eq.~2.10!. Formally, one could use Eq.~2.9!
and estimate the zero-point vibration amplitude as the value
of Rmax for which Eq.~2.12! givesn'51. This would give a
zero-point energy which is less thanD, but this expression is
incorrect, since the neglect of the magnetic forces on the
protons is unjustified whenB@Bcrit . The cyclotron energy
of the proton is\vp5\eB/(mpc)5(me /mp)b ~a.u.!. The
ratio vp /v'0 is of order (bme / lmp)

1/25(b/bcrit)
1/2 ~omit-

ting the factorj). When\vp is much larger than\v'0 , the
magnetic forces on the protons are important. We will return
to this subtle issue in Sec. V.

III. METHODS FOR CALCULATING THE INTERATOMIC
POTENTIAL

In the Born-Oppenheimer approximation, the interatomic
potentialU(Z,R') is given by the total electronic energy
E(Z,R') of the system when the relative positions of the
protons areZ along the field direction andR' perpendicular
to it. OnceE(Z,R') is obtained, the electronic equilibrium
state can also be determined by locating the minimum of the
E(Z,0) curve.

A. The aligned case:R'50

Our method for calculatingE(Z,0) is the same as in paper
I. It can also be used to obtain the energy curves for the
excited electronic states. Here we summarize and extend our
method to take account of ‘‘configuration interaction’’ in
H2 more accurately.

1. H2
1 molecular ion

For H2
1 , the Hamiltonian for the electron is

H05HB2
\2

2me

]2

]z2
2
e2

r A
2
e2

r B
, ~3.1!

wherer A and r B are the distances between the electron and
the two fixed protons, located atz56Z/2 along thez axis.
In Eq. ~3.1!, HB is the magnetic part of the Hamiltonian

HB5
1

2me
S p'1

e

c
AD 21 e

mec
B•S, ~3.2!

whereA5B3r /2 andS is the electron spin operator. Note
that for electrons in the ground Landau level, we have

HB@Wm~r'!x~↓ !#50, ~3.3!

wherex(↓) is the electron spinor with the spin aligned in the
2z direction ~antiparallel to the field!. Thus we can set

HB50. With the electron wave function given by
Fm0(r )5Wm(r') f m0(z), we average over the transverse di-
rection and obtain a one-dimensional Schro¨dinger equation

2
\2

2mer̂
2

d2

dz2
f m02

e2

r̂
Ṽm~z! f m05«m0f m0 . ~3.4!

Here the averaged potential is given by

Ṽm~z!5E d2r'uWm~r'!u2S 1r A 1
1

r B
D

5VmS z2
Z

2D1VmS z1
Z

2D , ~3.5!

where

Vm~z![E d2r'uWm~r'!u2
1

r
, ~3.6!

which can be evaluated numerically~paper I!. In Eqs.~3.4!–
~3.6! and henceforth we employr̂ as the length unit in all
wave functions and average potentials~except otherwise
noted!. We solve the eigenvalue«m0 by integrating Eq.~3.4!
numerically from z51` to z50 subject to appropriate
boundary conditions~paper I!. The total electronic energy is
then given by

E~Z,0!5«m01
e2

Z
. ~3.7!

Clearly,m50 is the ground state, whilem51,2, . . . are the
excited electronic states. We also note that the excited state
of H2

1 in which the electron occupies then.0 orbital is not
bound relative to the free atom in the ground state.

2. H2 molecule: Tightly bound states (m,n)5(m1,0),(m2,0)

For H2 , we use the Hartree-Fock~HF! method to take
account of the interaction between the electrons. The Hamil-
tonian of the system is

H5H0~1!1H0~2!1
e2

r 12
1
e2

Z
, ~3.8!

whereH0 is given by Eq.~3.1! and r 12[ur 12r 2u. For the
(m1 ,m2) electronic state (m1Þm2), the two basis wave
functions~orbitals! for the electrons are

Fm10
~r !5Wm1

~r'! f m10
~z!, ~3.9!

Fm20
~r !5Wm2

~r'! f m20
~z!. ~3.10!

The two-electron wave function is then given by

C~r1 ,r2!5
1

A2
@Fm10

~r1!Fm20
~r2!2Fm10

~r2!Fm20
~r1!#.

~3.11!

After averaging over the transverse direction, the standard
HF equations reduce to a set of one-dimensional equations
for f m10

and f m20
:
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F2
\2

2mer̂
2

d2

dz2
2
e2

r̂
Ṽm~z!1

e2

r̂
Km~z!2«mG f m0~z!

5
e2

r̂
Jm~z!, m5m1 ,m2 , ~3.12!

where Ṽm is given by Eq.~3.5!; the direct and exchange
potentialsK andJ are given by

Km1
~z!5E dz8 f m20

~z8!2Dm1m2
~z2z8!, ~3.13!

Jm1
~z!5 f m20

~z!E dz8 f m10
~z8! f m20

~z8!Em1m2
~z2z8!,

~3.14!

and similarly forKm2
and Jm2

. In Eqs. ~3.13! and ~3.14!,

Dm1m2
and Em1m2

are the direct and exchange interaction
kernels defined by

Dm1m2
~z12z2!5E d2r1'd

2r2'uWm1
~r1'!u2uWm2

~r2'!u2

3
1

r 12
, ~3.15!

Em1m2
~z12z2!5E d2r1'd

2r2'Wm1
~r1'!Wm2

~r2'!

3Wm1
* ~r2'!Wm2

* ~r1'!
1

r 12
. ~3.16!

The functionsDm1m2
(z) and Em1m2

(z) are related to the

Coulomb interaction potentialVm @Eq. ~3.6!# by

Dm1m2
~z!5 (

s50

m11m2

ds~m1 ,m2!
1

A2
VsS z

A2D , ~3.17!

Em1m2
~z!5 (

s50

m11m2

es~m1 ,m2!
1

A2
VsS z

A2D , ~3.18!

where the coefficientsds and es are given in paper I. We
solve Eq.~3.12! numerically using a shooting algorithm~for
details, see paper I!. Once the wave functionf m0(z) and the
eigenvalues«m0 are obtained, the total electronic energy of
the system is calculated via

E5^CuHuC&

5
e2

Z
1«m10

1«m20
2
e2

r̂ E dz1dz2f m10
~z1!

2f m20
~z2!

2

3Dm1m2
~z12z2!1

e2

r̂ E dz1dz2f m10
~z1! f m20

~z2!

3 f m10
~z2! f m20

~z1!Em1m2
~z12z2!, ~3.19!

where the fourth term on the right-hand side represents the
electron direct interaction (2Edir), and the fifth term the
exchange interaction (2Eexch).

