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aBstract

Fe2+- and Mn2+-rich tourmalines were used to test whether Fe2+ and Mn2+ substitute on the Z site of tour-
maline to a detectable degree. Fe-rich tourmaline from a pegmatite from Lower Austria was characterized 
by crystal-structure refinement, chemical analyses, and Mössbauer and optical spectroscopy. The sample has 
large amounts of Fe2+ (~2.3 apfu), and substantial amounts of Fe3+ (~1.0 apfu). On basis of the collected data, 
the structural refinement and the spectroscopic data, an initial formula was determined by assigning the entire 
amount of Fe3+ (no delocalized electrons) and Ti4+ to the Z site and the amount of Fe2+ and Fe3+ from delocalized 
electrons to the Y-Z ED doublet (delocalized electrons between Y-Z and Y-Y): X(Na0.9Ca0.1) Y(Fe2+

2.0Al0.4Mn2+
0.3Fe3+

0.2) 
Z(Al4.8Fe3+

0.8Fe2+
0.2Ti4+

0.1) T(Si5.9Al0.1)O18 (BO3)3 V(OH)3 W[O0.5F0.3(OH)0.2] with a = 16.039(1) and c = 7.254(1) Å. This 
formula is consistent with lack of Fe2+ at the Z site, apart from that occupancy connected with delocalization 
of a hopping electron.

The formula was further modified by considering two ED doublets to yield: X(Na0.9Ca0.1) Y(Fe2+
1.8Al0.5Mn2+

0.3Fe3+
0.3) 

Z(Al4.8Fe3+
0.7Fe2+

0.4Ti4+
0.1) T(Si5.9Al0.1)O18 (BO3)3 V(OH)3 W[O0.5F0.3(OH)0.2]. This formula requires some Fe2+ (~0.3 

apfu) at the Z site, apart from that connected with delocalization of a hopping electron. Optical spectra were 
recorded from this sample as well as from two other Fe2+-rich tourmalines to determine if there is any evidence 
for Fe2+ at Y and Z sites. If Fe2+ were to occupy two different 6-coordinated sites in significant amounts and if 
these polyhedra have different geometries or metal-oxygen distances, bands from each site should be observed. 
However, even in high-quality spectra we see no evidence for such a doubling of the bands. We conclude that 
there is no ultimate proof for Fe2+ at the Z site, apart from that occupancy connected with delocalization of 
hopping electrons involving Fe cations at the Y and Z sites.

A very Mn-rich tourmaline from a pegmatite on Elba Island, Italy, was characterized by crystal-structure 
determination, chemical analyses, and optical spectroscopy. The optimized structural formula is X(Na0.6o0.4) 
Y(Mn2+

1.3Al1.2Li0.5) ZAl6 TSi6O18 (BO3)3 V(OH)3 W[F0.5O0.5], with a = 15.951(2) and c = 7.138(1) Å. Within a 3σ 
error there is no evidence for Mn occupancy at the Z site by refinement of Al ↔ Mn, and, thus, no final proof 
for Mn2+ at the Z site, either.

Oxidation of these tourmalines at 700–750 °C and 1 bar for 10–72 h converted Fe2+ to Fe3+ and Mn2+ to Mn3+ 
with concomitant exchange with Al of the Z site. The refined ZFe content in the Fe-rich tourmaline increased 
by ~40% relative to its initial occupancy. The refined YFe content was smaller and the <Y-O> distance was 
significantly reduced relative to the unoxidized sample. A similar effect was observed for the oxidized Mn2+-rich 
tourmaline. Simultaneously, H and F were expelled from both samples as indicated by structural refinements, and 
H expulsion was indicated by infrared spectroscopy. The final species after oxidizing the Fe2+-rich tourmaline 
is buergerite. Its color had changed from blackish to brown-red. After oxidizing the Mn2+-rich tourmaline, the 
previously dark yellow sample was very dark brown-red, as expected for the oxidation of Mn2+ to Mn3+. The 
unit-cell parameter a decreased during oxidation whereas the c parameter showed a slight increase.

Keywords: Mn2+-rich tourmaline, Fe2+-rich tourmaline, Mössbauer, crystal structure, lower Austria, 
Elba Island, Italy, site occupancy
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IntroductIon
The general chemical formula of tourmaline-supergroup min-

erals can be written as X Y3 Z6 [T6O18] (BO3)3 V3 W, as proposed 
by Henry et al. (2011). These authors and Hawthorne (1996, 
2002) suggest occupancies at these sites as follows:

X = Ca, Na, K, o (vacancy);
Y = Li, Mg, Fe2+, Mn2+, Al, Cr3+, V3+, Fe3+;
Z = Mg, Al, Fe3+, V3+, Cr3+;
T = Si, Al, B;
V = OH, O;
W = OH, F, O. 

One of the issues concerning the proposed site occupancies 
is whether Fe2+ or Mn2+ can occupy the Z site to a significant 
degree. Structural and chemical studies of Fe2+-rich tourmalines 
by Grice and Ercit (1993), Bloodaxe et al. (1999), Francis et 
al. (1999), and Cámara et al. (2002) found no evidence for sig-
nificant amounts of Fe2+ on the Z site, consistent with the site 
assignments of Hawthorne and Henry (1999). Furthermore, based 
on the changes in mean sizes of the Y- and Z-centered octahedra 
of thermally oxidized Fe-rich tourmalines, Pieczka and Kraczka 
(2001, 2004) and Kraczka and Pieczka (2000) concluded that 
Fe2+ (and Mn2+) occupies only the Y octahedral sites. Similarly, 
Mn2+-rich tourmalines, structurally and chemically character-
ized by Nuber and Schmetzer (1981), Burns et al. (1994), and 
Ertl et al. (2003, 2004b), did not exhibit any evidence of Mn2+ 
at the Z site. In contrast, Bosi and Lucchesi (2004), Bosi et al. 
(2005a, 2005b), and Bosi (2008) interpreted their structural and 
chemical studies on tourmaline as having up to ~0.26 atoms per 
formula unit (apfu) Fe2+ and up to ~0.10 apfu Mn2+ in the Z site. 
Their Mössbauer studies indicated that all Fe is in octahedral 
coordination (Bosi and Lucchesi 2004). In addition, Bosi and 
Lucchesi (2007) reinterpreted Fe2+ occupancy in previously de-
termined tourmaline structures and suggested Fe2+ occupancies 
in the Z site of as much as 0.70 apfu. In their Mössbauer study, 
Andreozzi et al. (2008) described a doublet, which they consider 
consistent with Fe2+ in the Z octahedron. Also in this paper, they 
reported new Mössbauer spectra from the same samples used 
by Bosi and Lucchesi (2004) and Bosi et al. (2005b). Using the 
chemical composition from the Bosi papers, they determined site 
assignments from their newly obtained spectra that corroborate 
the occupation of Fe2+ at the Z site of the original papers. The 
average deviation, compared with the site assignments from the 
original publications (by using chemistry, structural data and an 
optimization program), is only 0.01 apfu Fe2+. Recently, Bačik 
et al. (2011a) reported only negligible contents of Fe2+ at the Z 
site of Fe2+-rich tourmalines.

To resolve the apparent disagreement over the presence 
of significant Fe2+ and Mn2+ on the Z site in tourmaline, we 
have investigated two samples—one that is unusually rich in 
Fe2+ and the other rich in Mn2+. The Fe2+-rich and Mn2+-rich 
tourmaline samples were characterized with a combination of 
crystal-structure determinations, electron microprobe analysis 
(EMPA), inductively coupled plasma-mass spectroscopy (ICP-
MS) analysis, Mössbauer, and optical spectroscopy. In turn, 
these tourmalines were heat-treated under oxidizing conditions 
to investigate the consequences of conversion of divalent cations 

to trivalent cations on the site occupancies. For comparison, 
another two Fe2+-rich tourmaline samples described originally 
by Cámara et al. (2002) and Ertl et al. (2006b) were investigated 
by optical spectroscopy.

PetrologIcal settIngs of samPles

The tourmaline samples are from petrologic environments 
that are consistent with the crystallization of Fe-rich and Mn-
rich tourmaline. An unusually Fe-rich tourmaline sample (BLS1/
BLS2) was collected from a metamorphosed pegmatite from 
Blocherleitengraben, Lower Austria (Ertl 1995) (WGS84 N 
48°23′42′′/E 015°24′05′′). It is associated with magnetite, pyrite, 
spessartine, biotite, albite, microcline, and quartz. This Variscan 
pegmatite, which is situated in the Mühldorf nappe embedded 
in paragneisses and calc-silicate rock of the Drosendorf unit 
(“Varied Series”), belongs to the Moldanubic nappes, which 
form large parts of the Bohemian massif in Lower Austria (Fuchs 
and Matura 1976).

