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A statistical-dynamical model is formulated for total chemical-reaction cross sections as a function of the 
relative velocity and the vibrational and the rotational state of the reactants. It is derived for reactions for 
which activated-complex configurations can be defined; reactions with or without steric and activation 
barriers. A quasiequilibrium is postulated between reacting pairs and activated complexes of the same energy 
and angular momentum. An integral equation is obtained which is solved for the reaction cross section by 
introduction of a second postulate: The reaction probability is a function of the excess initial energy along 
the reaction coordinate (in excess of potential energy barrier, centrifugal potential barrier, and vibrational 
adiabatic requirements). A possible dynamical origin of the postulates is considered in later papers. 

I. INTRODUCTION 

WITH the advent of molecular-beam studies of 
chemical reactions, increasing attention has been 

focused on differential and total reaction cross sections. 
At least three theoretical approaches to such problems 
can be envisaged, in decreasing order of rigor but in 
increasing order of simplicity: (1) exact numerical 
integration of the classical or quantum-mechanical 
equations of motion of the atoms in the reactive 
collision, (2) approximate analytic integration of such 
equations using approaches related to some employed 
in the study of physical elastic and inelastic collisions, 
and (3) introduction of statistical concepts, perhaps 
akin to those employed in the activated-complex 
theory of chemical reaction rates. The three approaches 
are in fact complementary rather than mutually 
exclusive. 

Extensive and invaluable numerical integrations of 
Type 1 have been performed for triatomic systems.I-3 

They are almost entirely classical mechanical in nature, 
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1 See, for example, D. L. Bunker and N. C. Blais, J. Chern. 
Phys. 37, :?713 (1962); 41, 2377 (1964), and references cited 
therein; M. Karplus and L. M. Raff, ibid. 41, 1267 (1964); 
44, 1212 (1966); P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, 
S. D. Rosner, and C. E. Young, ibid. 44, 1168 (1966). A tetra­
tomic reaction has been treated classically by L. M. Raff, J 
Chern. Phys. 44, 1202 (1966). Pioneering computer studies, 
particularly for collinear collisions, were performed by Wall and 
his collaborators: F. T. Wall, L. A. Hiller, Jr., and J. Mazur, 
J. Chern. Phys. 29, 255 (1958), and subsequent articles. Some 
quantum-mechanical calculations have been made by E. M. 
Mortensen and K. S. Pitzer, Chern. Soc. (London) Spec. Pub]. 
16, 57 (1962). Recent reviews of experimental results on reactive 
scattering have been given by D. Herschbach, Advan. Chern. 
Phys. 10, 319 (1966), and by E. F. Greene, A. L. Moursund, 
and J. Ross, ibid. 10, 135 (1966). 

2 M. Karplus, R. N. Porter, and R. D. Sharma, J. Chern. Phys. 
43,3259 (1965). 

3 For analytic approaches to ion-molecule stripping reactions 
see A. Henglein, K. Lacmann, and B. Knoll, Chern. Phys. 43, 
1048 (1965). For atom-molecule stripping reactions see R. E. 
Minturn, S. Datz, and R. L. Becker, ibid.44, 1149 (1966). Analytic 
features of these and other reactions are discussed by Hersch bach 
in Ref. 1. 

and serve as exact classical numerical experiments with 
which more physical approaches of Types 2 and 3 may 
be compared. In the present paper a theory of Type 3 
is formulated for total reaction cross sections. The 
reactions are quantum or classical and contain three 
or more atoms. Detailed application to the H+H2 

reaction, for example, is made in a subsequent paper. 
The present work utilizes the activated-complex 

concept (this does not imply the existence of any 
long-lived complex, of course), as well as a quasi­
equilibrium postulate for population of the activated 
complex, and a dynamical postulate: (1) vibrational 
adiabaticity, where appropriate, and (2) the assump­
tion that only the initial energy of the reaction co­
ordinate (the relative translational motion initially) and 
of any coupled adiabatic mode can be used to over­
come the energy barrier. (The barrier arises from any 
natural barrier, from the vibrational adiabatic effects, 
and from any centrifugal contribution.) Thus, the 
theory has both statistical and dynamical features. 
They will be discussed in more detail in subsequent 
publications. 

The present study is intended to apply to reactions 
even when they have steric and activation effects. It 
differs in that respect from an approach of Light and 
co-workers described in a recent series of papers.4 The 
latter considered cross sections of reactions having 
centrifugal barriers and discussed the nature of and 
the energy distribution of the reaction products. 

Initially, the theory is presented for simplicity in a 
form which neglects any diffraction effect along the 
reaction coordinate near the activated-complex region. 
In a later section this effect is included. The principal 
results of the present paper are embodied in Eqs. (10), 
(15), (25), (28), (30), and (37). Some particular 
cases of these equations are given in (13), (19), (21), 
(26), (29), (31), and (38). 

4 J. C. Light, J. Chern. Phys. 40, 3221 (1964); P. Pechukas and 
J. C. Light, ibid. 42, 3281 (1965); J. C. Light and J. Lin, ibid. 
43, 3209 (1965); P. Pechukas, J. C. Light, and C. Rankin ibid. 
44,794 (1966). Compare W. B. Maier II,ibid.41,2174 (1964), 
Appendix and references cited therein; C. F. Giese, Advan. 
Chern. Phys. 10, 247 (1966), and references cited therein. 
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In the concluding part of the paper several topics 
are considered briefly, including reaction probabilities, 
energy distribution of products, and vibrational non­
adiabaticity. 