The Hartree-Fock method discussed above can be used to
obtain accurately the electronic energy near the equilibrium
separationZ0 . However, as noted in paper I, asZ increases,
the resultingE(Z,0) becomes less reliable. Moreover, as
Z→`, E(Z,0) doesnot approach the sum of the energies of
two isolated atoms, one in them1th state, another in the
m2th state. The reason is that asZ increases, a second con-
figuration of electron orbitals becomes more and more de-
generate with the first configuration in Eq.~3.11!, and there
must be mixing of these two different configurations. This
‘‘configuration interaction’’ also occurs in the zero-field H2
molecule @29#. Here the electron configuration that mixes
with C1[C @Eq. ~3.11!# is

C2~r1 ,r2!5
1

A2
@Fm11

~r1!Fm21
~r2!2Fm11

~r2!Fm21
~r1!#,

~3.20!

which is the same asC1 exceptn51 in the electron orbitals.
BothC1 andC2 have the same symmetry with respect to the
Hamiltonian in Eq.~3.8!: the total angular momentum along
thez axis isMLz51, the total electron spin isMSz521, and
both C1 and C2 are even with respect to the operation
r i→2r i . As a result, the matrix element^C1uHuC2& is non-
zero.

To take account of the mixing of these two configurations,
we need to extend the standard HF method involving one
configuration toHF with multiconfigurations~HFMC!. This
is done as follows. We calculate the energies and wave func-
tions for bothC1 andC2 using the HF equations@Eq. ~3.12!
with n50 andn51#. The matrix elementsHi j ( i , j51,2) are
then calculated:H115^C1uHuC1& is given by Eq.~3.19! and
the expression forH225^C2uHuC2& is similar. The mixing
matrix element is given by

H125^C1uHuC2&

5
e2

r̂ E dz1dz2f m10
~z1! f m11

~z1! f m20
~z2! f m21

~z2!

3Dm1m2
~z12z2!2

e2

r̂ E dz1dz2f m10
~z1! f m21

~z1!

3 f m20
~z2! f m11

~z2!Em1m2
~z12z2!. ~3.21!

The total electronic energy in this HFMC scheme is obtained
by solving the secular equation detuHi j2Ed i j u50, which
yields, for the lowest energy state,

E5
1

2
~H111H22!2

1

2
@~H112H22!

214H12
2 #1/2. ~3.22!

In Fig. 1, we show the electronic energy curves of H2 at
B1251, obtained using our HFMC method. The tightly
bound electronic states are (m1 ,m2)5(0,1), (0,2), and
(0,3). These are the only states for which the minimum in
the energy curves is less than the energy 2Ea52323 eV of
two isolated atoms in the ground state. Notice that asZ in-
creases, the molecular electronic energy becomes larger than
2Ea , reflecting the fact that, in a superstrong magnetic field,
forming such a tightly bound molecule requires first activat-
ing one of the atoms to an excited state. However, asZ
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increases, the energy of the (m1 ,m2) state does approach
Ea(m1)1Ea(m2). Near the equilibrium separation, the en-
ergy obtained using HFMC agrees well with that of the stan-
dard HF~the difference is less than 1%!. Thus the standard
HF is adequate for determining the equilibrium electronic
energy of the molecule. However, the HFMC method is cru-
cial to obtaining the correct largeZ behavior ofE(Z,0),
therefore the aligned vibrational energy levels of the mol-
ecule~Sec. IV B!.

3. H2 molecule: Weakly bound state(m,n)5(0,0),(0,1)

These states can be similarly calculated using the HF
method. Instead of Eqs.~3.9! and~3.10!, the electron orbitals
areF00 andF01. Figure 2 shows an example of the energy
curve atB1251. Clearly, theE(Z,0) curve of such a state is
much shallower than those of the tightly bound states dis-
cussed in Sec. III A 2. In the limit ofZ→`, the energy curve
approaches 2Ea , i.e., no ‘‘activation energy’’ is needed to
form a molecule in the weakly bound state.

B. General molecular axis orientation:R'Þ0

Unlike the case of Sec. III A when the molecular axis
coincides with the magnetic-field direction, where we can
obtain the interatomic potentialE(Z,0) with great accuracy,
in the case when the molecular axis deviates from the
magnetic-field direction, the electronic energyE(Z,R') is
much harder to calculate. This is because the azimuthal sym-
metry of the transverse wave function of an electron is bro-
ken. Although the electrons still stay in the ground Landau
level,m in the Landau wave functionWm(r') @Eq. ~2.2!# is
no longer a good quantum number, and the transverse wave
function of an electron must involve mixing of differentm
states. Nevertheless, we can still obtain a reasonable upper
limit for the interatomic potential curveE(Z,R'), and hence

an upper limit for the transverse vibrational excitation energy
quanta\v'0 . We consider two ansatzes, appropriate for
smallR' , and largeR', respectively.

1. Ansatz A

Suppose the two protons are located at
(6R'/2,0,6Z/2) in a rectangular coordinate system. For
sufficiently smallR' , the transverse wave function is ex-
pected to be close toWm(r'). Thus we assume the electron
wave function in H2

1 is given byFm0(r )5Wm(r') f m0(z).
The equation forf m0 is the same as Eq.~3.4!, except that the
potentialṼm(z) is replaced by

Ṽmm~z,R'/2!5VmmS Uz2
Z

2U,R'

2 D1VmmS Uz1
Z

2U,R'

2 D ,
~3.23!

where

Vmm~z,R'/2![E d2r'uWm~r'!u2
1

ur2R'/2u

5E
0

`

dqexpS 2
1

2
q22quzu D

3J0S qR'

2 DLmS 12 q2D ~3.24!

~see Appendix A!. HereJ0 is the Bessel function of zeroth
order andLm is the Laguerre polynormial of orderm @30#.
We use a standard quadrature algorithm~e.g.,@31#! to evalu-
ate Eq.~3.24!. The Schro¨dinger equation similar to Eq.~3.4!
can be solved to determine the eigenvalue«m0(Z,R'), and
the total electronic energy is then given by

Em0~Z,R'!5«m0~Z,R'!1
e2

~Z21R'
2 !1/2

. ~3.25!

FIG. 1. The electronic energy curvesE(Z,0) for the tightly
bound states of H2 molecule atB51012 G when the molecular axis
is aligned with the magnetic field axis. The electrons occupy the
(m,n)5(m1,0) and (m2,0) orbitals (m1Þm2). The solid line is for
the state (m1 ,m2)5(0,1), the short-dashed line for (0,2), the long-
dashed line for (0,3). The dotted line is from the fitting using the
Morse potential@Eq. ~4.2!#. The dark solid line corresponds to the
energy of two isolated H atoms in the ground state 2Ea52323 eV.

FIG. 2. The electronic energy curvesE(Z,0) of H2 molecule at
B51012G when the molecular axis is aligned with the magnetic
field axis. The solid line corresponds to the tightly bound state in
which the electrons occupy the (m,n)5(0,0) and (1,0) orbitals, the
dashed line corresponds to the weakly bound state in which the
electrons occupy the (0,0) and (0,1) orbitals.
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As noted before, in this general situation,m is not a good
quantum number, but we nevertheless use it to distinguish
different electronic states.