The Mn2+-rich tourmaline sample (MNELB3) is from a Li-
Cs-Ta-enriched (LCT) pegmatite mined in 1994–1995 in the 
Fosso dei Forcioni, near San Ilario (Sant’Ilario) in Campo, on 
Elba, Italy (Orlandi and Pezzotta 1996; Aurisicchio and Pez-
zotta 1997). This pegmatite, up to 30 cm across and about 7 m 
in length, dips 70° to the west and is hosted in the Oligocene 
monzogranite of the Mount Capanne pluton. The center of the 
vein (now mined out) was characterized by a series of miarolitic 
cavities lined by drusy crystals of feldspars, quartz, and poly-
chrome tourmalines (elbaite-rossmanite-schorl series) up to 2.5 
cm in length. Accessory minerals, which are rare constituents of 
the cavities, include beryl, lepidolite, cassiterite, U-rich microlite, 
and very rare pollucite. It is important to note that garnet (spes-
sartine) is totally lacking in this vein and, in Elba pegmatites, 
this lack of garnet corresponds to a strong enrichment of Mn2+ 
in tourmaline crystals.

exPerImental detaIls

Crystal-structure refinement
The tourmaline X-ray diffraction data were collected at ambient temperature 

with either a Bruker Apex CCD or a Nonius Kappa CCD single-crystal diffractom-
eter using graphite-monochromatized MoKα radiation. Crystal data, data collection 
information, and refinement details are given in Table 1. Redundant data were 
collected for an approximate sphere of reciprocal space, and were integrated and 
corrected for Lorentz and polarization factors, and absorption correction, using 
the Bruker programs SaintPlus and SADABS for BLS1 (Bruker AXS Inc. 2001) 
or the Nonius programs COLLECT and DENZO-SMN (Nonius 2007) and multi-
scan absorption correction (Otwinowski et al. 2003) for the remaining samples. 
The structures were refined with SHELXL-97 (Sheldrick 2008), except BLS1 
(SHELXTL 6.12; Bruker AXS Inc. 2001), using scattering factors for neutral at-
oms. During all refinements, the X site was modeled with Na scattering factors and 
unconstrained multiplicity, and the Y site and Z site were similarly modeled using 
Al and Fe scattering factors in Fe-rich tourmaline as well as Al and Mn in Mn-rich 
tourmaline. The T site was modeled using Si scattering factors, but with fixed oc-
cupancy of Si1.00, because refinement with unconstrained multiplicity showed this 
site to be essentially fully occupied by Si within error limits. The B site was mod-
eled with fixed occupancy of B1.00. The H site was freely refined. Refinement was 
performed with anisotropic thermal parameters for all non-hydrogen atoms. Table 
2 lists the atom parameters, and Table 3 presents selected interatomic distances.

Chemical analyses
The Fe2+-rich sample (BLS1, from Blocherleitengraben, Lower Austria) used 

for chemical analysis and structural formula calculation was a small fragment 
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extracted from the core of a black tourmaline crystal (~1 cm in diameter). Sample 
BLS2 (small fragment extracted from an area near the core of the same tourmaline 
crystal), which has a refined structural formula very similar to that of BLS1 (see 
below), was not chemically analyzed. The Mn2+-rich sample (MNELB3 from Elba, 
Italy) was a dark yellow fragment taken from the most Mn2+-rich zone of a yel-
lowish tourmaline crystal that was ~7 mm long and ~5 mm in diameter. Electron 
microprobe analyses were obtained with a Cameca SX51 electron microprobe 
equipped with five wavelength-dispersive spectrometers. Operating conditions 
were 15 kV accelerating voltage, 20 nA beam current, and a 5 µm beam diameter. 
Peaks for all elements were measured for 10 s, except for Mg (20 s), Cr (20 s), Ti 
(20 s), Zn (30 s), and F (40 s). Because the FKα line interferes with the FeLα and 
MnLα lines, the measured F values require a correction. Ertl et al. (2009) give the 
following formula for correcting this interference: F = Fmeas – (–0.000055 FeO2 + 
0.00889 FeO – 0.0044) + 0.015 MnO. Natural and synthetic silicates and oxides 
were used as standards (Ertl et al. 2003). The analytical data were reduced and 
corrected using the PAP routine (Pouchou and Pichoir 1991). A modified matrix 
correction was applied assuming stoichiometric O atoms and all non-measured 
components as B2O3. The latter was calculated assuming B = 3.00 apfu and 
because there was no clear evidence for [4]B in either investigated tourmaline 
sample (<T-O> distance is in the range 1.622–1.623 Å; Table 3). The accuracy of 
the electron-microprobe analyses and the correction procedure was checked by 
analyzing three reference tourmalines (98114: elbaite, 108796: dravite, 112566: 
schorl). Compositions of these tourmaline samples are presented in the context of 
an interlaboratory comparison study (Dyar et al. 1998, 2001). Under the described 
conditions, analytical errors on all analyses are ±1% relative to major elements and 
±5% relative to minor elements (Table 4).

The sample preparation for ICP-MS analysis was performed in a clean labo-
ratory using ultrapure acids. To remove surface contamination, the tourmaline 
grains were leached in 2.5 N HCl for 15 min at about 80 °C. Sample digestion 
was performed in tightly sealed polytetrafluoroethylene beakers using a 3:1 HF/
HNO3 mixture. After about 2 weeks at ~150 °C, the samples were evaporated and 
transformed into nitrates using HNO3. ICP-MS analyses were performed on an 
ELAN 6100 (Perkin Elmer/SCIEX; University of Vienna).

To determine the OH content of the tourmaline samples, ~32 mg of the core 
material of the Fe-rich tourmaline crystal and ~20 mg of the Mn-rich elbaite were 
used for thermogravimetric analysis (TGA), performed on a Mettler-Toledo TGA/
SDTA 851 (University of Vienna). The powder was heated from 25 to 1100 °C 
(5 °C/min) in N2 gas (gas flow: 25 mL/min). To determine the stability under the 
(O2-bearing) atmosphere we heated ~32 mg powder of the schorl sample up to 
1100 °C under air.

Mössbauer analysis
Approximately 10 mg of each Fe2+/3+-rich sample (natural and oxidized) was 

gently crushed under acetone, then mixed with a sugar-acetone solution designed 
to form sugar coatings around each grain and prevent preferred orientation. Grains 
were heaped in a sample holder confined by Kapton tape. Mössbauer spectra were 
acquired at 295 K using a source of 40 mCi 57Co in Rh on a WEB Research Co. 
model WT302 spectrometer (Mount Holyoke College) and corrected to remove 
the fraction of the baseline due to the Compton scattering of 122 keV γ rays by 
electrons inside the detector. Run times were 24 h with baseline counts of 9 and 

32 million. Spectra were collected in 2048 channels and corrected for nonlinearity. 
Data were modeled using a program from the University of Ghent, in Belgium 
called DIST_3E (an implementation of software described in Wivel and Mørup 
1981), which uses model-independent quadrupole splitting distributions for which 
the subspectra are constituted by Lorentzian-shaped lines. Peak areas were not cor-
rected for differential recoil-free fractions for Fe2+ and Fe3+ because the appropriate 
correction factors do not exist.

Optical spectra
Approximately 5 × 10 mm crystal fragments of both the unheated and heated 

Fe2+/3+-rich tourmaline were prepared as doubly polished 0.030 mm thick thin-
sections. Approximately 3 × 8 mm crystal fragments of both the unheated and 
heated Mn2+/3+-rich tourmaline were prepared as ~0.6 mm thick doubly polished 
plates. Polarized optical absorption spectra in the 390–1100 nm range were ob-
tained at about one nm resolution with a locally built microspectrometer system 
(California Institute of Technology, Pasadena) consisting of a 1024-element Si 
diode-array detector coupled to a grating spectrometer system via fiber optics to a 
highly modified NicPlan infrared microscope containing a calcite polarizer. A pair 
of conventional 10× objectives was used as an objective and a condenser. Spectra 
were obtained through the Fe2+/3+-rich and Mn2+/3+-rich zones of the samples with 
the clearest areas.

Additionally, slices parallel and perpendicular to the c axis of Fe2+-rich tourma-
line crystals from Madagascar and Grasstein (sample drv18 and GRAS1, described 
originally by Cámara et al. 2002 and Ertl et al. 2006b, respectively) were prepared 
and their optical absorption spectra were recorded.

Heating and oxidation procedures
The same single crystals (~100–200 µm; details in Table 1) that were charac-

terized structurally were placed inside a small porcelain cup (~3 cm in diameter) 
and heated in air by using a Nabertherm annealing furnace with programmable 
temperature (model N 11/H), to oxidize Fe2+ and Mn2+ of the Fe- and Mn-bearing 
tourmalines. Temperature was varied between 700 and 750 °C (at 1 bar) and the 
length of heating time was varied between 10 and 72 h (for details see section 
“Oxidation experiments” further below). To avoid cracks in the single crystals 
only relatively slow heating (100 °C/h) and cooling (100 °C/h) procedures were 
applied. After every heating procedure the crystals were mounted on glass fibers and 
subsequently characterized structurally using a CCD single-crystal diffractometer, 
as described in the prior section “Crystal-structure refinement.” The letter “H” was 
added to those sample numbers that were characterized after heating.

results

Mössbauer spectra
The Mössbauer spectra of the natural and heated/oxidized 

Fe2+/3+-rich tourmaline (sample BLS) at 295 K are shown in 
Figures 1 and 2. Before oxidation, the spectrum (which re-
sembles a typical tourmaline spectrum as described by Dyar et 
al. 1998), with ~55% of the total Fe as Fe2+, ~28% in adjacent 

Table 1. Crystal data, data collection information, and refinement details for natural and heat-treated Fe-rich and Mn-bearing tourmaline (BLS) 
from Blocherleitengraben, Lower Austria, and natural and heat-treated Mn-rich tourmaline (MNELB) from the island of Elba, Italy

