A Caltech Library Service

Mineral/melt partitioning of trace elements during hydrous peridotite partial melting

Gaetani, Glenn A. and Kent, Adam J. R. and Grove, Timothy L. and Hutcheon, Ian D. and Stolper, Edward M. (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contributions to Mineralogy and Petrology, 145 (4). pp. 391-405. ISSN 0010-7999. doi:10.1007/s00410-003-0447-0.

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item:


This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H_2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine + orthopyroxene + clinopyroxene + spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H_2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H_2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H_2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H_2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca^(2+) content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H_2O on the structure of silicate melts.

Item Type:Article
Related URLs:
URLURL TypeDescription ReadCube access
Stolper, Edward M.0000-0001-8008-8804
Additional Information:© 2003 Springer Verlag. Received: 17 January 2002 Accepted: 6 January 2003 Published online: 13 May 2003. Editorial responsibility: J. Hoefs. The authors are grateful to J. M. Brenan and C. E. Lesher for thoughtful and constructive reviews. We would like to thank S. Newman for performing the FTIR analyses. E. H. Hauri for carrying out the SIMS analysis of B394, and R. A. Sohn for helping with the statistics. The first author is grateful to G. Hirth and P. Kelemen for helpful discussions. This work was supported by the MARGINS Program of the National Science Foundation under grant no. EAR-0112013, and funded by Lawrence Livermore National Laboratory under the Laboratory Directed Research and Development (LDRD) program and was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
Group:UNSPECIFIED, Division of Geological and Planetary Sciences
Funding AgencyGrant Number
Lawrence Livermore National LaboratoryUNSPECIFIED
Department of Energy (DOE)W-7405-ENG-48
Issue or Number:4
Record Number:CaltechAUTHORS:20120827-100007900
Persistent URL:
Official Citation:Gaetani, G.A., Kent, A.J.R., Grove, T.L. et al. Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145, 391–405 (2003).
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:33553
Deposited By: Ruth Sustaita
Deposited On:27 Aug 2012 17:45
Last Modified:09 Nov 2021 21:35

Repository Staff Only: item control page