In this ansatz, the equations for H2 are also similar to
those in Sec. III A. We still assume the electron orbitals to be
given by Eqs.~3.9! and ~3.10!. The HF equations~3.12!–
~3.14! remain valid except the ion-electron interaction poten-
tial Ṽm(z) is replaced by Ṽmm(z,R'/2). The electron-
electron interaction kernels are unchanged. The total
electronic energy is still given by Eq.~3.19! with e2/Z re-
placed bye2/(Z21R'

2 )1/2.
We now estimate the regime of validity of this ansatz. As

an example, let us consider the ground electronic state of
H2

1 . In general, the transverse wave function of the electron
is a superposition of different Landau ground-state wave
functions, i.e.,

F'~r'!5(
m

AmWm~r'!, ~3.26!

andF(r )5F'(r') f (z) is the total wave function~see also
Appendix B!. For simplicity, just consider the first two terms
in the expansion ~3.26!, i.e., F'(r')5A0W0(r')
1A1W1(r'), with uA1u!uA0u for the ground state. Substitut-
ing F(r ) into the Schro¨dinger equation and average over
r', we obtain~in atomic units!

2
1

2

d2

dz2
f2Ṽ00~z! f1

A1

A0
Ṽ01~z! f5« f , ~3.27!

2
1

2

d2

dz2
f2Ṽ11~z! f1

A0

A1
Ṽ10~z! f5« f , ~3.28!

where Ṽmm8 is defined similar to Eq. ~3.24!. Since
uṼ01u!uṼ00u and uṼ01u!uṼ11u, from Eqs. ~3.27! and ~3.28!
we haveA1 /A0.Ṽ10/(Ṽ112Ṽ00). Substituting this into Eq.
~3.27!, we have

2
1

2

d2

dz2
f2Ṽ00f1

Ṽ01Ṽ10

Ṽ112Ṽ00

f5« f . ~3.29!

Comparing with the zeroth order eigenvalue«m
(0) ~which

does not take into account the mixing!, the corrected eigen-
value for the ground state is then given by

«0.«0
~0!1K Ṽ01Ṽ10

Ṽ112Ṽ00
L ;«0

~0!1K Ṽ01Ṽ10

«0
~0!2«1

~0! L , ~3.30!

where^•••& denotes expectation value. Requiring the second
term to be smaller than the first, we have^Ṽ01&

2/ l! l 2, where
we have usedu«0

(0)u; l 2 and u«0
(0)2«1

(0)u; l . Since

^Ṽ01&;2 KR'•“
W
1

r L
01

;2R'K xr 3 L
01

;2R'r̂ K 1r 3 L
;2

1

Lzr̂
R' , ~3.31!

the condition for the ansatz to be valid isR'! l 1/2r̂, i.e., the
proton transverse displacement must be smaller than;r̂.

2. Ansatz B

At largeR' , the molecule should become two individual
atoms~or atom plus ion!. Here we set up a rectangular coor-
dinate system so that the two protons are located at
(0,0,Z/2) and (R',0,2Z/2). The electron wave function of
H2

1 is assumed to beFm0(r )5Wm(r') f m0(z), i.e., the elec-
tron cloud is centered on one of the protons. Then the prob-
lem is essentially equivalent to calculating how an atom is
affected by an external ion. The Schro¨dinger equation~3.4!
still applies except that the potentialṼm(z) is replaced by

Ṽmm8 ~z,R'!5VmS Uz2
Z

2U D1VmmS Uz1
Z

2U,R'D , ~3.32!

where the functionsVm andVmm are defined in Eqs.~3.6!
and~3.24!, respectively. The eigenvalue can again be solved
and thus the total energyE(Z,R') can be obtained.

In this ansatz, since the electron wave function is not
symmetric with respect toz→2z, the numerical method
used in Secs. III A and III B 1~see paper I! needs modifica-
tion. Here we integrate the equation from both` and2`.
The eigenvalue is obtained by matching the solution atz50
~see@31#!. We also note that the classical quadrupole formula
for the ion-atom interaction is not applicable here, since we
always considerR'&Lz for a bound state.

For H2 , we choose the two electron orbitals centered on
each of the protons:

Fm1
~r !5Wm1

~r'! f m10
~z!, ~3.33!

Fm2
~r !5Wm2

~r'2R'! f m20
~z!e2 iBR'y/2. ~3.34!

The extra factore2 iBR'y/2 in Fm2
(r ) comes from a gauge

transformation, so that the displaced Landau wave function
Wm2

(r'2R') is still an eigenstate of the magnetic Hamil-
tonian with a fixed gauge@Eq. ~3.2!#, i.e.,

HB@Wm2
~r'2R'!e2 iBR'y/2x~↓ !#50. ~3.35!

With this ansatz for the basis wave functions, the HF equa-
tions given in Sec. III A@Eq. ~3.12!# can be applied, except
that Ṽm(z) must be replaced byṼmm8 (z,R') given in Eq.
~3.32!. Also, the direct and exchange kernels@Eqs.~3.15! and
~3.16!# are replaced by
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D̃m1m2
~z12z2 ,R'!5E d2r 1'd

2r 2'uWm1
~r 1'!u2uWm2

~r 2'2R'!u2
1

r 12
, ~3.36!

Ẽm1m2
~z12z2 ,R'!5E d2r 1'd

2r 2'Wm1
~r 1'!Wm2

~r 2'2R'!Wm1
* ~r 2'!Wm2

* ~r 1'2R'!3eiBR'~y12y2!/2
1

r 12
. ~3.37!

The functionD̃m1m2
(z,R') can be expressed as a sum of the

functionVmm ~see Appendix A!,

D̃m1m2
~z,R'!5 (

s50

m11m2

ds~m1 ,m2!
1

A2
VssS z

A2
,
R'

A2D ,
~3.38!

thus it can be evaluated using Eq.~3.24!. For R'@ r̂, the
exchange interaction between electrons can be neglected
since the electron clouds are separated, i.e., we can set
Ẽm1m2

(z,R')50. Therefore, we only need to solve the cor-
responding Hartree equations:

F2
\2

2mer̂
2

d2

dz2
2
e2

r̂
Ṽmm8 ~z,R'!1

e2

r̂
K̃m~z,R'!2«mG f m0~z!

50, m5m1 ,m2 , ~3.39!

whereK̃m is given by

K̃m1
~z,R'!5E dz8 f m20

~z8!2D̃m1m2
~z2z8,R'!, ~3.40!

and similarly forK̃m2
.

In Fig. 3, we show the energy curve for H2
1 at B1251.