Sample BLS1 BLS2 BLS2H1 BLS2H2 MNELB3 MNELB3H
a, c (Å) 16.039(1), 7.254(1) 16.043(2), 7.247(1) 15.917(2), 7.252(1) 15.918(2), 7.260(1) 15.951(2), 7.138(1) 15.852(2), 7.148(1)
V (Å3) 1612.8(3) 1615.3(4) 1591.1(4) 1593.1(4) 1572.8(4) 1555.5(4)
Crystal dimensions (mm) 0.15 × 0.15 × 0.15 0.08 × 0.10 × 0.12 0.08 × 0.10 × 0.12 0.08 × 0.10 × 0.12 0.13 × 0.17 × 0.22 0.13 × 0.17 × 0.22
Collection mode, 2θmax (°) full sphere, 35.10 full sphere, 37.78 full sphere, 37.78 full sphere, 37.72 full sphere, 37.77 full sphere, 37.77
h, k, l ranges –22/22, –22/22,  –27/27, –23/23,  –27/27, –23/23,  –27/27, –23/23,  –27/27, –23/23,  –27/27, –23/23,
 –10/10 –12/12 –12/12 –12/12 –12/12  –12/12
 Total reflections measured 3880 3855 3777 3783 3746 3713
Unique reflections 1156 (Rint 1.55%) 2087 (Rint 1.02%) 2045 (Rint 1.10%) 2046 (Rint 1.36%) 2025 (Rint 1.03%) 2008 (Rint 0.93%)
R1(F), wR2all(F2) 1.27%, 3.33% 1.63%, 4.08% 1.60%, 4.13% 1.77%, 4.37% 1.80%, 4.82% 1.58%, 4.20%
Flack x parameter 0.008(10) 0.009(9) 0.031(11) 0.023(12) –0.096(19) –0.12(2)
“Observed” refls. [Fo > 4σ (Fo)] 1155 2055 1998 1959 2010 1988
Extinct. coefficient 0.00015(10) 0.00401(16) 0.00064(10) 0.00045(11) 0.0042(2) 0.00072(17)
No. of refined parameters 96 96 92 92 95 96
GooF 1.117 1.124 1.187 1.130 1.127 1.043
(∆/σ)max 0.001 0.001 0.000 0.001 0.001 0.002
∆σmin, ∆σmax (e/Å3) –0.26, 0.32 –0.42, 0.45 –0.43, 0.44 –0.48, 0.44 –0.98, 0.86 –0.41, 0.37
Notes: Diffractometer: Nonius KappaCCD system except for BLS1 (Bruker Apex CCD); space group R3m; refinement on F2. Unit-cell parameters have been refined 
from approximately 5500 reflections in each case.
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Y and Z sites shared between Fe2+ and Fe3+, and ~17% as Fe3+. 
The Mössbauer spectra of the Fe2+-rich tourmaline sample were 
fit to a total of four distributions with the Mössbauer parameters 
(Table 5) consistent with those reported by Dyar et al. (1998). 
The outermost two doublets (gray dashed lines in Fig. 1) have 
parameters corresponding to octahedral Fe2+, although the Möss-
bauer results alone cannot distinguish occupancy of the Y vs. the 
Z site. The third doublet (solid gray line), which has an isomer 
shift (IS) of 0.93 mm/s, lies in the range for electron delocalized 
(ED) peaks, sharing an electron between Fe2+ and Fe3+ between 
adjacent octahedral sites. Thus, the area of the doublet must be 
considered to be the proportion of Fe that is ephemeral between 
the two valence states. Finally, the last doublet, with an isomer 
shift of 0.44 mm/s, represents Fe3+ in octahedral coordination; 
again, a nonspecific site assignment between the Y or Z site. After 
oxidation 100% of the Fe is oxidized to Fe3+ in an octahedral site 
as indicated by a Mössbauer study (Table 5, Fig. 2).

Optical spectra
The optical spectrum of the Blocherleitengraben Fe2+-rich 

tourmaline (Fig. 3a) is comparable to that of the high Fe-content 

tourmalines that contain both Fe2+ and Fe3+ discussed in Mattson 
and Rossman (1987). The spectrum contains Fe2+ bands near 720 
and 1120 nm in the E\\c polarization. In E⊥c, even at 32 µm 
thickness, intense absorption is encountered across the visible 
and much of the near-infrared portion of the spectrum due to the 
interaction of Fe2+ with Fe3+. Such an intensity difference between 
the E\\c and E⊥c directions indicates that an Fe2+-Fe3+ interac-
tion is occurring between adjacent sites (Mattson and Rossman 
1987). There are also weak indications in the E\\c polarization 
of a Fe2+-Ti4+ intervalence charge transfer band near 420 nm, a 
Mn3+ band near 530 nm, and an overtone of the OH band near 
1420 nm. The heated Fe3+-rich tourmaline (BLS2H2, see below 
for details) shows a nearly complete loss of Fe2+ bands (Fig. 3b).

The optical spectra of the Mn2+-rich (unheated) tourmaline 
from Elba reflect the variation in color from yellow at one end 
of the whole crystal to a darker yellow-brown at the other. The 
spectrum of the yellow region is nearly devoid of features (Fig. 
4) except for the OH overtone bands near 1430 nm in the E\\c 
orientation and the rising absorption in the short wavelength 
region that is more intense in the E⊥c spectrum. There is also a 
weak, sharp, spin-forbidden Mn2+ feature near 415 nm, barely 

Table 2. Table of positional, thermal, and occupancy parameters 
and their estimated standard deviations for natural and 
heat-treated Fe-rich and Mn-bearing tourmaline (BLS) 
from Blocherleitengraben, Lower Austria, and natural and 
heat-treated Mn-rich tourmaline (MNELB) from the island 
of Elba, Italy

Site Sample x y z Ueq Occ.
X BLS1 0 0 0.7500(2) 0.0232(2) Na0.94(2)Ca0.06

 BLS2 0 0 0.2214(2) 0.0233(6) Na0.94(1)Ca0.06

 BLS2H1 0 0 0.2193(2) 0.0207(6) Na0.97(1)Ca0.03

 BLS2H2 0 0 0.2199(2) 0.0209(6) Na0.97(1)Ca0.03

 MNELB3 0 0 0.7714(4) 0.0239(7) Na0.666(8)

 MNELB3H 0 0 0.7750(3) 0.0237(5) Na0.674(7)

Y BLS1 –0.12322(2) 1/2x 0.3393(2) 0.0106(1) Fe0.829(5)Al0.171

 BLS2 0.12338(2) 1/2x 0.63190(3) 0.00889(6) Fe0.819(4)Al0.189

 BLS2H1 0.12621(2) 1/2x 0.63391(3) 0.00985(7) Fe0.724(4)Al0.276

 BLS2H2 0.12583(2) 1/2x 0.63456(4) 0.00990(8) Fe0.676(4)Al0.324

 MNELB3 0.87608(2) 1/2x 0.37180(5) 0.0094(1) Al0.589(4)Mn0.411

 MNELB3H 0.87639(2) 1/2x 0.36624(4) 0.00820(9) Al0.706(3)Mn0.294 

Z BLS1 0.70130(3) 0.73828(2) 0.3619(2) 0.00771(9) Al0.797(3)Fe0.203

 BLS2 0.29875(2) 0.26174(2) 0.60992(3) 0.00578(7) Al0.818(2)Fe0.182

 BLS2H1 0.29753(2) 0.25723(2) 0.60489(4) 0.00732(7) Al0.773(2)Fe0.227

 BLS2H2 0.29741(2) 0.25699(2) 0.60442(4) 0.00767(7) Al0.751(3)Fe0.249

 MNELB3 0.70199(2) 0.73879(2) 0.38810(4) 0.00538(6) Al1.00

 MNELB3H 0.70324(2) 0.74109(2) 0.39232(3) 0.00685(7) Al0.935(3)Mn0.065 

B BLS1 0.88976(7) 2x 0.5194(3) 0.0102(3) B1.00

 BLS2 0.11031(5) 2x 0.4529(2) 0.0080(2) B1.00

 BLS2H1 0.11019(6) 2x 0.4533(2) 0.0071(2) B1.00

 BLS2H2 0.11011(6) 2x 0.4532(3) 0.0079(3) B1.00

 MNELB3 0.89002(5) 2x 0.5443(2) 0.0065(2) B1.00

 MNELB3H 0.89009(4) 2x 0.5463(2) 0.0066(2) B1.00

T BLS1 0.80868(2) 0.81039(2) 0.9732(2) 0.0076(1) Si1.00

 BLS2 0.19142(2) 0.18967(2) –0.00132(4) 0.00569(6) Si1.00

 BLS2H1 0.19113(2) 0.19027(2) 0.00136(4) 0.00554(6) Si1.00

 BLS2H2 0.19105(2) 0.19018(2) 0.00121(4) 0.00590(7) Si1.00

 MNELB3 0.80813(2) 0.81005(2) 0.99836(4) 0.00493(5) Si1.00

 MNELB3H 0.80860(1) 0.81006(1) 0.99750(3) 0.00519(5) Si1.00

H3 BLS1 –0.270(4) 1/2x 0.583(6) 0.08(2) H1.00

 BLS2 0.260(3) 1/2x 0.381(6) 0.06(1) H1.00*
 MNELB3 0.738(3) 1/2x 0.609(5) 0.029(9) H1.00

 MNELB3H 0.751(3) 1/2x 0.622(6) 0.08(1) H1.00†
O1 BLS1 0 0 0.1945(3) 0.0219(5) O0.70(5)F0.30

 BLS2 0 0 0.7819(3) 0.0237(6) O0.70(5)F0.30

 BLS2H1 0 0 0.7643(3) 0.0102(3) O1.00

 BLS2H2 0 0 0.7627(3) 0.0100(3) O1.00

 MNELB3 0 0 0.2193(4) 0.045(1) O0.43(7)F0.57

 MNELB3H 0 0 0.2363(2) 0.0150(4) O0.86(4)F0.14

Table 2.—Continued
Site Sample x y z Ueq Occ.
O2 BLS1 0.93852(5) 2x 0.4919(3) 0.0144(3) O1.00