II. TERMINOLOGY 

The following terminology is used below for coordi­
nates in the center-of-mass system. Reactants: (a) 
three translations-one radial and two orbital, (b) 
adiabatic vibrations or rotations, (c) all others, hence­
forth called active modes. Activated complex: (a) 
reaction coordinate q,, (b) adiabatic vibrations (or 
rotations) coupled only to q, throughout the motion, 
(c) all others, henceforth called active. Adiabatic 
modes are those which retain their quantum number 
(or classical action) on formation of activated complex 
from the reactants. In the H + H2 reaction, for example, 
the mode which is an H2 vibration in H2 and a sym­
metric stretching in the activated complex Ha is 
approximately adiabatic5•6 at low to moderate relative 
velocities. 

A locally adiabatic approximation6 is used below for 
all coordinates other than qr. Adiabaticity in the large 
is assumed only for the adiabatic group of coordinates. 
The activated complex is defined as that qr (denoted 
by qr+) for which EN+(qr), the energy of the rotation­
vibration coordinates including potential energy of the 
qr motion, has a maximum as a function of q•. The 
value at the maximum is denoted by EN+· This defini­
tion of q•+ can be shown to reduce to the usual ones in 
the literature when the particular assumptions appro­
priate to the latter are introduced. 

When the locally separable6 or locally separable 
adiabatic approximations6 are used instead of the 
locallv adiabatic one, the form of the final equations 
is fou~d to be unaltered. Only the terminology differs.5 •6 

p 

III. NOTATION 

Reaction coordinate 
Value of qr at the activated complex 
It may vary with the quantum 
stateN+ 
Initial momentum of reactants in 
the center-of-mass system 
Corresponding wavenumber ( = p /li) 
Reduced mass of the two reactants 
Initial translational energy of re­
actants in the center-of-mass sys­
tem ( =p2/2p.) 

N Initial quantum state of pairs of 
reactants (exclusive of orbital angu­
lar momentum l and of its com­
ponent), N denotes a pair of num­
bers v, n 

5 R. A. Marcus, J. Chern. Phys. 45, 2138 (1966). 
6 R. A. Marcus, J. Chern. Phys. 43, 1598 (1965). 

v, E. 

n,En 

rTNp 

Uvnp 

r 

Vo 

n+ 

-+ Ev 

E.+ 

E 

Vc 
v. 
J 

W!vnp 

Initial quantum state and energy of 
adiabatic degrees of freedom of pair 
of reactants, if any 
Initial quantum state and energy of 
active degrees of freedom of pair 
of reactants 
Reaction cross section for systems 
in an initial state N 
Reaction cross section for systems 
in an initial state v, n 
A summation operator involving 
summation over all geometric and 
optical isomeric reaction paths from 
reactants to activated complexes 
for the given process 
Potential energy of most stable con­
figuration of activated complex 
minus that for reactants 
Quantum number of activated com­
plex in a given vibration-rotation 
stateN+ 
Quantum number of active modes 
of the activated complex 
Minimum energy needed for classi­
cal mechanical passage through the 
coordinate hypersurface, qr=qr+, in 
stateN+ 
Contribution of active modes to EN+ 
Contribution of adiabatic modes 
and of potential energy of qr motion 
to EN+ 
Average of Ev+ for the given E 
For Cartesian qr, energy of adiabatic 
modes in the activated complex 
(E.++ Vo=E.+ for this Cartesian 
approximation) 
Total energy in the center-of­
mass system ( =E.+En+EP= 
En ++E.++ kinetic energy of qr 
motion) 
Centrifugal potential 
E.+-E. 
Initial rotational angular momen­
tum quantum number. [If the 
two reactants have individual j's, 
j1 and j 2, then j lies in the interval 
(jjl-j2l,·. ·,jl+j2)] 
Reaction probability of reacting 
pair with total angular momentum 
J, initial orbital angular momentum 
l, and in state specified by v, n, and p 
Reaction probability of pair speci­
fied by l, v, n, and p 
Number of states n and n+ per unit 
energy (i.e., at fixed v) when the 
energy of the active modes is En 
and when the activated complex 
is in the state N+, respectively 
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I'S(E-E,.) 
I'S(E-E;-E;+) 

Q(s) 

Q+(s) 

A, A+ 

Arot1 Arot+ 
Nvib+(x) 

I,J+,u,u+ 

K 

W/Tr)uvnp (outside of threshold) 
(k2/rr)uv;p (at threshold for an 
atomic-diatomic molecule reaction) 
Partition function of active modes 
of reactant pair when s=1/kT, 
Ln exp( -sEn) 
A "partition function7" of an acti­
vated complex having a fixed v, 
Ln+ exp( -SeN+) 
Constants in classical expressions 
for Q(s) and Q+(s), as in Eq. (11) 
Rotational factors in A and A+ 
Number of vibrational states of 
the active modes of the activated 
complex when their energy does not 
exceed x 
Moments of inertia and symmetry 
numbers for a diatomic molecule 
and for a linear activated complex 
in an atom-diatomic-molecule re­
action 
Transmission coefficient for the 
given E and N+, or given E, v, and 
n+ 

IV. QUASIEQillLIBRIUM EQUATIONS 

A quasiequilibrium hypothesis was used elsewhere!!" 
to derive (1) for a classical q' motion: 

(1) 

where UNp is the reaction cross section for a pair of 
reactants which are in an initial vibration-rotation 
stateN and which have an initial relative momentum p. 
LN and LN+ represent sums over all vibration­
rotation states of the pair of reactants and of the 
activated complex, respectively, available to each pair 
or complex whose total energy is E (e.g., the second 
sum is over all N+ for which EN+5,E). I', a second 
summation operator, denotes a summation over all 
optically and geometrically isomeric reaction paths 
leading to activated complexes for the process. 