The electron is assumed to be in them50 state. The elec-
tronic energy curvesE(Z,R0) are calculated using ansatz A
with a fixed value ofR'5R0 . Each curve has a minimum at

Z5Zeq(R0). We see that this equilibrium position is almost
independent ofR0 , i.e., Zeq(R0).Zeq(0)5Z0 . The curves
E(Z0 ,R') with a fixed value ofZ0 are calculated using both
ansatzes discussed above. ForR' less than a few timesr̂,
ansatz A yields lower energy, while for largerR' , ansatz B
gives the correct behavior for the energy curve, i.e.,
E(Z0 ,R')→Ea asR' increases. Similar behavior for H2 can
also be obtained. It is evident from Fig. 2 that the curves
E(Z0 ,R') are much steeper thanE(Z,R0). Thus the mol-
ecule is tied much more ‘‘rigidly’’ to the magnetic-field line
than along the field axis.

IV. RESULTS FOR THE MOLECULAR EXCITATION
LEVELS

In this section, we present our numerical results for the
excitation levels of H2 . The results for H2

1 are also included
for completeness and for comparing with previous calcula-
tions ~no previous results for H2 are available!.

A. Electronic excitations

The equilibrium electronic state is determined by the
minimum in the energy curveE(Z,0) ~cf. Fig. 1!. For
H2

1 , the electronic state is characterized by a single quan-
tum numberm. For H2 , there are two types of electronic
excitations: the ‘‘tightly bound’’ levels correspond to elec-
trons in the (m,n)5(m1,0) and (m2,0) orbitals, and the
‘‘weakly bound’’ excitation corresponds to
(m,n)5(0,0),(0,1). We have calculated all the electronic
bound states of H2

1 and H2 for 0.1<B12<10. The results
for H2 are summarized in Table II~for the tightly bound
states! and Table III~for the weakly bound state!, while the
results for H2

1 are given in Table IV. Here, by ‘‘bound’’ we
mean that the equilibrium electronic energyEm of the mol-
ecule is less thanEa[Ea(0), theenergy of a single atom in
the ground state~for H2

1), or 2Ea , the energy of two atoms
~for H2). Clearly, H2 has more electronic excitation levels
than H2

1 . As B increases, the number of bound levels in
H2 increases. ForB12<10, only single-excitation tightly
bound levels, i.e., those withm150, are bound. The double-
excitation levels, such as (1,2) are not bound until the field
strength increases toB12*50. Excluding the zero-point os-
cillation energy of the protons~see Sec. V!, the dissociation
energy of the H2 molecule is given byD (`)52Ea2Em .

We have also calculated the ground-state energy of the
molecule in the stronger field regime. ForB12*10, our nu-
merical results can be well fitted to the form

Em.20.091~ lnb!2.7 ~a.u.!. ~4.1!

A more general fitting formula forD (`) is given in Eq.
~5.2!.

FIG. 3. The electronic energy curves for the ground state of
H2

1 atB51012G. The light lines show theE(Z,R0) curves with a
fixed R'5R0 for R050 ~solid line!, R05 r̂ ~dotted line!, and
R052r̂ ~dashed line!. The dark lines show the function
E(Z0 ,R') for a fixed value ofZ0 given by the equilibrium separa-
tion of the protons. The solid line is calculated using ansatz A, the
dotted line using ansatz B~see Sec. III B!.
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We note that asB increases, the energyuEmu of the tightly
bound levels of H2 increases rapidly, while that of the
weakly bound level does not change appreciably. For
l5 lnb@1, the weakly bound state is indeed an excited state
of the H2 molecule. ForB12&0.2, however, we find that the
weakly bound state actually has lower energy than the tightly
bound level (m1 ,m2)5(0,1). Thus for such relatively small
magnetic-field strength, the weakly bound state is the actual
ground state of the molecule.

B. Aligned vibrational excitations

In the standard Born-Oppenheimer approximation, the
Hamiltonian describing the relative motion of the protons is
simply Hi5P2/(2m)1U(Z,R'), where m is the reduced
mass of the proton pair, and the interatomic interaction po-
tentialU is given by the total electronic energyE(Z,R'), as
calculated in Sec. III. For the vibrations along thez direction,
there is no magnetic force on the protons, and Eq.~4.1! is a
good approximation. The aligned vibrations are governed by
the potentialU(Z,0)5E(Z,0), which we can fit to a Morse
potential~e.g.,@28#!

U~Z,0!5Dm$12exp@2b~Z2Z0!#%
21Em , ~4.2!

whereb is a fitting parameter, and

Dm[U~`,0!2Em . ~4.3!

Thus Dm5Ea(m)2Em for H2
1 , and Dm5Ea(m1)

1Ea(m2)2Em for H2 ~we consider the tightly bound states
only!. The aligned vibrational energy levels are then given
by

Eni
5\v iS ni1

1

2D2
~\v i!

2

4Dm
S ni1

1

2D
2

, ~4.4!

TABLE II. The tightly bound energy levels of a H2 molecule in which the electrons occupy the
(m,n)5(m1,0) and (m2,0) orbitals (m1Þm2). HereB125B/(1012 G), Ea is the ground-state energy of the
H atom,m1 ,m2 are the quantum numbers specifying the electronic excitations,Em is the electronic energy of
the molecule,Z0 is the equilibrium interatomic separation (a0 is the Bohr radius!, Dm is defined by
Dm[Ea(m1)1Ea(m2)2Em(m1 ,m2), \v i is the aligned vibrational energy quanta, and\v'0 is the trans-
verse vibrational energy quanta~neglecting the magnetic forces on protons!.

B12 2Ea ~eV! m1 ,m2 Em ~eV! Z0 (units of a0) Dm ~eV! \v i ~eV! \v'0 ~eV!

0.1 2152.8 0,1 2161 0.52 31.7 3.0 2.6
0.5 2260.4 0,1 2291 0.30 67.5 7.2 8.7

0,2 2264 0.32 55.7 6.3
1 2323.0 0,1 2369 0.25 91.0 9.8 14

0,2 2337 0.26 76.5 8.8
0,3 2323 0.26 73.0 8.3

2 2397.0 0,1 2466 0.20 121 13 23
0,2 2425 0.21 103 12
0,3 2408 0.21 98.3 11
0,4 2398 0.22 96.8 11

5 2514.2 0,1 2623 0.15 173 19 42
0,2 2573 0.16 150 18
0,3 2550 0.16 143 17
0,4 2537 0.16 142 16
0,5 2527 0.17 141 16
0,6 2519 0.17 140 16

10 2619.2 0,1 2769 0.12 224 25 65
0,2 2709 0.13 196 23
0,3 2682 0.13 188 22
0,4 2666 0.14 185 22
0,5 2654 0.14 183 21
0,6 2645 0.14 183 21
0,7 2638 0.14 182 21
0,8 2632 0.14 182 20
0,9 2627 0.14 182 20
0,10 2623 0.14 181 20

TABLE III. The energy of the weakly bound state of H2 in
which the electrons occupy the (m,n)5(0,0) and (0,1) orbitals.
Here B125B/(1012 G), Em is the energy of the molecule,
Dn5uEmu22uEau is the dissociation energy of the level~neglecting
the zero-point oscillation energy of the protons!, andZ0 is the equi-
librium interatomic separation (a0 is the Bohr radius!.