 BLS2 0.06156(4) 2x 0.4800(2) 0.0127(2) O1.00

 BLS2H1 0.06080(4) 2x 0.4850(2) 0.0095(2) O1.00

 BLS2H2 0.06072(4) 2x 0.4857(2) 0.0100(2) O1.00

 MNELB3 0.93850(4) 2x 0.5136(2) 0.0180(3) O1.00

 MNELB3H 0.93913(3) 2x 0.5110(1) 0.0115(2) O1.00

O3 BLS1 –0.2668(1) 1/2x 0.4614(3) 0.0171(3) O1.00

 BLS2 0.2678(1) 1/2x 0.5101(2) 0.0148(2) O1.00

 BLS2H1 0.26034(9) 1/2x 0.5224(2) 0.0105(2) O1.00

 BLS2H2 0.25949(9) 1/2x 0.5225(2) 0.0109(2) O1.00

 MNELB3 0.7320(1) 1/2x 0.4892(2) 0.0118(2) O1.00

 MNELB3H 0.74050(7) 1/2x 0.4849(1) 0.0117(1) O1.00

O4 BLS1 0.90743(5) 2x 0.9047(3) 0.0130(3) O1.00

 BLS2 0.09269(4) 2x 0.0675(2) 0.0107(2) O1.00

 BLS2H1 0.09408(4) 2x 0.0776(2) 0.0097(2) O1.00

 BLS2H2 0.09423(5) 2x 0.0779(2) 0.0102(2) O1.00

 MNELB3 0.90643(4) 2x 0.9285(2) 0.0091(2) O1.00

 MNELB3H 0.90523(3) 2x 0.9222(1) 0.0098(1) O1.00

O5 BLS1 –0.1846(1) 1/2x 0.8840(3) 0.0130(2) O1.00

 BLS2 0.18477(8) 1/2x 0.0879(2) 0.0106(2) O1.00

 BLS2H1 0.18202(9) 1/2x 0.0853(2) 0.0102(2) O1.00

 BLS2H2 0.18185(9) 1/2x 0.0853(2) 0.0106(2) O1.00

 MNELB3 0.81260(8) 1/2x 0.9066(2) 0.0095(2) O1.00

 MNELB3H 0.81440(7) 1/2x 0.9073(1) 0.0107(1) O1.00

O6 BLS1 0.80337(7) 0.81272(7) 0.1945(3) 0.0116(2) O1.00

 BLS2 0.19673(5) 0.18745(6) 0.7771(1) 0.0095(1) O1.00

 BLS2H1 0.19188(5) 0.18634(6) 0.7789(1) 0.0085(1) O1.00

 BLS2H2 0.19142(6) 0.18593(6) 0.7787(1) 0.0089(1) O1.00

 MNELB3 0.80269(5) 0.81281(6) 0.2233(1) 0.0081(1) O1.00

 MNELB3H 0.80696(4) 0.81508(4) 0.22339(8) 0.00814(9) O1.00

O7 BLS1 0.71602(7) 0.71574(6) 0.8939(3) 0.0123(2) O1.00

 BLS2 0.28411(5) 0.28447(5) 0.0780(1) 0.0100(1) O1.00

 BLS2H1 0.28586(6) 0.28515(5) 0.0767(1) 0.0086(2) O1.00

 BLS2H2 0.28587(6) 0.28509(6) 0.0763(1) 0.0090(1) O1.00

 MNELB3 0.71441(5) 0.71398(5) 0.9192(1) 0.0072(1) O1.00

 MNELB3H 0.71347(4) 0.71388(4) 0.92205(7) 0.00740(9) O1.00

O8 BLS1 0.79074(7) 0.72986(8) 0.5317(3) 0.0150(2) O1.00

 BLS2 0.20933(6) 0.27023(6) 0.4403(1) 0.0123(1) O1.00

 BLS2H1 0.20932(6) 0.27020(6) 0.4402(1) 0.0091(1) O1.00

 BLS2H2 0.20918(6) 0.26999(6) 0.4395(1) 0.0099(2) O1.00

 MNELB3 0.79000(5) 0.72921(6) 0.5579(1) 0.0085(1) O1.00

 MMELB3H 0.79026(4) 0.72920(4) 0.56059(8) 0.00797(9) O1.00

Note: For definition of Ueq see Fischer and Tillmanns (1988). 
* In BLS2H1 and BLS2H2, the H site was not detected. 
† See text for discussion of the H site in MNELB3H. 



ERTL ET AL.: LIMITATIONS OF Fe2+ AND Mn2+ SITE OCCUPANCY IN TOURMALINE1406

visible at the scale of Figure 4 of the unheated sample (not vis-
ible in the heated sample).

In the spectrum (not shown) of the darker portion of the 
(unheated) Elba crystal, the Fe2+ features near 720 and 1120 nm 
are prominent. The intensity of the two Fe2+ bands in the E⊥c 
polarization is about twice the intensity of the E\\c bands, indi-
cating that some Fe2+-Fe3+ interaction is occurring in the darker 
region. The darker region also has a broad band near 420 nm 
typical of Fe2+-Ti4+ intervalence charge transfer (Mattson and 
Rossman 1988).

The optical absorption spectra (Figs. 5 and 6) of additional 
Fe2+-rich tourmaline crystals from Madagascar and Grasstein 
(sample drv18 and GRAS1, described originally by Cámara 
et al. 2002 and Ertl et al. 2006b, respectively), show a pair of 
bands corresponding to Fe2+ at about 770 and 1160 nm in the 
E\\c polarization.

Crystal chemistry and structure analysis
Fe2+-rich tourmaline. The pegmatitic Fe2+-rich tourmaline 

(chemical composition see Table 4) from Blocherleitengraben, 
Lower Austria (BLS1) has elevated contents of Fetotal (3.26 apfu 
Fetotal; 2.25 apfu Fe2+, 1.01 apfu Fe3+) and significant amounts 
of the larger Mn2+ (0.32 apfu). This is reflected in the <Y-O> 
distance of 2.063 Å (Table 3), which is the longest observed in 
tourmaline to date. The longest <Y-O> distance so far with 2.060 
Å was observed in a schorl from the St. Andreasberg District, 
Harz Mts., Lower Saxony, Germany, by Fortier and Donnay 
(1975). The Fe occupancy determined from the high-quality 
structural refinement (R = 1.27%) is in very good agreement 
with the chemical data. The X-site occupancy, as determined 
by chemical analysis (11.4 e−), is in good agreement with the 
refined occupancy [11.5(2) e−]. The sum of Y- and Z-site occu-

pancy (164.8 e−) shows very good agreement (difference: ~0.2%) 
with the sum of the refined occupancies (165.2 e−). Because of 
this excellent agreement between chemical and structural data 
we are able to address the site occupations very accurately. The 
calculated water content of 2.70 wt% is consistent with the water 
content of 2.6(1) wt% as determined by TGA. The W site has 
a slightly greater amount of monovalent anions (F1– + OH1– = 
0.51 apfu) than divalent anions (O2– = 0.49 apfu). In accordance 
with the dominant valency rule (Hatert and Burke 2008; Henry 

Table 3. Selected interatomic distances (Å) in natural and heat-
treated Fe-rich and Mn-bearing tourmaline (BLS) from 
Blocherleitengraben, Lower Austria, and natural and heat-
treated Mn-rich tourmaline (MNELB) from the island of Elba, 
Italy

 BLS1 BLS2 BLS2H1 BLS2H2 MNELB3 MNELB3H
X-O2 (x3) 2.534(2) 2.537(2) 2.554(2) 2.555(2) 2.504(2) 2.521(2)
X-O5 (x3) 2.742(2) 2.743(2) 2.691(1) 2.691(1) 2.763(2) 2.718(1)
X-O4 (x3) 2.806(2) 2.807(1) 2.790(1) 2.795(1) 2.818(2) 2.807(1)
Mean 2.694 2.696 2.678 2.680 2.695 2.682
      
Y-O1 2.027(2) 2.030(3) 1.980(1) 1.968(1) 2.029(2) 1.9347(9)
Y-O2 (x2) 2.037(1) 2.0358(8) 2.0215(8) 2.0189(8) 1.9833(9) 1.9766(6)
Y-O6 (x2) 2.044(1) 2.0466(8) 1.9986(8) 1.9937(9) 2.0361(8) 1.9785(7)
Y-O3 2.182(2) 2.192(1) 2.018(1) 2.014(1) 2.160(1) 2.049(1)
Mean 2.062 2.064 2.006 2.001 2.038 1.982
      
Z-O6 1.904(1)  1.9018(8) 1.9481(8) 1.9540(9) 1.8604(8) 1.8996(6)
Z-O8 1.905(1) 1.9037(8) 1.9111(8) 1.9137(9) 1.8840(8) 1.8900(6)
Z-O7 1.911(1) 1.9075(8) 1.9088(8) 1.9127(9) 1.8789(8) 1.8884(6)
Z-O8’ 1.946(1) 1.9449(9) 1.9314(8) 1.9337(9) 1.9178(8) 1.9092(6)
Z-O7’ 1.986(1) 1.9845(8) 2.0226(9) 2.0261(9) 1.9561(8) 1.9692(6)
Z-O3 1.9913(7) 1.9895(6) 1.8978(6) 1.8968(6) 1.9739(6) 1.9416(5)
Mean 1.941 1.939 1.937 1.940 1.912 1.916
      
T-O7 1.6087(9) 1.6105(8) 1.6050(8) 1.6054(8) 1.6161(7) 1.6095(6)
T-O6 1.609(1) 1.6093(9) 1.6152(8) 1.6171(9) 1.6098(8) 1.6174(6)
T-O4 1.6270(5) 1.6288(5)  1.6253(5) 1.6259(5) 1.6245(5) 1.6208(4)
T-O5 1.6425(6) 1.6429(5) 1.6305(5) 1.6305(6) 1.6376(5) 1.6291(4)
Mean 1.622 1.623 1.619 1.620 1.622 1.619
      
B-O2 1.369(3) 1.369(2) 1.381(2) 1.382(2) 1.357(2) 1.370(2)
B-O8 (x2) 1.378(2) 1.379(1) 1.370(1) 1.369(1) 1.385(1) 1.3744(8)
Mean 1.375 1.376 1.374 1.373 1.376 1.373

Table 4. Composition of Fe-rich and Mn-bearing tourmaline from 
Blocherleitengraben, Lower Austria, and of a Mn-rich tour-
maline from the island of Elba, Italy (wt%)