The adiabatic degrees of freedom (usually vibra­
tional) remain in approximately the same quantum 
state v during formation of the activated complex. If 
n denotes the quantum number for the other rotation-

7 This Q+ may be regarded only as a "generalized partition func­
tion" since !J'* may vary with N+, i.e. since each •r may occur 
at a' different value of qr+. It appears in the final expression for the 
cross section, or for the rate constant, when the q' motion is 
treated classically. 

s (a) Compare Eq. (3) of Ref. 5, plus the supplementary approx­
imation 2 there. (b) Compare Eq. (4) of Ref. 5, plus the supple­
mentary approximation 2 there. (c) For many reactiOJ!S, as in 
Sec. VII.A, •• + is essentially independent of N+; then •• +=e.+. 
For some reactions, as in Sec. VII.C, ••+ depends on N+ because 
of the dependence of qr+ on l and, thereby, of the potential energy 
term in e.+ on l. In Sec. VII.D •• +depends not only on J but also 
on the "bending mode" quantum number and through it on E. 

vibration degrees of freedom of the reactants and if n+ 
denotes that for the other ones of the activated complex, 
N and N+ denote the sets (v, n) and (v, n+), respec­
tively. A sharper form of (1) was then obtained8b: 

L(k2/1r)Uvnp= r:L:t. (2) 
n ,.+ 

Ln and Ln+ represent sums over all active vibra­
tion-rotation states of reactant pair and activated 
complex, respectively, available to each species whose 
total energy is E and whose adaiabatic modes are in a 
specified state v. 

Quasiequilibrium equations were also given for sys­
tems having a given total angular momentum quantum 
number J and given energy, with (or without) given v.5 

We cite them later as needed. Classical forms of these 
equations and of (1) and (2) were obtained by con­
verting the multiple sums to multiple integrals over a 
quantum-number space and then over a classical-action 
space. A test of (2) has been described elsewhere,5 

utilizing computer results2 on numerical integration of 
the equation of motion. Good agreement was found 
over the range for which data were available. 

V. SOME DYNAMICAL AND STATISTICAL 
CONSIDERATIONS 

The contribution of e.+ to EN+ may depend on N+, 
since q'+ may depend on N+. For a given E, Ev+ has 
some suitable average, €.+, over the states N+, the 
nature of which seen from Eq. (10) .8• The following 
considerations are introduced here and are discussed 
in more detail in later papers. 

A. Dynamical Condition for Reaction 

The adiabatic modes and the q' motion are strongly 
coupled, an increase in the energy of the one being 
compensated by the loss in the other. Their initial 
energy is Ep+ E., since at large separation distances the 
q' motion is the relative translational motion. At 
q'=q'+, the energy residing in the adiabatic modes, in 
the natural barrier, and in the centrifugal barrier is 
€.++ Vc. Consequently, for reaction to occur we assume 
EP+E.;:::€.++ Vc, which can be rewritten as 

V.=E.+-E •. 

(3) 

(4) 

(5) 

An assumption related to (3) appears in simple 
collision theory, in that only Ep is assumed to be 
assumed to be effective in overcoming a barrier. 

As discussed at more length in Appendix I, V. out­
side of the threshold region is approximately independ­
ent of the initial rotational state j, and depends pri­
marily on the initial orbital angular-momentum 
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quantum number l. At threshold, it depends primarily 
onj and is denoted byE;+. 

B. Statistical Assumption for Reaction Probability 

When the expression for CTvnp in terms of reaction 
probabilities WzvnpJ [e.g., Eq. (A3) in Appendix II] is 
introduced into (1) and (2), one sees that a certain 
sum over reaction probabilities equals a particular sum 
over quantum states of the activated complex [e.g., 
Eq. (A6) ]. The second sum is a function of E, and we 
now make the statistical assumption that the contri­
bution of each reaction path (there may be more than 
one) to a reaction probability WzvnpJ is a function only 
of the "excess," Ep- V.- V., for that Jlvnp and path. 

Since (k2/tr)CFvnp equals a weighted sum over l of 
wJ's [Eq. (A3) ], we obtain at once the following 
results: Outside of threshold, where V. depends only 
on l, the contribution of each path to (k2/tr)uvnp 
becomes a function only of Ep- V •. At threshold, where 
Vc was E;+, the contribution to (k2/tr)CFvnp becomes a 
function only of Ep-V.-E1+. An integral equation 
covering both regions at once is set up (but not solved) 
in Appendix II. In the body of the present paper we 
consider separately the regions98 away from threshold 
and at threshold. 

In a collision which tends to excite an active mode of 
the activated complex heavily, there will be less energy 
in the reaction coordinate available for carrying the 
system through the activated-complex region, and in 
some cases the system will not even reach the latter, 
therefore. The present assumption B takes cognizance 
of such possibilities in a statistical way. 