B12 Em ~eV! Dn ~eV! Z0 (units ofa0)

0.1 2167 14 1.5
0.5 2279 19 1.3
1 2344 21 1.1
2 2421 24 0.99
5 2542 28 0.89
10 2649 30 0.72
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where the vibrational energy quanta is

\v i5\bS 2Dm

m D 1/2. ~4.5!

The values of\v i andDm for different bound electronic
states and different magnetic-field strength are given in Table
II for H2 and in Table IV for H2

1 . In Fig. 1, the numerical
E(Z,0) curve is compared with the fitted curve@Eq. ~4.2!#
for the (0,1) state of H2 at B1251. We see that the fitting is
indeed very good, especially for the bound region~below the
dark line in Fig. 1!. For H2 , our results for\v i are accurate
to within about 5%. The Morse potential fits theE(Z,0)
curves of H2

1 less well, but the resulting\v i is still accurate
to within about 10%.

As discussed in Sec. II,\v i @cf. Eq. ~2.8!# is approxi-
mately proportional to (lnb)2m21/2 times a slowly increasing
function of B. Our numerical results confirm this approxi-
mate scaling relation. A better empirical scaling is\v i
}(lnb)5/2m21/2. Thus for the (m1 ,m2)5(0,1) state of H2
(m.918), we have

\v i.0.13~ lnb!5/2m21/2 ~ a.u.!.0.12~ lnb!5/2 ~eV! ~H2!.
~4.6!

For the ground state (m50) of H2
1 , we have

\v i.0.085~ lnb!5/2m21/2 ~a.u.!

.0.076~ lnb!5/2 ~eV! ~H2
1!. ~4.7!

Both Eqs. ~4.6! and ~4.7! are accurate to within about
10%. These fitting expressions are indeed very satisfactory
considering the approximation introduced when we use the
Morse potential to fit the numericalE(Z,0) curves.

There is no previous reliable calculation for H2 mol-
ecules. For H2

1 , our results for the ground-state electronic
energy, interatomic spacing, and aligned vibrational energy
quanta\v i agree with those obtained by Wunner, Herold,
and Ruder@15#, and those of Le Guillou and Zinn-Justin
@17#, who used a similar method as ours in the aligned cases.
The slight difference in\v i between our results and theirs is
likely due to the different ways of extracting this quantity:

we obtain it by fittingE(Z,0) to a Morse potential, while
they obtained it by evaluating the second derivative of
E(Z,0) around the equilibrium separation. Le Guillou and
Zinn-Justin also considered the effects of nonadiabaticity
~i.e., mixing of different electron Landau levels!. This is neg-
ligible for the field strength of interest in this paper
(b@1). The variational calculation of Khersonskii@16# gave
somewhat smaller~by about 20%) values for\v i . This is
due to the inaccuracy in his atomic binding energy.

C. Transverse vibrational excitations

Neglecting the magnetic forces on the protons, the trans-
verse oscillations of the molecule are governed by the poten-
tial U(Z0 ,R')5E(Z0 ,R'). Our calculation of this function
is less accurate than the aligned case, and yields only an
upper limit to the exact potential. For small-amplitude oscil-
lation ~see Sec. II!, we fit this potential to a harmonic form

dU~R'!5U~Z0 ,R'!2U~Z0,0!.
1

2
mv'0

2 R'
2 . ~4.8!

The transverse vibrational motion of the protons is therefore
described by a two-dimensional harmonic oscillator. The nu-
merical values for the transverse vibrational energy quanta
are tabulated in Table II~for H2) and in Table IV ~for
H2

1). Only the results for the ground electronic states are
given.

Note that \v'0 is larger than\v i for B12*1. Also,
\v'0 and \v i can be comparable or even larger than the
electronic excitation energy spacingsDEm . This is in con-
trast with the zero-field cases, where one hasDEm@\vv ib
@\v rot . Although the actual values of\v'0 may be some-
what smaller than our results, the qualitative features re-
vealed in our calculations are expected to be valid in general.

The discussion in Sec. II gives \v'0
;(j21blnb)1/2m21/2 @Eq. ~2.10!#, where j21 increases
slowly with increasingB. Our numerical results confirm this
approximate scaling relation and\v'0}b

1/2(lnb)m21/2 fits
better the results in Table II and Table IV. For the
(m1 ,m2)5(0,1) state of H2 , we have

TABLE IV. Bound-state energy levels of H2
1 . HereB125B/(1012 G), Ea is the ground-state energy of

a H atom,m is the quantum number specifying the electronic excitations of the molecule,Em is the electronic
energy of the molecule,Z0 is the equilibrium interatomic separation (a0 is the Bohr radius!, Dm is defined by
Dm[Ea(m)2Em , \v i is the aligned vibrational energy quanta, and\v'0 is the transverse vibrational
energy quanta~neglecting the magnetic forces on protons!.

B12 Ea ~eV! m Em ~eV! Z0 ~units ofa0) Dm ~eV! \v i ~eV! \v'0 ~eV!

0.1 276.4 0 299.9 0.62 23.5 2.0 3.1
0.5 2130.2 0 2182 0.35 51.8 4.9 9.8
1 2161.5 0 2232 0.28 70.5 6.6 16

1 2162 0.40 44.8 4.4
2 2198.5 0 2293 0.23 94.6 9.0 25

1 2207 0.32 61.5 5.9
5 2257.1 0 2393 0.18 136 13 45

1 2284 0.24 91.1 8.6
10 2309.6 0 2486 0.15 176 17 70

1 2356 0.19 121 12
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\v'0.0.125b1/2~ lnb!m21/2 ~a.u.!

50.553S b

bcrit
D 1/2lnb ~a.u.!50.11b1/2~ lnb! ~eV! ~H2!.

~4.9!

For them50 state of H2
1 , we have

\v'0.0.14b1/2~ lnb!m21/2 ~a.u.!50.62S b

bcrit
D 1/2lnb ~a.u.!

50.13b1/2~ lnb! ~eV! ~H2
1!. ~4.10!

Our results for\v'0 of H2
1 also agree closely with those

of Le Guillou and Zinn-Justin@17# obtained using their
‘‘static approximation,’’ which is similar to ansatz A adopted
in our paper~Sec. III B 1!. Their improved calculations in-
dicate that the real value of\v'0 can be lower by tens of
percent ~from about 10% forB1250.1 to about 40% for
B1255). We expect our results for H2 to have similar accu-
racy. However, as noted in Sec. II C, the present results apply
only to the small-amplitude (R'* r̂) vibrations and rela-
tively weak field (B*Bcrit). For sufficiently large field
strength, the magnetic forces on the protons become impor-
tant and can change the transverse vibration energy signifi-
cantly, as we discuss below.