 BLS1* MNELB3†
SiO2 32.99(23) 36.37(19)
TiO2 1.06(3) 0.22(1)
B2O3 9.68‡ 10.54‡
Al2O3 25.10(11) 37.05(14)
Cr2O3 0.01(1) b.d.
FeOTotal 21.66(22) 0.09(2)
FeO§ 14.95 –
Fe2O3§ 7.46 –
MnO|| 2.13(7) 9.28(13)
MgO 0.09(2) b.d.
CaO 0.38(2) 0.04(1)
Li2O 0.00# 0.70**
ZnO 0.17(3) b.d.
Na2O 2.51(7) 1.98(6)
K2O 0.09(1) b.d.
F 0.49(3) 0.98(12)
H2O 2.70†† 2.76††
O≡F –0.21 –0.41
Sum 99.60 99.60

n 31 31
Si 5.92 6.00
[4]Al 0.08 –
Sum T site 6.00 6.00

[3]B 3.00 3.00

Al 5.23 7.20
Mn2+ 0.32 1.30
Fe2+ 2.25 0.01
Fe3+ 1.01 –
Mg 0.03 –
Li – 0.46
Zn 0.02 –
Ti4+ 0.14 0.03
Sum Y, Z sites 9.00 9.00

Na 0.88 0.63
Ca 0.07 0.01
K 0.02 –
 0.03 0.36
Sum X site 1.00 1.00
Sum cations 18.97 18.55

OH 3.23 3.04
F 0.28 0.51
Sum OH + F 3.51 3.55
* Average of 8 EMP analyses. Standard deviation in brackets. 
† Average of 10 EMP analyses. Uncertainty (wt%) for Li2O and H2O: 0.11 and 
0.05 respectively.
‡ Calculated for B = 3.00 apfu, because there is no structural evidence for sig-
nificant amounts of [4]B (<T-O> distances >1.620 Å).
§ FeO and Fe2O3 were determined by Mössbauer spectroscopy (Table 6). 
|| Total Mn calculated as MnO. For details about the valence state of Mn in these 
samples see text. Cl is below the detection limit. 
# The Li content (33 ppm) was determined by ICP-MS. 
** H2O content calculated based on charge balance assuming a normalization 
of Y + Z + T = 15.00 apfu. These values are consistent with the measured water 
contents of 2.6(2) wt% (BLS1) and 3.0(2) wt% (MNELB3) as determined by TGA. 
b.d.: below detection limit. 
†† Determined by flame AAS. 
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et al. 2011), the dominant anion of the dominant valency on a 
site becomes the basis for naming the species. Because F1– (0.28 
apfu) is greater than (OH)1– (0.23 apfu) this tourmaline is a 
fluor-schorl. However, the chemical composition of this sample 
shows that it belongs either to a schorl, fluor-schorl, or to an 
oxy-schorl (Bačik et al. 2011b) within the analytical errors. This 

sample breaks down (to hematite and mullite; consistent with 
oxidation experiments by Bačik et al. 2011a) at ~950 °C in air 
(onset: 920 °C, endset: 970 °C), and in N2 at ~860 °C (onset: 
840 °C, endset: 910 °C).

Based strictly on the structure refinements (and considering 
the associated error) the Z-site occupancy in BLS1 is determined 
to be Z(Al4.78Fe1.22), reflecting ~37% of the total Fe at the Z site. By 
including the uncertainty in the Fe3+ determination by Mössbauer 
spectroscopy, the range of Fe3+ in this sample is ~26–36% (~31 
± 5%) of the total Fe. The amount of Fe3+ is the sum of ~17% 
[6]Fe3+ and ~14% [6]Fe3+ that arises from the time-averaged iron 
involved in the intervalence interaction (~28% Fe2+-Fe3+ ED; 
Table 5). Furthermore, by taking into account the errors of the 
chemical and Mössbauer analyses, the total estimated amount 
of Fe3+ is approximately consistent with the amount of Fe at 
the Z site determined from structure refinement. However, by 
taking into consideration the errors of the structure refinement 
(3σ) and the Mössbauer data and accepting that Ti4+ (which has 
a smaller effective ionic radius than Fe3+; [6]Ti4+: 0.605 Å; [6]Fe3+: 
0.645 Å; Shannon 1976) could occupy the Z site and that there 
are delocalized electrons that are hopping between the Y site and 
the Z site, and maybe also between the Y sites, we propose two 
different formulas in the following section.

fIgure 1. Room-temperature (295 K) Mössbauer spectrum of Fe-
rich tourmaline from Blocherleitengraben, Lower Austria (sample BLS).

fIgure 2. Room-temperature (295 K) Mössbauer spectrum of Fe-
rich tourmaline from Blocherleitengraben, Lower Austria, which was 
heated and oxidized at 750 °C for 60 h (sample BLSH).

Table 5. Mössbauer parameters for Fe-rich tourmaline (sample BLS) 
from Blocherleitengraben, Lower Austria

 CS (mm/s) QS (mm/s) % Area
BLS (natural)
Fe2+  1.09 2.43 46.5
Fe2+ 1.06 1.58 8.5
ED Fe2+-Fe3+ 0.93 1.17 28
Fe3+ 0.44 0.59 17
BLSH (oxidized)
Fe3+ 0.37 0.95 100
Notes: Results are given in mm/s relative to the center point of a Fe-foil calibra-
tion spectrum. The Lorentzian full peak width (γ) at half maximum intensity is 
held constant at 0.20 mm/s. CS: the value of isomer shift, when the distributed 
hyperfine parameter has a value of zero. QS: the center of a Gaussian component 
of the ∆-distribution. % Area = the relative area of doublet. The ratio of Lorent-
zian heights of the two lines in an elemental quadrupole doublet, h+/h–,was 
constrained to have a value of 1 for all sub-components.

fIgure 3. (a) Optical absorption spectra of a 30 µm thick thin-sections 
of unheated Fe2+-rich tourmaline from Blocherleitengraben, Lower Austria 
(sample BLS). Weak OH overtone bands can be seen near 1430 nm in the 
E\\c direction. (b) Optical absorption spectra of a 30 µm thick thin-section 
of Fe3+-rich tourmaline from Blocherleitengraben, Lower Austria (sample 
BLS), which show the dramatic loss of intensity of the Fe2+ bands in the 
E┴c direction after oxidation (heating at 750 °C/60 h).

a

b
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A brief note on the assignment of Ti4+ to the Z site that 
is strongly supported by calculation of bond-valence sums 
for the ion in the two octahedral sites. In the two unheated 
samples (BLS1, BLS2) Ti4+ is greatly underbonded in the Y site 
(3.11 and 3.09 v.u., respectively), but near its formal valence 
in the Z sites (4.29 and 4.32 v.u., respectively). In the heated 
samples (BLS2H1, BLS2H2), Ti bond valence sums are still 
closer to the formal valence at the Z site (4.35 and 4.31 v.u., 
respectively), but the Y site bond-valence sums are much closer 
to the formal valence (3.58 and 3.63 v.u., respectively) than in 
the unheated sample.

On basis of the chemical data, the structural refinement, and 
the Mössbauer data, the first proposed formula was determined 
by assigning all of the Fe3+ (the amount of Fe2+ and Fe3+ from 
the Y-Z ED doublet were assigned to the Y and Z site) and Ti4+ to 
the Z site: X(Na0.88Ca0.07K0.02o0.03) Y(Fe2+

2.02Al0.41Mn2+
0.32Fe3+

0.23Zn0.02) 
Z(Al4.82Fe3+

0.78Fe2+
0.23Ti4+

0.14Mg0.03) T(Si5.92Al0.08)O18 (BO3)3 V(OH)3 
W[O0.49F0.28(OH)0.23]. The assigned Y-site occupants gives 24.1 

e−/site, which is in excellent agreement with the refined oc-
cupancy of 23.8(1) e−. The assigned Z-site occupants yield 15.4 
e−/site, again in excellent agreement with the refined occupancy 
of 15.6(1) e−. This first formula supports the lack of Fe2+ at the 
Z site, apart from that connected with delocalization of a hop-
ping electron. Such an assignment is also in accord with the 
bond-valence sums calculated for Fe2+ at the Y and Z sites. The 
calculated bond-valence sum for Fe2+ at the Y site ranges be-
tween 2.39 and 3.06 v.u. for the analyzed tourmalines (for which 
spectroscopic measurements were also performed), whereas it is 
significantly overbonded at the Z site, with bond-valence sums 
that range between 3.39 and 3.74 v.u.

For a second proposed formula, both ED doublets (Y-Z and 
Y-Y) were considered: X(Na0.88Ca0.07K0.02o0.03) Y(Fe2+

1.84Al0.48Mn2+
0.32

Fe3+
0.34Zn0.02) Z(Al4.75Fe3+

0.67Fe2+
0.41Ti4+

0.14Mg0.03) T(Si5.92Al0.08)O18 (BO3)3 
V(OH)3 W[O0.49F0.28(OH)0.23]. The assigned Y-site occupants give 
23.8 e−/site, which match the refined occupancy. The assigned 
Z-site occupants yield 15.5 e−/site, in excellent agreement with 
the refined occupancy [15.6(1) e−/site]. This second formula 
requires some Fe2+ (~0.3 apfu) at the Z site, apart from that con-
nected with delocalization of a hopping electron.