VI. OUTSIDE OF THE THRESHOLD REGION 

According to the preceding argument we may write 
the contribution of a reaction path to (k2/tr)CFvnp as a 
function of E-E,. for a given v, since EP- V. equals 
E-E,.-E,+. This function, denoted below by S(E­
E,.), vanishes when E-E,. becomes less than E.+. To 
obtain CTvnp we then sum over all reaction paths. That is, 

(k2/tr) CTvnp = r s (E- E,.). (6) 

We let w(En) and w+(EN+) denote the number of 
active modes' states per unit energy for reactants in state 
N and for activated complexes in the state N+, re­
spectively. These w's refer to fixed v and do not in-

9 (a) A system of given j and E is said to be in the threshold 
region or outside of threshold, roughly speaking, according as 
}"-'j or }"-'1 for the weighted average of states contributing 
to the left-hand sides of Eqs. (1) and (2). (b) Since the integral 
on the left-hand side of Eq. (7) has some contribution from the 
threshold region (namely where E,.=E) the S function should 
be replaced by S(E-En-E/) for those En's, as in Eq. (23) 
later. However, we ignore the contribution from these En's when 
E is large, i.e., "outside of the threshold region." By solving the 
integral equation (A2) in Appendix II, this approximation could 
be eliminated. We plan to explore the solution of (A2). 

elude degeneracy of the adiabatic modes. w+(EN+) is 
zero unless EN+ exceeds E.+. 

Equation (2) now becomes 9h 

I.E S(E-E,.)w(E,.)dE,. 
En...O 

where the EN+ integral is performed at fixed v. The w 
and w+ are sums of o functions if the active modes 
are treated quantum mechanically. Otherwise, they are 
continuous. 

Equation (7) is an integral equation for S(E-E,.) 
and may be solved using Laplace transforms (8): 

S(s) = 1"" S(x) exp( -sx)dx, 
0 

(8a) 

Q(s) = 1""w(x) exp( -sx)dx, 
0 

(8b) 

Q+(s) =1"" w+(EN+) exp( -SEN+)dEN+=: L exp( -SEN+), 
0 ,.+ 

(8c) 

where the integration in Q+ is performed at fixed v and 
where the summation is over all quantum states n+, the 
v in N+ being held fixed. 

Multiplication of (7) by exp( -sE), integration of 
E from 0 to oo, use of the convolution theorem of 
Laplace transforms and of the fact that the transform 
of the right side of (7) is Q+(s)/s, yields 

Q(s)S(s) =Q+(s)/s. (9) 

Inversion yields S(y). One sees from (6) that y is 
to be set equal to E-E,. to find the contribution of 
the path to CTvnp for the given v, n, and p. We obtain 

~ r lc+iroQ+(s) 
- - - -- e s E-E ds CTvnp- k2 2 . . Q() xp[ ( ,.)] 

~~ c-tro S S 
(10) 

for E-E,.?::.Ev+; CTvnp is zero otherwise. In (10), cis the 
usual positive constant, chosen so that the poles of 
the integrand lie to the left of s = c in the complex 
plane. 

Vll. APPLICATIONS OF EQS. (7) AND (10) 

Several applications of (7) and (10) are given below. 
In the first two, q•+ is taken to be independent of N+. 
(There is frequently a pronounced potential-energy 
saddle point, which with the aid of a normal mode 
analysis characterizes a q•+ independent of N+.) The 
third application is to a well-known situation where 
only long-range attractive and centrifugal forces occur. 
Here, q•+ depends appreciably on N+ and the usual 
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expression for CTvnp is obtained. In the fourth application 
an intermediate situation is considered, where there are 
not only the long-range effects in the third application 
but also short-range forces and forces restricting the 
rotational motion of the reactants in the :first two. 

Previous literature calculations of cross sections with 
statistical methods have apparently been confi.ned to 
the third application above and to elementary (hard­
sphere) collision theory. [See also Ref. (3) .] 

A. Active Modes Treated as Classical Harmonic 
Oscillators 

When the active modes (energy En, En+) are treated 
classically, when qr+ is independent of N+, when 
the vibrations are harmonic, and when rotation­
vibration interactions are neglected, the partition 
functions Q and Q+ are of the form ( 11) (since Ev + is 
independent of N+ in this case, e.+ becomes e.+): 

Q(s) =A/sm, Q+(s) = (A+jsm+) exp( -se.+). (11) 

Equation (10) then yields 

1r rA+ (E-En-e.+)m+-m 
CTvnp= k2A r(m+-m+1) (12) 

where r(x) is the r function of Argument x. A counting 
of the active modes shows that m+-m equals 2: In 
the center-of-mass system the pair of reactants has 
three translations. The activated complex has one 
internal translation along the reaction coordinate. 
Since the pair of reactants and the activated complex 
have the same number of adiabatic modes, it follows 
that m+-m=2. Since E-En-Ev+ equals Ep- V,, we 
obtain 

B. Atom Plus Diatomic Molecule (Quantum or 
Classical Vibrations)10 

A particularly simple case of (7) or (10) arises when 
when the reaction involves the formation of a linear 
activated complex from an atom and a diatomic 
molecule10 and when a particular vibration in this 
collision is adiabatic. The latter vibration would be the 
one which was originally a vibration in the diatomic 
molecule and which becomes the symmetric stretching 
vibration of the linear activated complex. We do not 
treat the oscillators below as necessarily harmonic or 
classical. 

Equation (15) is :first derived from (7). Equation 
(15) is also appropriate for Case D below, when the 
reaction treated there is this triatomic one. For this 
reaction the quantum number n becomes j and its 

to These equations also apply to other reactions, A+ BC->AB +C, 
of the three center type when the internal motions in each center 
A, B, and C, are neglected. Such an approximation is made in 
current computer calculations in the literature, for example for 
the K+CHsi reaction.1 

component m;, and w(En) becomes Arot, which is 2I/crh2 

for a diatomic molecule. The quantum number n+ 
denotes the totality of rotational and bending vibra­
tional quantum numbers in the activated complex. 