V. EFFECTS OF FINITE PROTON MASS
ON THE ELECTRONIC ENERGY

AND MOLECULAR DISSOCIATION ENERGY

Our calculations and results in the previous sections are
based on Born-Oppenheimer approximation where the pro-
ton positions are fixed when we consider the electronic en-
ergy of the molecule. For finite proton mass, one can rescale
the electronic energy by replacing the electron mass with an
appropriate reduced mass. This only introduces a small cor-
rection ~of order me /mp), and is neglected in our paper.
However, as noted in Sec. I, the separation of the proton and
electron motion in a strong magnetic field is much more
complicated, especially in the regime ofB*Bcrit when the
cyclotron energy of a proton,

\vp5\~eB/mpc!5~b/bcrit !lnbcrit ~a.u.!56.3B12 ~eV!,
~5.1!

is comparable with or larger than the spacing of the elec-
tronic energy levels. The ‘‘standard procedure’’ for separat-
ing the proton and electron motion leads to some ambiguities
regarding the binding energy of H2 in the strong field re-
gime; these are discussed in Sec. VA. An alternative scheme,
which is more suitable forB*Bcrit , is described in Sec. V
B. An approximate expression for the ‘‘corrected’’ dissocia-
tion energy of H2 in the ground state is given by Eq.~5.7!.

A. Unbound states from the standard scheme whenB*Bcrit

In Secs. II and III we have followed the ‘‘standard proce-
dure’’ for molecules, where one first considers the two pro-
tons as infinitely massive fixed at equilibrium separationZ0
along the same field line, with their motion included only as
an ‘‘afterthought.’’ This is strictly valid only forB!Bcrit ,

where the zero-point vibration amplitudes and the magnetic
force on the protons are small. The two electrons, both in the
lowest Landau level, are in cylindrical orbitalsm1 andm2
centered on the proton field line with radii given by Eq.
~1.2!. The Pauli principle requiresm1Þm2 so that the ground
state hasm11m251. As thep-p separationZ is allowed to
increase, the system tends to two free H atoms, one in orbital
statem1 and anotherm2 . The standard procedure for treating
the two-body problem of a hydrogen atom@20,21# deals with
states where the transverse pseudomomentum of each atom
is zero, in which case the protons must have Landau excita-
tions m1 andm2 , respectively. The simplest state for the
molecule with electronic orbitalsm1 andm2 is then the state
where the protons have these Landau excitations at all sepa-
rations~even though the transverse pseudomomentum is con-
served only for the total molecule, not individual atoms!.
This choice adds a Landau excitation energy
(m11m2)\vp , i.e., even the electronic ground state would
have an additional positive energy\vp and would be un-
bound ~relative to two ground-state atoms! for B@Bcrit .
This molecular state has the simplest wave function but not
necessarily the lowest energy, since there are states where
pseudomomentum is not zero~corresponding to finite sepa-
ration of the guiding centers of the electron and proton; see
Ref. @20#!. States without the additional energy\vp are dis-
cussed in Sec. V B.

For infinite proton mass, the dissociation energy of H2 is
given byD (`)52Ea(0)2Em . Our numerical results for the
(m1 ,m2)5(0,1) ground state can be written in the following
form:

D ~`!.0.106F11t ln S b

bcrit
D G~ lnb!2 ~a.u.!,

t.0.1~ lnb!0.2, ~5.2!

where t varies slowly with b (t.0.14 for b;103 and
t.0.17 for b;105). For field strengthb.bcrit the square
bracket in Eq.~5.2! can be replaced by unity. As shown in
Sec. II B and Sec. IV B, the aligned proton vibrations have
an energy spacing of order\v i;m21/2D (`) and a small vi-
bration amplitude of orderdZ;m21/4Z0 , whereZ0 is the
equilibrium separation between the protons@Eq. ~2.5!#. The
inequality \v i!D (`) does not depend appreciably on the
magnetic-field strength, so for the ground molecular state we
should be able to use\v i in Eq. ~4.6! for the aligned vibra-
tions even whenB@Bcrit ; furthermore, sincedZ!Z0 , we
do not need to consider the Pauli principle explicitly for the
transverse wave functions of the protons. For treating this
transverse motion, however, the magnetic force becomes
important whenb*bcrit , as can be seen from the ratio
of the expressions in Eqs. ~5.1! and ~4.9!,
\vp /\v'0.1.81(b/bcrit)

1/2(lnbcrit /lnb). We can give at
least a plausibility argument for the inclusion into the ‘‘stan-
dard scheme’’ of the magnetic effects on the transverse mo-
tion from the following consideration: A free proton in the
magnetic fieldB has a zero-point energy\vp/2. This can be
thought of as the ground-state energy in a ‘‘magnetic restor-
ing potential’’ (1/2)mpvp

2(R'/2)
2, which gives a ground-

state wave function of sizeR';r̂ ~independent of mass! as
in the Landau wave function@Eq. ~2.2!#. Thus the total re-
storing potential for the protons in H2 is given by the sum of
the ‘‘electronic potential’’dU(R'), which we have calcu-
lated in Sec. III, and twice~for two protons! of the magnetic
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restoring potential. ForR'* r̂, we have seen thatdU(R')
can be approximated by the quadratic form in Eq.~4.8!, so
that the total potential ism(v'0

2 1vp
2)R'

2 /2. The size of the
ground-state wave function is then& r̂, the approximation is
justified, and the excitation energy quanta is
\(v'0

2 1vp
2)1/2. Since the energy of\vp/2 also exists in an

isolated H atom, the zero-point energy for the transverse os-
cillation of the molecule can be written as

\v'5\~v'0
2 1vp

2!1/22\vp . ~5.3!

Forb!bcrit we have\v'.\v'0 as expected, and Eq.~5.2!
shows that\v' /D (`);5(b/bcrit)

1/2/ lnb!1. For b@bcrit ,
on the other hand,\v'.\v'0

2 /(2vp).0.016l 2 so that
\v' /D (`);0.15. Thus the transverse zero-point energy
\v' remains less than the dissociation energy for the state
given by the standard scheme, but the Landau energy\vp of
the excited proton has to be added to the molecular energy
also. The ‘‘corrected’’ dissociation energy in this scheme is
then given by

D ~std!5D ~`!2
1

2
\v i2D«~std!,

~5.4!

D«~std!5\~v'0
2 1vp

2!1/2.

Clearly,D (std) becomes negative~i.e., the state is unbound!
asb increases beyondbcrit . We shall see in Sec. V B that an
alternative scheme gives molecularboundstates with lower
energy forb*bcrit .