To check if there is any spectroscopic evidence for ZFe2+ in 
two other Fe2+-rich tourmalines (sample drv18 and GRAS1, 
described originally by Cámara et al. 2002 and Ertl et al. 2006b, 
respectively), their optical absorption spectra (Figs. 5 and 6) were 
recorded. If Fe2+ were to occupy two different 6-coordinated 
sites in significant amounts (e.g., samples drv18 and GRAS1: 
~Y0.4–1.6 apfu Fe2+ and ~Z0.4–0.6 apfu Fe2+ as proposed by 
Bosi 2008) and if these polyhedra have different geometries or 
metal-oxygen distances, bands from each site should be observed 
in the spectrum, most likely in the 1160 nm region in the E\\c 
polarization. However, even in high-quality spectra we see no 
evidence for a doubling of the bands. When we consider the 
samples described by Bosi et al. (2008) and Bosi and Lucchesi 
(2007), we note that various amounts of Fe have been found 
at the Z site by X-ray refinement. We further note that there is 
always enough Fe3+ in the Mössbauer spectrum to fully account 
for all of the Fe at the Z site. Bosi (2008) and Bosi and Luc-
chesi (2007) assigned to the Y site, to occupy the Z site in the 
same amount. Furthermore, the authors of the present study are 

fIgure 4. Optical absorption spectra of a 0.637 mm thick crystal 
plate of Mn-rich tourmaline from Elba Island, Italy (sample MNELB3) 
in its original unheated state (bottom) and after heating (top) to 750 
°C for 30 h.

fIgure 5. Optical absorption spectra of a 17 µm thick crystal plate 
of Fe-rich dravite from Madagascar (sample drv18, no. 108796; Dyar 
et al. 1998, 2001). The sinusoidal features at longer wavelengths are 
interference fringes that arise from the thinness of the sample.

fIgure 6. Optical absorption spectra of a 45 µm thick crystal plate 
of fluor-schorl from Grasstein, South Tyrol, Italy (sample GRAS1 from 
Ertl et al. 2006b).
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not aware of any reference where the structure refinement of a 
Fe2+/3+-rich tourmaline shows significantly more Fe at the Z site 
than the total amount of Fe3+ estimated by a Mössbauer study 
(in combination with chemical analysis).

Mn2+-rich tourmaline. The most Mn2+-rich sample, with 
a similar Mn2+ content as the Mn2+-rich samples from Elba 
published by Bosi et al. (2005a), was subsequently character-
ized chemically. The portion of this crystal richest in Mn2+ (and 
with dark yellow color), which was separated and character-
ized structurally and chemically (including the estimation of 
the OH content), has the structural formula X(Na0.63Ca0.01o0.36) 
Y(Mn2+

1.30Al1.20 Li0.46Ti4+
0.03Fe2+

0.01) ZAl6 TSi6O18 (BO3)3 V(OH)3 
W[F0.51O0.45(OH)0.04] (sample MNELB3; Tables 1–4). This 
tourmaline is the F-analog of tsilaisite (Bosi et al. 2011). 
The unit-cell parameters of MNELB3 [a = 15.951(2) and c = 
7.138(1) Å, Table 2] are very similar to, or even higher than 
those from the Mn2+-richest samples from Bosi et al. (2005a) 
[a = 15.9398(6)–15.9461(5) Å and c = 7.1363(3)–7.1380(3) 
Å]. This tourmaline breaks down (mainly to mullite) at ~920 
°C in N2 (onset: 910 °C, endset: 935 °C). A refinement of the 
Al:Mn ratio on the Z site gave 5.95:0.05(2). Thus, within a 3σ 
error there is no clear evidence for Mn at the Z site.

To determine if the refinement procedures of Mn2+-rich 
tourmalines from Austria (Ertl et al. 2003) can be modified 
to indicate possible Mn2+ at the Z site, we removed the re-
strictions of the occupancy of the Z site (constrained at full 
occupancy), while maintaining the T site and the B site at full 
occupancy (Si1.00, B1.00). However, even in the most Mn-rich 
tourmaline sample {sample BT with formula ~X(Na0.8o0.2) 
Y(Al1.3Mn2+

1.2Li0.4o 0.1) ZAl6 T(Si5.8Al0.2)O18 (BO3)3 V(OH)3 
W[F0.4O0.3(OH)0.3]; MnO: ~9 wt%}, the unconstrained occupancy 
decreased slightly to Al0.996(3) (equal to ~5.98(2) apfu Al at the 
Z site). Thus, the Z site is, within a 3σ error, solely occupied 
by Al. Hence, in the Austrian Mn2+-rich tourmaline there is 
no clear evidence that significant amounts of Mn2+ or Mn3+ 
occupy the Z site.

Oxidation experiments
Fe3+-rich tourmaline. Sample BLS2 (extracted from near 

the core of the Fe2+-rich tourmaline crystal from Blocherleit-
engraben) was heated in air at 700 °C for 10 h (BLS2H1). The 
<Y-O> distance was significantly smaller (2.006 Å) than before 
heating (2.064 Å), which is consistent with the oxidation of a 
large amount of Fe2+ (Table 3). Although the <Z-O> distance 
did not change significantly after heating, the refined ZFe 
content was larger than before heating (Table 2). Simultane-
ously the refined YFe content was smaller than before heating 
(decrease by 11.6%). The same observations were made after 
heating BLS2H1 a second time at 750 °C for 72 h (BLS2H2; 
Table 2). After the second heat-treatment, in this sample we 
found ~2.03 apfu YFe and ~1.49 apfu ZFe by refinement (Table 
2). The untreated single crystal had, before any heating, ~2.46 
apfu YFe and ~1.09 apfu ZFe (Table 2). These observations can 
be explained by a distinct Fe ↔ Al exchange between the Y 
and Z sites during oxidation. During this process, H was fully 
expelled, probably as H2O, because no H was found near O3 
by refinement in the heated samples BLS2H1 and BLS2H2, 
and the minor amount of F (at the O1 site) was replaced by 

O completely (within error limits of the structure refinement; 
results in Table 2). The unit-cell parameter a decreased dur-
ing the first heating step, but did not change any further after 
the second heating step (Table 1). In contrast, the c parameter 
showed a slight increase after both heating steps, resulting in 
a slight net volume increase during the second heating. The 
final product was a conversion of the tourmaline to one with 
a buergerite composition with approximately all Fe2+ oxidized 
to Fe3+ {Table 5, Figs. 2–3, structural formula of BLS2H2: 
~X(Na0.9Ca0.1) Y(Fe3+

1.6Al1.0Mn3+
0.2Ti4+

0.1) Z(Al4.3Fe3+
1.7) T(Si5.9Al0.1)O18 

(BO3)3 V[O2(OH)] WO}. The Fe2+ absorption bands at 710 nm 
and 1130 nm region in the E\\c direction of the optical spectrum 
(Fig. 3b) disappeared as a result of the heating process as did 
the overtones of the OH stretching bands near 1430 nm. Like-
wise, the very intense Fe2+ bands enhanced by interaction with 
Fe3+ in the E⊥c direction also vanished after heating. The most 
prominent remaining features in the spectrum, bands near 1130 
and 580 nm, are assumed to arise from Mn3+. Their positions, 
relative intensity, polarizations, and shape mimic the corre-
sponding Mn3+ features seen in the heated Elba tourmaline as 
well as those in common, naturally pink elbaites. Upon heating, 
the previously blackish crystal fragment became brown-red; 
the transparency was unchanged.

Mn3+-rich tourmaline. Similar effects were observed 
during heating of the Mn-rich tourmaline. After heating of 
MNELB3 at 750 °C for 30 h (sample MNELB3H) the <Y-O> 
distance decreased from 2.038 to 1.982 Å (Table 2). Some Mn2+ 
of the Y site was exchanged during oxidation to Mn3+ with some 
Al of the Z site (ZAl ↔ ZMn3+). Before heating ~1.23 apfu YMn 
(no clear evidence for Mn at the Z site) was found by refine-
ment. After heating ~0.88 apfu YMn and ~0.39 apfu ZMn were 
found by refinement (Table 2). We suspect that a significant 
amount of H (at the O3 site) was lost during oxidation of some 
Mn2+ to Mn3+ as was indicated by an increased Ueq of the H atom 
(~0.03 → ~0.08 Å2) in sample MNELB3H (Table 2). More-
over, the F content [0.57(7) F apfu according to refinement] 
decreased considerably [0.14(4) apfu after heating] indicating 
that evolved F was exchanged with O. The unit-cell parameter 
a decreased during heating whereas the c parameter showed 
a slight increase (Table 1). After heating at 750 °C for 30 h, 
the dark yellow sample was dark brown-red, with unchanged 
transparency (Fig. 7), as expected for the oxidation of Mn2+ 
to Mn3+. The visible-NIR absorption spectrum (Fig. 4) of the 
heated sample showed broad bands near 532 and ~1040 nm, 
which are due to Mn3+. The remaining brown component of the 
red color arises from residual Mn2+ as evidenced by the sharp, 
spin-forbidden band at 421 nm. Interestingly, the sharp band 
in the unheated sample (Fig. 4) that corresponds to the spin-
forbidden transition of Mn2+ occurs at 415 nm, as previously 
observed in Mn-rich tourmalines from the Lundazi District of 
Zambia by Mattson and Rossman (1986). The shift in band 
position is not fully understood but probably originates from 
the exchange of Mn from the Y to the Z site. The integrated 
intensity of the OH overtone bands can be seen near 1430 
nm in the spectra of both the heated and unheated samples 
but decreases in the spectrum of the heated sample (Fig. 4), 
consistent with the interpretation of the amount of H from the 
single-crystal refinements.
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dIscussIon

Mössbauer spectra
To determine the abundance of Fe3+ in the unheated Fe2+-rich 

tourmaline, it is necessary to assign half of the electron delocal-
ized Fe to Fe3+ and half to Fe2+. On the basis of these data, we can 
conclude that this sample contains 17% of the total Fe in the Fe3+ 
doublet, 28% in the ED doublet, of which half—or 14%—can be 
assigned to Fe3+, and thus ~31% of the total Fe as Fe3+.

The correspondence between specific sets of isomer shift 
and quadrupole splitting and a site assignment must always be 
based on analogous Mössbauer measurements of minerals with 
known Mössbauer parameters for similar sites or, fundamen-
tally, on corroborating single-crystal structure refinements on 
the same samples. Assignment of the Fe2+ doublets to Y sites in 
the Dyar et al. (1998) paper was mainly based on the compel-
ling theoretical models of Pieczka (1997), Pieczka and Kraczka 
(1997), and Pieczka et al. (1998), who used structural analyses 
and chemical composition as the basis for their models. They 
concluded that Fe2+ occupies only the Y site in the structure, and 
argued that previous assignment of Fe2+ to the Z site simply does 
not make crystallochemical sense. They assigned the multiple 
doublets, previously attributed to Fe2+ in Y and Z, to combina-
tions of nearest- and next-nearest neighbors exclusively around 
the Y site. They further proposed that the gradual decrease in 
quadrupole splitting in successive subcomponents of the YFe2+ 
distribution (which is also accompanied by line broadening) 
is due to the decreasing contributions of ionic bonding in the 
YO6 octahedron when cations with higher charge are present as 
next-nearest neighbors. Subsequent single-crystal XRD analysis 
of a subset of nine samples studied by Dyar et al. (1998) and 
Bloodaxe et al. (1999) confirmed that this model was consistent 
for those samples. They found no evidence for Fe2+ occupancy 

in the Z site, consistent with the assignment of Fe2+ Mössbauer 
doublets to the Y site in these samples.