A change of variable in (7) from E; to x( =E-E;) 
followed by differentiation of both sides with respect 
toE leads to 

S(u) = (crh2/2I)w+(u) (14) 

for any u. (To represent S by a smooth function, w+ 
must denote a smoothed function.) 

To calculate crv;p, S(u) is needed at u=E-E; and 
(6) is applied. We thus obtain 

CTvjp= (7r/k2) (crh2/2l) rw+(E-E;)' (15) 

where w+(u) is the total number of active states n 
per unit energy when the total energy of the activated 
complex is u. 

When rotation-vibration interaction and any de­
pendence of qr+ on N+ are neglected, e.+ equals e.+ 
and w+(u) equals the convolution 

w+(u) = J:'·+ Wrot+(u-e.+-x)wvib+(x)dx, (16) 

where Wrot+(y) and Wvib+(x) are the numbers of rota­
tional and bending vibrational states per unit energy 
when the energies of these active modes of the acti­
vated complex are y and x, respectively. Since Wrot+(y) 
equals A rot+ for all y, i.e., equals 2J+ / cr+fi2, we then 
obtain 

w+(u) = (2J+jcr+h2)Nvib+(u-e.+). (17) 

Nvib+(y) is the number of bending vibrational states 
having an energy less than or equal toy: 

Nvib+(y) = lYWvib+(x)dx. 
0 

Thus, for these additional assumptions we :find 

where we used the equality, E-En-e.+=Ep- V •. 

(18) 

When Case A above is specialized to be this triatomic 
reaction, and when the vibrations in (19) are classical 
harmonic oscillators, Eqs. (13) and (19) coincide, as 
they should. 

C. Free Rotation in Activated Complex 

When the rotations and vibrations of the reactants 
are unhindered in passing through an activated-com­
plex configuration, as in some ion-molecule reactions, 
we may proceed as follows: We may include all vibra­
tions and rotations of the reactants in Q+(s). Q+(s) now 
becomes the product of Q;nt and Qz+, the former being 
the partition function of the vibration-rotation modes 
of the reactants and the latter being Lz exp( -sEz+), 
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where E 1+ is the maximum of the function Ez+(r): 

E 1+(r) = (l2h2/2J..I.r2) +U(r); (20) 

E 1+(r) is the sum of a centrifugal potential and of the 
potential energy as a function of the separation distance 
r. Now, q• is r and q•+ is the r which maximizes (20) 
for the given l. In (20) the difference between l and 
t+1 was neglected. For a barrier such as (20), r is 
typically unity. 

In (10) Q is simply Q;nt, and so cancels the factor 
Q;nt in Q+. Thus, in (10) the internal degrees of freedom 
of the reactants cancel and we can simply ignore their 
presence. While (10) can now be solved, it is more 
convenient to solve (7). With this justified omission of 
the internal degrees of freedom there are seen to be no 
contributions to En, so that w(E,.) equals o(E,.) and 
the left-hand side of (7) becomes S(E). On the right 
side of (7) only the orbital motion of the activated 
complex contributes to u, and that side becomes 
N 1+(EP), the number of orbital states for which 
E 1+(r+) does not exceed Ep. If lm is the maximum 
value of l for which Ez+5:Ep, Nz+(Ep) equals f 2ldl, 
i.e., lm2• 

The impact parameter b equals lh/p, i.e., l/k. We 
thus obtain from (7) the well-known result11 (21), 
where bm is the maximum-impact parameter leading 
to reaction for the given p(hm=lm/k). 

D. Restricted Rotation in Activated Complex 
Having a q'+ (N+) 

(21) 

In this section arguments are sketched which permit 
one to generalize Cases A and B on one hand, and 
Case C on the other. We use (7) or (10) as before. 
In this intermediate case, where the bending vibrations 
distort Case C and where the dependence of q•+ on N+ 
distorts Cases A or B, the calculation of 

L exp( -SEN+) 
,.+ 

in (10) becomes more involved. The rigorous procedure, 
within the framework of the assumptions used to derive 
(10), is to calculate each EN+(q•+) by maximizing 
EN+(qr) with respect to qr, and then to evaluate (10). 

A simpler but less rigorous way to evaluate (10) 
would be to calculate CTvnp by first evaluating all EN+(q•) 
at the same q• and at the given v, then calculating 
2:,.+ exp( -SEN+), and finally finding the qr which 
maximizes this sum at the givens. One then calculates 
CTvnp from (7) or (10). 

11 For example, for ion-molecule reactions see G. Gioumousis 
and D. P. Stevenson, J. Chern. Phys. 31, 1338 (1959), who use 
an 1/r4 long-range attractive potential. D. A. Kubose and W. H. 
Hamill, J. Am. Chern. Soc. 85, 195 (1963) added a short-range 
repulsive potential to U(r), and T. F. Moran and W. H. Hamill, 
J. Chern. Phys. 39, 1413 (1963) added an oriented dipole term. 
The possible influence of restricted rotation at short distances 
apparently has not been treated until Application D below. 

This second, less rigorous procedure is reminiscent 
of a method sometime assumed in qualitative discus­
sions in the literature of activated-complex theory: 
one calculates a free energy of activation, notes that it 
passes through a maximum as a function of q•, and 
defines q•+ as the qr at this maximum. This second 
procedure is also intimately related to an ingenious one 
which Bunker12 has used successfully for unimolecular 
reactions in obtaining good agreement between com­
puter-calculated rate constants and those obtained 
from RRKM theory. He defines q•+ as that qr which 
minimizes the number of quantum states available to 
the activated complex at the given energy. The detailed 
relation between these approaches will be discussed 
elsewhere. 