B. The alternative scheme

The alternative scheme we propose for the H2 molecule
ground state is a generalization of the scheme for the H atom
described in Sec. IV of Ref.@20#. In this scheme the trans-
verse pseudomomentum is not chosen as a good quantum
number, and our approximate wave function will not be an
exact eigenstate of the Hamiltonian. However, it does pro-
vide a suitable trial wave function and enables us to obtain a
rigorous lower limit to the dissociation energyD. In the
absence of Coulomb interaction between the four particles,
there are eight quantum numbers specifying the transverse
degrees of freedom of the system: the Landau excitation
numbern and the orbital numberm for each of the four
particles. For the H2 ground state we then choosen50 for
both electrons and both protons~so there is no\vp contri-
bution to the electronic energy of the molecule!, and
(m1 ,m2)5(0,1) for the electrons. We can choosem50 for
both protons since, as mentioned, the protonz wave function
can be antisymmetrized to satisfy the Pauli principle with
little energy contribution. As a trial wave function we assume
that the charge distribution of protons consists of two sheets
separated in thez axis by distanceZ, with surface density
given by uW0(r')u2. Obviously, when the Coulomb poten-
tials between the particles are restored,n andm for the in-
dividual particle cease to be good quantum numbers,4 but the
trial wave function thus constructed will give an upper bound

to the true ground-state energy of the molecule according to
the variational principle. This ‘‘trial energy’’ can be calcu-
lated using the Hartree-Fock method described in Sec. II A,
subjected to two modifications:~i! the averaged electron-
proton interaction potentialṼm(z) in Eq. ~3.5! is replaced by

Ṽm~z!→E d2r'euWm~r'e!u2E d3r puW0~r'p!u2

3FdS zp2 Z

2D1dS zp1 Z

2D G 1

ure2r pu

5D0mS z2
Z

2D1D0mS z1
Z

2D , ~5.5!

whereD0m(z) is defined in Eq.~3.17!; ~ii ! the proton-proton
interaction terme2/Z in Eq. ~3.19! is replaced byD0m(Z)
~although this modification has a negligible effect on the en-
ergy except whenZ→0).

The molecular energyEm
(alt) obtained by this alternative

scheme is larger than the resultEm obtained using the
scheme of Sec. III A~where the protons are treated as infi-
nitely massive!, by some amountD« (alt). The weakening of
the electron-proton interaction is due to the spread of the
proton wave function by an amount of orderr̂. However,
sinceZ@ r̂ the change involves only the logarithm of the
Coulomb energy. This can be characterized by changingb in
Eq. ~4.1! to b/(2C), where C is of order unity, i.e.,
Em
(alt).20.091 @ ln(b/2C)#2.7. To leading order in ln(2C),

we then have

D ~alt !5D ~`!2
1

2
\v i2D«~alt !;

~5.6!
D«~alt !.0.24ln~2C!~ lnb!1.7 ~a.u.!,

as an alternative to Eq.~5.4!.
We have performed numerical calculations and found that

the ‘‘trial’’ ground-state energy thus obtained agrees with the
result using the scheme of Sec. III A to within 15%. For
B12550, 100, 500, 103, we foundD« (alt).162, 191, 258,
294 eV, corresponding toC.0.8 forB12550 andC.0.9 for
B125103. The numerical values forD« (alt) can be fitted by
D« (alt).0.06(lnb)2. This has the same scaling withb as
\v' defined in Eq.~5.3!. With this value ofD« (alt), the
dissociation energy given by Eq.~5.6! is larger than that
from Eq. ~5.4!, and therefore represents the true molecular
ground state for allb*bcrit . Our numerical calculation of
D« (alt) used a particularly simple trial wave function and a
better wave function with the variational method would pre-
sumably lowerD« (alt) somewhat. This would lower the nu-

4The only good quantum number for the transverse degrees of
freedom is the total orbital angular momentum along thez axis,
Lz5( isgn(ei)(mi2ni), where sgn(ei)51 for proton and
sgn(ei)521 for electron@20#. Forb@bcrit , the Landau excitation
numbersn for both electrons and protons are ‘‘adiabatically’’ con-
served and can be set to 0 for the ground state. In this case
Lz5m1p1m2p2m1e2m2e . Thus the true ground state of the mol-
ecule for B@Bcrit involves a mixing of many different
(m1e ,m2e ,m1p ,m2p) states with the sameLz .
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merical value ofb above which the true ground state is the
state with no Landau excitations for either proton, obtained
by the present ‘‘alternative scheme.’’

The fact thatD« (alt) scales similarly withb as\v' sug-
gests that for practical purposes, the ‘‘corrected’’ dissociation
energy of H2 in the ground state can be approximated by

D.D ~`!2S 12 \v i1\v'D ~5.7!

for all field regimes (b@1), where\v' is given by Eq.
~5.3!. The numerical results for a wide range of field strength
are summarized in Table V.

VI. CONCLUSIONS

In this paper, we have studied and characterized the en-
ergy excitation levels of a H2 molecule in a superstrong mag-
netic field (B*1012 G! which exists on the surfaces of many
neutron stars. The main theoretical uncertainty of our calcu-
lations lies in the nontrivial separation of the motion of the
protons and that of the electrons. Nevertheless, we find that
in such a strong magnetic field, the H2 molecule exhibits
completely different energy excitation levels as compared to
its well-known zero-field counterpart. The fact that the exci-
tation energies associated with the oscillations of the protons
are comparable to the electronic excitations indicates that the
statistical weight of a H2 molecule is not much larger than
that of a H atom. This greatly simplifies the calculations of
the chemical equilibria of various forms of H in a neutron
star atmosphere@18#.

Larger hydrogen molecules and chains can also form in a
superstrong magnetic field. Their ground-state binding ener-
gies have been calculated in paper I. It is expected that these
larger molecules possess qualitatively similar energy excita-
tion levels as those of H2 considered in this paper, with one
exception: For a long chain molecule Hn with 1!n
!@b/( lnb)2#1/5, the spacingZ0 along a field line between
adjacent protons decreases with increasingn approximately
as n22. The fractional zero-point vibration amplitude
DZ/Z0 is of order (me /mp)

1/4n1/2. The aligned vibrations
thus become more pronounced asn increases~and can lead
to ‘‘internal pycnonuclear reactions’’ which will be discussed
in @18#!.