In the current work, doublets assigned to octahedral Fe2+ 
could, in theory, represent either the three subcomponents of the 
YFe2+ distribution or two YFe2+ distributions and a ZFe2+ distribu-
tion, as suggested by Burns (1972) and Saegusa et al. (1979). 
Distinguishing between these two models in this case requires 
the X-ray diffraction results. Likewise, the interpretation of Fe 
spectra that reflect electron delocalization requires that the Fe 
atoms that are sharing electrons be in adjacent sites. Ferrow 
(1994) assigned the ED doublets in tourmaline to have isomer 
shift values of 0.86, 0.84, and 0.71 mm/s for Y-Y, Y-Z, and Z-Z 
electrons, respectively. The doublet in the present study, which 
has an area equivalent to 14% and IS = 0.93 mm/s, is (within the 
error) most consistent with Y-Y or possibly Y-Z delocalization, 
because Z-Z delocalization would yield a much lower IS and 
is also less probable in the tourmaline structure (as determined 
below). If the delocalization occurs between both Y-Y and Y-Z, 
in approximately equal proportions, the following configurations 
should be considered:

Y-Y = YFe3+ – YFe2+ ↔ YFe2+ – YFe3+ (YFe2+ at any time is 
~7% of Fetot).

Y-Z = YFe2+ – ZFe3+ ↔ YFe3+ – ZFe2+ (ZFe2+ at any time is in 
the range ~0–7% of Fetot).

Accepting the latter interpretation, the area of the ED doublet 
would give support for the existence of a small amount (ca. 
0–0.23 apfu at any time) of Fe2+ at the Z site that is in transition 
due to ED.

An additional interpretation of the Mössbauer spectroscopy 
is based on the work of Ferrow (1994), which indicates that 
electrons are more likely to be shared between YFe2+ and ZFe3+, 
present at one of the two adjacent Z sites as opposed to ZFe2+ 
– ZFe3+ within the spiral chains of the Z-centered octahedra. In 
our Fe2+-rich tourmaline sample (BLS), the electrons are most 
probably shared between YFe2+ and ZFe3+, present at one of the 
two adjacent Z sites, equal to 2.02/3 × 0.78/6 × 2 ≈ 0.18, whereas 
for ZFe2+ – ZFe3+ delocalization only 0.78/6 × 0.23/6 × 2 << 0.01. 
These values indicate that ED YFe2+ – ZFe3+ seems to be more 
probable than ZFe2+ – ZFe3+ and, in addition, the latter must be 
only connected with the less-likely ZFe2+ – ZFe3+ clusters within 
the spiral chains of the Z-centered octahedra. Fe2+ and Fe3+ as 
well as the remaining octahedrally coordinated ions should be 
distributed on the Y and Z sites “statistically,” so ascribing the 
possibility of ED only to the Fe2+ and Fe3+ pair is not very likely; 
other ED-cationic-pairs are also probable, e.g., Fe2+ – Ti4+ or 
Mn2+ – Fe3+.

Crystal chemistry and structure analysis
Fe2+-rich tourmaline. Recently, some authors assigned up to 

~0.26 apfu Fe2+ to the Z site in tourmaline of the schorl-dravite 
series by a minimization procedure that simultaneously accounts 
for both structural and chemical data (samples 60e, l3l, L3h, Utö; 
Bosi and Lucchesi 2004; Bosi et al. 2005a, 2005b; Bosi 2008). 
A Mössbauer interpretation (Andreozzi et al. 2008), which sup-
ports these results, is considered questionable (for details see 
Appendix). The total Fe content of these samples is in the range 

fIgure 7. Unheated and heated (750 °C/30 h) piece of the same 
Mn-rich crystal (sample MNELB) from Elba Island, Italy. Both polished 
plates are ~8 mm in length and ~0.6 mm thick. 
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~0.8–1.7 apfu, which is distinctly lower than the Fe content of 
the sample we investigated (~3.3 apfu Fe). Furthermore, there 
are some issues that make their conclusions more uncertain. In 
the Mössbauer spectrum of Utö tourmaline, for example, the 
peak width (Γ) for the doublet with the ZFe2+ assignment is 0.53 
mm/s (Bosi 2008), much greater than widths of other peaks that 
are closer to typical Γ values for silicates of ~0.26–0.30 mm/s. 
This anomalously large width suggests that the doublet may 
actually be two or more separate doublets with more typical 
line widths. The net effect of this would be to decrease the area 
assigned to ZFe2+ and potentially significantly change the areas 
in the fit. Bosi (2008) used the quadrupole splitting (QS) of Fe3+ 
= 0.76 mm/s to indicate explicitly that this Fe3+ occupies the Y 
site. The doublets of YFe3+ in tourmalines thermally oxidized in 
air show QS values changing from about 0.3 mm/s to about 0.9 
mm/s, probably corresponding to YFe3+O4(OH)2 converting to 
YFe3+O6, and ZFe3+ from 0.7–0.8 to 1.1–1.3 mm/s corresponding 
to ZFe3+O5(OH) grading to ZFe3+O6. Thus the doublet of Fe2.5+ 
should be assigned to both the Y and Z sites. Such an assign-
ment would assume that ZFe3+ cannot cluster with ZFe2+ in the 
adjacent Z sites, because ZFe2+ and ZFe3+ should also be located 
between two Z sites occupied by Al, distinctly predominate at 
the site over Fe3+ or Fe2+.

Bosi (2008) reassigned the site occupancies of tour-
malines (sample drv18 and GRAS1) described origi-
nally by Cámara et al. (2002) and Ertl et al. (2006b), 
respectively. Cámara et al. (2002) gave the structural formula 
of their sample drv18 as X(Na0.49Ca0.48K0.01o0.02) Y(Mg1.35Fe2+

0.94 

Fe3+
0.49Ti4+

0.20o 0.02) Z(Al4.58Mg0.80Fe3+
0.62) T(Si5.99Al0.01O18) (BO3)3 

V(OH)3 W[F0.18(OH)0.18O0.64] and Ertl et al. (2006b) gave the for-
mula of sample GRAS1 as X(Na0.78K0.01o0.21) Y(Fe2+

1.89Al0.58Fe3+
0.13 

Mn2+
0.13Ti4+

0.02Mg0.02Zn0.02o0.21) Z(Al5.74Fe3+
0.26) T(Si5.90Al0.10O18) (BO3)3 

V(OH)3 W[F0.76(OH)0.24]. Bosi (2008) gave optimized formulas 
in which essentially all Fe at the Z site, originally described as 
Fe3+ in these two samples, is assumed to be Fe2+. For the drv18 
and GRAS1 samples, Bosi (2008) calculated Z-site occupan-
cies of Z(Al4.58Mg0.81Fe2+

0.56Fe3+
0.05) (drv18) and Z(Al5.60Fe2+

0.37Mg0.03) 
(GRAS1), respectively. A simple calculation of theoretical <Z-O> 
bond lengths shows that such occupancies with only ZFe2+ in 
sample GRAS1, as modeled by Bosi (2008), seems unrealistic. 
For GRAS1, in which <Z-O> is determined to be 1.921 Å (Ertl et 
al. 2006b), an extrapolative calculation of the theoretical <Z-O> 
bond length, which uses accepted average [6]Al3+-O, [6]Fe3+-O, 
and [6]Fe2+-O bond lengths in inorganic minerals and compounds 
(Baur 1981) and a (slightly simplified) refined occupancy of 
Z(Al5.6Fe0.4), gives a theoretical value of <Z-O> = 1.916 Å for a 
completely Fe2+-free Z site [i.e., Z(Al5.6Fe3+

0.4)], but 1.924 Å for a 
Fe3+-free Z site [i.e., Z(Al5.6Fe2+

0.4)]. It should be pointed out that 
for the calculations in the optimization model of Bosi (2008), 
his own “optimized” octahedral ionic radii for the tourmaline 
structure were used (Bosi and Lucchesi 2007). For instance, for 
the radius of Fe3+ in tourmaline, Bosi et al. (2005b) and Bosi 
and Lucchesi (2007) gave values [rFe3+(Y) = 0.697 Å, rFe3+(Z) = in 
the range 0.705 to 0.698 Å], which are, however, considerably 
larger than the Shannon (1976) value of rFe3+(HS) = 0.645 Å. Also, 
the ”tourmaline-optimized” values for the Fe3+-O bond lengths 
given previously, YFe3+-O = 2.057 Å and ZFe3+-O = 2.055 Å (Bosi 
and Lucchesi 2004; Bosi et al. 2004), are much higher than the 

well-established average [6]Fe3+-O bond length of 2.011 Å (Baur 
1981). Interestingly, the optimized radius values for Fe2+, rFe2+(Y) 
= 0.778 Å and rFe2+(Z) = 0.774 Å (Bosi and Lucchesi 2007), are 
in good agreement with the Shannon (1976) value of rFe2+(HS) = 
0.78 Å. These obvious contradictions are not addressed by either 
Bosi (2008) or Bosi and Lucchesi (2007).