For an atom-diatomic molecule reaction having an 
adiabatic vibration, Eq. (15) can be used instead of 
(10), and w+(E-E;) is evaluated by counting all N+ 
(at the fixed v) for which EN+(qr+) 5:E-E;. Each 
EN+(q•+) is computed as in the first paragraph above. 

VIII. APPROXIMATE THRESHOLD BEHAVIOR 

In Appendix III an integral equation is set up for 
the general reaction at threshold, but in this section 
is considered the atom--diatomic-molecule reaction10 

described earlier in Case B. 
As noted earlier, the contributions of any reaction to 

(k2/rr)u.,.p is taken to be a function of Ep- V.-E/ 
and so of E-E,.-E/ at the given v. This function is 
denoted by S(E-E,.-E/), and we have 

(k2/rr )u.;p= r S(E-E,.-E;+). (22) 

Equation (2) leads again to (7), but now with 
S(E-E,.) replaced by S(E-E,.-E1+). Since w(E,.) 
equaled Arot for this reaction and n denoted (j, m1), 

we find 

Arotf.E S(E-E;-E/)dE;=fE w+(eN+)dEN+, (23) 
E;=f! •N+=f! 

where the integration on the right is at constant v. 
(Since S vanishes when E;>E-e.+-E1+, there was no 
error in writing the upper limit of E; as E.) 

Introduction of a change of variable from E1 to 
x( =E-E1-E1+), so that dx= -dE;(I++I)!I+, leads 
to (24), where it was valid to replace the lower limit of 
x= -IE/I+ by x=O since S is zero in the interval 
(-IE/I+, 0): 

~:o~; 1: S(x)dx= J.:+=f!w+(EN+)dEN+· (24) 

Differentiation of both sides with respect to E yields 
an expression for S(u) for any u. Upon evaluating it 
at u=E-E1-E/ and using (22) we obtain (25) as 
the threshold counterpart of (15): 

uv;p= (·n/k2) [ruh2(I++I) /2JI+]w+(E-E1-E1+). (25) 
1• D. L. Bunker (private communication). 



Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

2636 R. A. MARCUS 

Upon neglect of rotation-vibration interaction and 
dependence of q•+ on N+, ( 17) may be introduced into 
(25), yielding 

u.;p= (1r/k2) [ru(J++J) ju+J]Nvib +(E'P-V.-E;+). 

(26) 

Because of the condition mentioned earlier,98 Eq. 
(22) and, hence, (25) and (26) are appropriate only 
when both E and E; are small. 

Equation (26) maybe compared with (19). Their dif­
ference outside of the threshold region (EP- V .>>E;+) 
is slight when J+»J. A formula encompassing (25) and 
(15) could be obtained by solving an integral equation 
based on a stronger form of the quasiequilibrium 
hypothesis/ one for systems with a given total angular 
momentum, given in Appendix II. Tabulations of the 
computer-calculated reaction probabilities wJ defined 
there would be useful in analyzing relevant dynamical 
postulates. 

IX. QUANTUM-MECHANICAL q' MOTION 

Treatment of the motion along q• in a quantum­
mechanical and curvilinear manner led to Eqs. (1) 
and (2), but with the L1's replaced by LK's.6 In 
Eq. (1) this K is the transmission coefficient for the 
given E and N+; in Eq. (2) it is that for the given E, 
v, and n+. 

Because of quantum-mechanical tunneling the con­
dition E'P'?::. V, can no longer be imposed. However, we 
may still regard the contribution of each path to 
(k2/7r)Uvnp as a function of E-En, but now we must 
permit the occurrence of negative values of E-En -E.+. 

When the q• motion is treated as Cartesian/3 the 
transmission coefficient K can be written as a function 
of the energy of the q• motion (E-En+-E.+) minus 
the potential-energy maximum V0• That is, K can be 
written as a function of E-En+-e.+, i.e., of E-eN+· 
When the curvilinear nature of q• is not neglected, but 
when only the coupling of the adiabatic coordinates 
to q• is considered, K depends on E-t:N+ and v, i.e., 
we may write K(E-t:N+, v) .14 The dependence on v is 
weak. 

There is an upper limit to t:N+, the exact value of 
which is determined (in a locally adiabatic approxi­
mation) by the value which makes the kinetic energy 
of the q• motion negative even outside the barrier 
region. For practical purposes, however, since K de­
creases rapidly with decreasing energy of q• motion, 
this upper limit for EN+ can normally be taken as oo. 
When a more precise limit is needed it can be calcu­
lated in this locally adiabatic approximation. 

We thus obtain (27) instead of (7), for a Cartesian 
q•, while for curvilinear q• K(E-eN ·) would be written 

13 Compare Ref. 5, Supplementary Approximation 1. 
14 Compare Ref. 5, Supplementary Approximation 5, and Ref. 6 

for some discussion of the determination of z. 

1E S(E-En)w(En)dEn= ["' w+(eN+)K(E-eN+)deN+· 
0 0 

(27) 

[The classical result (7) follows from (27) when one 
sets K(x) =1 for xSO and K(x) =0 for x>O.] 

Equation (27) can be inverted, but the results be­
come complex, and we shall limit the following remarks 
to the atom-diatomic-molecule reaction10 considered 
earlier. Since now w(En) equals 21/uh2, a change of 
variable from En to x=E-En and differentiation with 
respect toE leads to an expression for S(u) for any u. 
From ( 6) one then obtains 

IIvjp= ~ ;~
2 

r [; ~"'w+(EN+) K(y-eN+)deN+ J 1 (28) 

where y is E-E;. When rotation-vibration interaction 
and the dependence of q•+ on N+ are neglected ( 17) 
may be used and (28) becomes 

(29) 
where y is E-E;. 