There is no question that the exotic molecules considered
in this paper exist on the surfaces of some neutron stars with
B12*1012 G and temperatureT;1052106 K @18#. For very
low surface temperature (T*105 K!, the atmosphere is
likely to condensate into a metallic state, since the hydrogen
metal has the largest binding energy. However, for the astro-
physically more interesting temperature range (T*105 K!,
the outer layer of a neutron star will exist predominantly in
the form of nondegenerate gas of individual atoms and small
molecules: e.g., whenT;33105 K, the photosphere of a
neutron star is dominated by atoms ifB1251, while it is
dominated by H2 if B12510. The existence of H2 in the
atmosphere will give rise to appreciable radiative opacity.
For example, since the proton separation in H2 is different
from that in H2

1 ~see Table II and Table IV!, the photoion-
ization cross section from the ground state of H2 is expected
to be small according to the Franck-Condon principle. How-
ever, photoionization from an excited vibrational state or
electronic state, for which the proton separation is close to
that in the H2

1 ground state, can provide significant con-
tinuum opacity. These issues may warrant further study, es-
pecially in light of the increasing possibility of the spectro-
scopic studies of isolated neutron stars by future x-ray and
EUV satellites.
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APPENDIX A: COULOMB INTEGRALS
FOR THE LANDAU WAVE FUNCTION

In this appendix, we derive Eqs.~3.24! and ~3.38!. First
consider the function

Vmm~z,r 0!5 KmU 1

ur2r0u
UmL , ~A1!

with r 05r 0x̂. Since

1

r
5

1

2p2E d3q

q2
eiq•r, ~A2!

we have

Vmm~z,r 0!5
1

2p2E d3q

q2
e2 iq•r0eiqzz^mueiq'•r'um&. ~A3!

Using the general result for the matrix element@32#

^m8ueiq'•r'um&5~21!mim1m8S m!m8! D 1/2e2q'
2 /2Lm

m82mS q'
2

2 D
3S q'

A2D
m82m

ei ~m82m!uq ~m8>m!, ~A4!

TABLE V. The dissociation energy of a H2 molecule in the
ground state in a superstrong magnetic field.D (`) is the dissociation
energy assuming infinite proton mass, whileD includes the~ap-
proximate! correction of the molecular zero-point energy@Eq.
~5.7!#. B125B/(1012G), \v i/2 is the zero-point energy for the
aligned vibration, and\v' is the zero-point energy for the trans-
verse vibration@Eq. ~5.3!#. Note that forB12,0.2, the ground state
is actually the ‘‘weakly bound’’ state~see Secs. II A and IV A!, and
the zero-point energy has been neglected. All energies are expressed
in eV.

B12 0.1 0.5 1 5 10 100 500

D (`) 14 31 46 109 150 378 615
D .14 21 32 79 110 311 523
\v i/2 3.6 4.9 9.5 12 22 31
\v' 6.1 9.1 21 28 45 61
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whereuq specifies the angle ofq' in the qx2qy plane, and
Ln
m is the Laguerre polynomial of ordern @30#, we have

^mueiq'•r'um&5e2q'
2 /2LmS q'

2

2 D . ~A5!

Substitute Eq.~A5! into ~A3!, and integrate outdqz and
duq using

E dqz
qz
21q'

2 e
iqzz5

p

q'

e2q'uzu ~A6!

and

E duqe
2 iq'r0 cosuq52pJ0~q'r 0!, ~A7!

we obtain

Vmm~z,r 0!5E
0

`

dq'e
2q'

2 /22q'uzuJ0~q'r 0!LmS 12 q'
2 D ,

~A8!

i.e., Eq. ~3.24!. Note that using Eq.~A4!, a more general
expression can be obtained for the matrix element

Vm8m~z,r 0![Km8U 1

ur2r0u
UmL

5S m!m8! D 1/2E0`dqS q

A2D
m82m

3e2q2/22quzuJm82m~qr0!Lm
m82mS 12 q2D

~m8>m!. ~A9!

Next considerD̃m1m2
defined in Eq.~3.36!. Changing

variable (r 2'2R')→r 2', we have

D̃m1m2
~z12z2 ,R'!5E d2r 1'd

2r 2'uWm1
~r 1'!u2

3uWm2
~r 2'!u2

1

ur12r22R'u
.

~A10!

Using Eq.~A2!, we have

D̃m1m2
~z,R'!5

1

2p2E d3q

q2
e2 iq•R'eiqzz^m1ueiq'•r'um1&

3^m2ueiq'•r'um2&. ~A11!

Again, using Eq.~A4!, and integrating outdqz andduq with
Eqs.~A6! and ~A7!, we obtain

D̃m1m2
~z,R'!5E

0

`

dqe2q22quzuJ0~qR'!Lm1S 12 q2D

Lm2S 12 q2D . ~A12!

Now defining the coefficientds(m1 ,m2) via ~see paper I!

Lm1S x2DLm2S x2D5 (
s50

m11m2

ds~m1 ,m2!Ls~x!, ~A13!

Eq. ~A12! then becomes

D̃m1m2
~z,R'!5 (

s50

m11m2

ds~m1 ,m2!

3E
0

`

dqe2q22quzuJ0~qR'!Ls~q
2!

5 (
s50

m11m2

ds~m1 ,m2!

3E
0

`dq

A2
e2q2/22quzu/A2J0S qR'

A2 D LsS q22 D ,
(A14)

which reduces to Eq.~3.38! after using Eq.~A8!.

APPENDIX B: MORE ACCURATE CALCULATION
OF H2

1

An ‘‘exact’’ treatment of H2
1 for general orientation of

the molecular axis proceeds as follows. Consider the coordi-
nate system of ansatz A in Sec. III B 1. Whenb@1, the most
general electron wave function for then50 state can be
written as

Fm0~r !5(
m

Wm~r'! f m0~z!. ~B1!

Substituting this into the Schro¨dinger equation and averaging
over the transverse direction, we obtain a set of differential
equations forf m0(z):

2
\2

2mer̂
2

d2

dz2
f m0~z!2

e2

r̂ (
m8

Ṽmm8~z,R'/2! f m80~z!

5«m0f m0~z!, m50,1, . . . , ~B2!

whereVmm8 is defined similar to Eq.~3.23!:

Ṽmm8~z,R'/2!5Vmm8S Uz2
Z

2U,R'

2 D1Vmm8S Uz1
Z

2U,R'

2 D ,
~B3!

and the functionVmm8 can be evaluated using Eq.~A9!.
Equation ~B2! is subject to the boundary conditions

166 53DONG LAI AND EDWIN E. SALPETER



d fm0 /dz50 at z50 and f m0→0 asz→`. The normaliza-
tion condition requires

(
m

E
2`

`

dzu f m0~z!u251. ~B4!

The set of equations~B2! can be solved numerically using
an iterative scheme similar to that used for solving the
Hartree-Fock equation~paper I!. Successively accurate re-

sults can be obtained by using an increasing number of terms
in the sum in Eq.~B1!. The lowest energy state corresponds
to the solution satisfying

E
2`

`

dzu f 00~z!u2.E
2`

`

dzu f 10~z!u2.E
2`

`

dzu f 20~z!u2.•••.

~B5!

Generalization of this method to a H2 molecule is much
more complicated.
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