In the threshold region Eq. (27) applies, but with 
S(E-En) replaced by S(E-En-E;+). On utilizing 
some remarks which led from (23) to (24), we obtain 
(30) for the atom-diatomic-molecule reaction con­
sidered previously: 

(30) 

where y is E-E;-E/. When the rotation-vibration 
interaction and the dependence of q•+ on N+ are 
neglected (30) yields 

1r rri(I++J) 
Uvjp= /iJ. u+J 

where y is E-E;-E/. 

X. REACTION PROBABILITIES 

Reaction probabilities W!vnp for a given orbital angu­
lar momentum l can be estimated as follows: Outside 
of the threshold region Eq. (32) 16 is to be solved using 
the previously derived expressions for Uvnp and an 

16 The standard equation (32) is given, for example, in L. D. 
Landau and E. M. Lifshitz, Quantum Mechanics (Addison-Wesley 
Pub!. Co., Inc., Reading, Mass., 1958), p. 437. Compare Appendix 
I of Ref. 5. 
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assumption about Wzvnp: 

(32) 

The centrifugal potential Vc in the activated-complex 
region at energies outside of the threshold region is 
denoted below by E 1+, which equals t(l+l)fi,2j2J+, since 
J'::::.l here. As discussed earlier, for a given v, the con­
tribution of any path to (k2/1r)G'vnp is taken to be a 
function of E-En, vanishing when E-En'5,e.+, and 
the contribution to Wzvnp is taken to be a function of 
E-En-Ez+, vanishing when E-En-Ez+'5,e.+. This 
contribution is written as w(E-En-Ez+). We have 

(33) 

Equation (10), or a particular case of it, such as 
Eq. (13), can be introduced into (32) for G'vnp, the 
former leading to a complex expression. In the case of 
an atom-diatomic-molecule reaction10 (15) can be intro­
duced into (32), yielding 

ufi} f!mu 
21 

w+(E-En) = !=O w(E-En-Ez+)2ldl, (34) 

where lmax is the l for which E-En-Ez+=e.+. On 
making a change of variable from l to x=E-En-Ez+ 
neglecting rotation-vibration interaction and differ­
entiating (34) with respect toE one obtains 

w(u-e.+) = (li,2j2J+) (qfi}/2I)dw+(u)jdu (35) 

for any u. From (33) we then obtain 

W!vjp= (rflN2J+) (qfl,2j2I)dw+(y) /dy, (36) 

where y=E-E;-E1+-e.+. With rotation-vibration 
interaction and dependence of q'+ on N+ neglected, use 
of (17) yields 

Wzv;p= (ruflN2Ju+) [dNvib+(E-E;-Ez+-e.+) /dE]. 

(37) 

It should be emphasized that Eq. (36) implies (15) 
but not conversely: The starting point of (15) could 
be a postulate that (k2/rr)uvnp is a function of E-En, 
without motivating this postulate (as we did earlier) 
by postulating that Wtvnp is a function of E-En-Ez+. 
Because Wzvnp represents a finer-grained description 
than G'vnp, Eq. (36) may be less accurate than (15). 

XI. ENERGY DISTRIBUTION OF PRODUCTS 

The energy distribution of reaction products has been 
subjected to extensive investigation, both in experi­
ments and in computer studies.1- 4 The results are of 
particular interest in strongly exothermic reactions, 
because of the large amounts of energy available for 
distribution. 

For such exothermic reactions with little activation 
energy the activated complex normally occurs long 
before the system reaches the strongly curved part of 
the reaction path in a space of mass-weighted coordi-

nates. In a statistical-dynamical treatment, the calcu­
lation of energy distribution of reaction products can 
then be decomposed in two parts: (1) calculation of 
the reaction probabilities Wzvn/ or Wzvnp, as in the 
preceding section, and (2) calculation of the subse­
quent energy redistribution for each initial Jlvnp or 
lvnp state. This second step involves additional statis­
tical or dynamical postulates. They are explored in a 
subsequent paper. 

XII. VIBRATIONAL NONADIABATICITY 

When the qr motion is sufficiently slow in a dynami­
cally critical region, the vibration discussed earlier in 
the A+BC reaction is expected to be adiabatic. A 
dynamically critical region is one where either the 
frequency of this vibration is changing appreciably or 
where the qr coordinate curve becomes significantly 
curved, so that coupling of the q' motion with the 
vibration may become appreciable in either case. This 
curvilinear effect is probably a principal source of 
nonadiabaticity for this particular vibration. 

At very high q' velocities this vibration will no 
longer remain in the same state: the collision dynamics 
at a curved part of the reaction path show that qr 
kinetic energy will usually be converted into vibra­
tional. The preceding formulas might still be used as a 
first approximation, perhaps, provided EN+ now denotes 
the fixed energy (adiabatic or otherwise), i.e., the 
energy not available for distribution among other 
modes. A calculation of this quantity and of the veloci­
ties for which such nonadiabatic effects become im­
portant will be described in a later paper. 
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APPENDIX I: THE CENTRIFUGAL POTENTIAL, Vc 

Bimolecular gas-phase reactions of particular interest 
in applications of activated-complex theory have 
usually been of the three center type, A+BC~AB+C, 
where A isH, CH3, Cl, etc., B is an H, a halide, etc., 
and R is any of these. 

Often, two moments of inertia of the activated 
complex are much larger than the third and are approxi­
mately equal. (Linear activated complexes are auto­
matically included, thereby.) The two rotations 
involving these two moments of inertia (J+) arise 
partly from the relative orbital motion of the two 
reactants. 

At large distances, the centrifugal barrier is 

l(l+ 1)ti2/2p.r2, 
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where r is the distance of separation. At smaller 
distances it goes over into (P1+2+ P2+2) j2J+, where 
P1+ and P2+ are angular-momentum components about 
the two axes mentioned above for the activated 
complex. Since (P1+2+P2+2) equals the square of the 
angular momentum, J(J+1)1i2, minus the square of 
its third component along the figure axis of the "sym­
metric top" K 21i2, the centrifugal barrier V. is 

[J(J+1) -K2Jii,2j2J+ 

and denoted by V/. When the vibrational angular 
momentum is neglected in the case of a linear activated 
complex, this V/ becomes J(J+1)1i2/2J+. 

When the barrier is only centrifugal, the activated 
complex normally occurs at large r. (Otherwise, other 
forces enter at small r, and the barrier would not be 
entirely centrifugal.) In this case the activated com­
plex is the hypersurface r=r0, a constant, where r0 

depends on p. The value of J+ is p.r02, and that of V. is 
1(l+l)li2/2J+, which we designate as V}. 

Thus, V. for the activated complex is V.1 if the 
complex occurs at larger and V/ if it occurs at small r. 
In between, it has intermediate values, less well defined 
perhaps, which depend on extent of rotation-orbital 
coupling at those r's. 

Outside of the threshold region 1 is typically much 
greater than j, the rotational quantum number of the 
reactants. j will add to or substract from 1 so that, on 
the average J'::::.1. In the threshold region the system 
just has barely enough energy to react, so that states 
for which V. is small will be favored. These states are 
those with 1"'0, and in this case J no longer averages 
about 1 but rather, at threshold, is expected to approxi­
matej. 

Even for reactions which have only a centrifugal 
barrier at typical p's, the decrease of p shifts the 
position of the activated complex to lower r's, and 
eventually tor's so small that torques and coupling with 
rotations occur and, ultimately, therefore, the cen­
trifugal part of the barrier becomes v.J with 1"'0 
and J"'j. 

APPENDIX IT: AN INTEGRAL EQUATION FOR 
ENTIRE RANGE 

For reacting pairs having a given energy and a given 
total angular-momentum quantum number 

J(J= /j-11 toj+1) 

the quasiequilibrium hypothesis yielded (Al) .6 Equa­
tion (Al) is a stronger form of this hypothesis than 
(2) and includes it: 

~ L L L Wzvn*iPJ =f,L:l, (A1) 
n* i !=JJ-jJ n*+ 

where n* denotes the quantum numbers in n, exclusive 
ofj and m;, and where n*+ denotes those inn+, exclusive 
of J and its component M. Wzvn *1PJ is the probability 

of a reaction of a system having a given 1vn*jp and, by 
suitable combination of m/s, m1's and Clebsch-Gordan 
coefficients, is prepared in a state of given J and M. w 
is independent of M. In (A1) j lies in Jj1-j2l to 
( jl+j2). 

If it is assumed that the contribution of a path to wJ 
is a function of the "energy excess" Ep- V.-V., where 
V. is given in Appendix I, and call it w(E-E,..- V.) 
for the given v, we have wJ equal to rw(E-E,..- V.) 
and obtain (A2) from (A1): 

J+i 
L L L Wzvn*jpJ(E-E,.o- Vc) = Ll. (A2) 
n* i !=JJ-jJ n*+ 

This integral equation is to be solved for the wJ's. 
The cross section O'vnp, averaged over all m; for this 
j1, j2, and j, is then obtained from (A3) 16 (m; is the 
component ofj along some axis): 

71' 00 J+i 
O'vnp= 2 r,L:(2J+l) L: Wzvn*jpJ• (A3) 

k J=O l=IJ-il 

Presentation of the computer data in the form of wJ's 
would provide information on the assumption that they 
depend primarily on Ep-V.- V •. We do not attempt 
to solve (A2) here, but numerical solutions would be 
of interest for comparison with computer data on wJ's. 

APPENDIX ill: AN INTEGRAL EQUATION AT 
THRESHOLD 

Equation (23) is a particular case of Eq. (A6) 
below. 

When the two reactants have rotational angular­
momentum quantum numbers j1 and j 2, j lies in the 
range I h -j2l, • • • ,j1+j2, and has an a priori probability 
of occurrence of (2j+ 1) / (2jl+ 1) (2j2+ 1). For a given 
n, and thereby for a givenj1 andj2, the number j cannot 
exceed j1+j2. Nor can it exceed j*, the highest value 
of j satisfying (A4) : 

(A4) 

Thus, if jmin denotes the lesser of these two quantities, 

jmin= minimum of (j1+j2,j*), (AS) 

the above arguments now lead from (2) to (A6), where 
the last integral is at fixed v. 

f.E [ w(E,.) 
En=O (2jl+l) (2j2+1) 

X1~f-121 (2j+1)S(E-E,.-E1+) J dE,.= i: w+(u)du, 

(A6) 

where u is EN+ and where S(E-E,.-E1+) is the contri­
bution of the path to (k 2/7r)O'vnp· 

u This equation tollows from Eq. ( 4.12) of J. M. Blatt and 
L. C. Biedenham [Rev. Mod. Phys. 24, 258 (1952) ], when 
appropriate identification of the symbols is made. 