Kahlenberg and Veličkov (2000) refined the structure (R = 
2.3%) and established the site occupancies of a synthetic, almost 
Fe3+-free foitite [Fe2+

1.53(2) and Fe3+
0.05(2) by EMPA and Mössbauer 

spectroscopy]. This study revealed that the Z site is filled exclu-
sively with Al within one standard deviation. They conclude that 
this result is in accord with an observed <Z-O> distance of 1.915 
Å, if the determinative relation between the ionic radius of the 
cation at the Z site and <Z-O> given by Grice and Ercit (1993) is 
employed. Kahlenberg and Veličkov (2000) give a bond-valence 
sum of 2.961 v.u. for the Z site, which is very close to the formal 
valence of 3 v.u. for trivalent Al.

Mn2+-rich tourmaline. A refinement in Bosi et al. (2005a) 
suggests that the Z site with a total of six atom positions contains 
0.08 ± 0.02 apfu Mn in their most Mn2+-rich tourmaline sample 
from Elba Island, Italy (Tsl2g; 9.6 wt% MnO). As stated above, 
we found no clear evidence for Mn at the Z site in a similar 
tourmaline from Elba Island. However, before assigning the 
relatively large Mn2+ to the Z site it seems to be more realistic 
that the significantly smaller Ti4+ will occupy this site. [6]Ti4+ 
has an effective ionic radius that is ~25% smaller than [6]Mn2+ 
(Shannon 1976). Calculation of bond-valence sums for Ti4+ in 
the octahedral sites of the unheated Mn-rich tourmaline dem-
onstrates that Ti4+ is slightly closer to its formal valence in the Z 
site (4.65 v.u.) than in the Y site (3.33 v.u.). In the heat-treated 
crystal Ti4+ clearly favors the Y site, with a bond-valence sum of 
3.83 v.u., vs. a sum of 4.58 v.u. in the Z site. Moreover, the Mn2+ 
is greatly overbonded at the Z site, with bond-valence sums that 
range between 4.01 and 4.36 v.u. for Mn2+ at the Z site in these 
samples. Using the chemical data and the structure refinement, 
we offer the final structural formula (for the unheated sample) as 
X(Na0.63Ca0.01o0.36) Y(Mn2+

1.30Al1.23Li0.46Fe2+
0.01) Z(Al5.97Ti4+

0.03) TSi6O18 
(BO3)3 V(OH)3 W[F0.51O0.45(OH)0.04], with no Mn2+ at the Z site.

Theoretically, it is also possible that there is a very small 
amount of Mn3+ present in this sample, which could also occupy 
the Z site because of its relatively small effective ionic radius. 
However, the optical spectra (Fig. 4) indicate that there is very 
little Mn3+ in the yellow regions of the unheated sample, making 
it unlikely that a significant amount (>1% of the total Mn) of 
Mn3+ will contribute to the structural formula.

In the Austrian Mn2+-rich tourmaline (sample BT in Ertl et al. 
2003) there is also no clear evidence that significant amounts of 
Mn2+ or Mn3+ occupy the Z site. An assessment of inaccuracies in 
the determination of site occupancy can be examined to establish 
their magnitude. Because the simultaneous refinement of too 
large a portion of the total scattering can lead to significant cor-
relations between site occupancy and scale factor, subsequent to 
the successful refinement detailed above in our new refinements 
of the Mn-rich tourmalines from Ertl et al. (2003) we fixed the 
T and B sites at full occupancy. Releasing the multiplicity of 
all cation sites (X, Y, Z, T, B) at the same time, as was done by 
Bosi et al. (2005a) in the refinements of the Mn-rich tourmalines 
from Elba, Italy, could be problematic because of the coincident 
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uncertainties mentioned above. Thus, we consider it likely that 
this resulted in larger errors in their structural refinements. We 
conclude that there is no compelling evidence for Mn2+ at the Z 
site in tourmaline, even in samples with a relatively high Mn-
content (~9 wt% MnO). In addition, the argument of <Z-O> 
distances up to ~1.911 Å as evidence for ZMn2+ (Bosi et al. 2005a) 
is not convincing because tourmalines with significantly lower 
Mn2+ contents show similar <Z-O> distances without any proven 
occupancy of the Z site by Mn. Burns et al. (1994) determined 
a <Z-O> distance of 1.910 Å for a tourmaline with ~6 wt% 
MnO (no Mg and only 0.02 apfu Fe; sample NP1). Nuber and 
Schmetzer (1981) described a liddicoatite (with no significant 
amounts of Fe, Mn, and Mg) with a <Z-O> distance of 1.909 
Å. “Oxy-rossmanite” from Austria, the most (natural) Al-rich 
tourmaline known to date, with only ~2 wt% MnO (and 0.04 
apfu Fe2+, no Mg; Ertl et al. 2005), also shows <Z-O> distances 
up to 1.910 Å. Also, Mn2+-rich tourmalines studied by Ertl et al. 
(2003), which showed no indication of Mn2+ on the Z site, have 
slightly enlarged <Z-O> distances, up to 1.910 Å. Burns et al. 
(1994) noted that the scatter in the <Z-O> values in the Mn2+-
bearing elbaites is presumably due to inductive effects rather than 
compositional variants. This is in agreement with the curve for 
the Z site produced by Hawthorne et al. (1993).

Data of 54 Al- and Li-bearing tourmaline crystals with refined 
structures were selected from the literature (Tables 6 and 7, on 
deposit). In this set of data the <Z-O> mean bond length varies 
from 1.902 to 1.913 Å. For the set of the Li- and Al-bearing 
tourmalines most of the authors accept that the Z site is occupied 
only by Al (Donnay and Barton 1972; Donnay 1977; Nuber and 
Schmetzer 1981, 1984; Gorskaya et al. 1982; Grice and Ercit 
1993; Burns et al. 1994; MacDonald and Hawthorne 1995; Ertl 
et al. 1997, 2003, 2004a, 2004b, 2005, 2006a; Selway et al. 1998; 
Hughes et al. 2000, 2004; Schreyer et al. 2002; Cámara et al. 
2002; Marler et al. 2002; Prowatke et al. 2003). However, Bosi et 
al. (2005a, 2005b), who refined the structure of Mn2+-bearing to 
Mn2+-rich elbaite and of tourmalines of the elbaite-schorl series, 
assumed that an increase of the <Z-O> distance up to ~1.911 Å is 
a result of Mn2+-Al or Fe2+-Al disorder. Bosi et al. (2005a) show 
that Mn-bearing tourmalines from the Elba Island appear to have 
a good correlation between YMn2+ and ZMn2+ inferred from their 
SREF (structure refinement) data. However, a correlation with a 
similar quality can be obtained for the observed <Z-O>SREF and 
the total Mn2+ content in their Mn2+-rich tourmaline samples 
(Fig. 8). This correlation indicates a value of about 1.902 Å for 
Mn2+-free tourmaline, as typical value for <Z-O> for crystals 
with similar ratios among Al, Li, and Mn2+. Thus, the observed 
difference between this value and the <Z-O> distance of their 
elbaite sample (sample Elb2rim; Bosi et al. 2005a) could be 
treated as an inductive effect of different Y-site and maybe also 
T-site populations (see Ertl et al. 2010b). The Y-site population 
of the elbaite rim (Elb2rim) is quite different from that in the 
remaining parts of a crystal investigated, in which high amounts 

of Mn2+ are inversely correlated with lithium. Moreover, it is 
questionable if such a Mn-Al disorder, as it was shown by Bosi 
et al. (2005a) in their Figures 2 and 3, should be a linear function 
of the composition. In contrast to this study, we consider the small 
differences in the <Z-O> distances to be due to inductive effects 
resulting from different Y-site populations, i.e., differences in 
ionic radii of Y cations bonded to the O3 and O6 oxygen atoms. 
In addition, these differences are also related to T-site popula-
tions, i.e., differences in ionic radii of T cations bonded to the 
O6 and O7 oxygen atoms. 

The remarks cited above from the results of Bosi et al. (2005a) 
and a plot of <Z-O> vs. <Y-O> co-variation for some Li- and 
Al-bearing tourmalines (Fig. 10 in Ertl et al. 2010a) indicate a 
relation between these parameters. Thus, this relation suggests 
that the population of the Y-cations, which have an ionic radius 
in the range of 0.535 Å ([6]Al3+) to 0.83 Å ([6]Mn2+), can affect the 
<ZAl-O> as observed in the SREF. To elucidate the inductive ef-
fects of the different Y-site cations as well as the Y-site vacancies 
on the <ZAl-O> distances, a multiple regression of <ZAl-O>SREF 
vs. the amounts of the typical Y -site occupants [NFe2+(Y), NMn2+(Y), 
NMg(Y), NZn(Y), NFe3+(Y), NAl(Y), NLi(Y), and NTi4+(Y)] has been tested 
according to the following equation:

<ZAl-O>SREF = <ZAl-O>Y=vac + ΣNiCi

where Ci = <ZAl-O>Y=vac – <ZAl-O>Y=i and where i denotes the 
different Y-site occupants as mentioned above. Ci denotes a 
change of <ZAl-O> as induced by the ith Y-site cation, measured 
vs. <Z-O> of the ZO6 octahedron, which is shared with a vacant 
Y site.

For the initial set of data, a good statistical fit of parameters 
has been achieved (R > 0.69; SE < 0.002 Å, MAE ≈ 0.001 Å, 
Fig. 9a). Except for a few crystals, the values scatter regularly 
around the line <ZAl-O>SREF = <ZAl-O>pred. Considering similar 
values of the estimated parameters Ci for the divalent cations (Fe, 
Mn, Mg, and Zn), the amounts of these cations have been sum-
marized, and in the final solution the regression of <ZAl-O>SREF 
vs. [NFe2+(Y)+Mn2+(Y)+Mg(Y)+Zn(Y), NFe3+(Y), NAl(Y), NLi(Y), and NTi(Y)] was 

fIgure 8. Correlation between Mn2+ and <Z-O> in Mn-rich 
tourmaline using data from Bosi et al. (2005a).

1 Deposit item AM-12-057, Tables 6 and 7; CIFs. Deposit items are available two 
ways: For a paper copy contact the Business Office of the Mineralogical Society 
of America (see inside front cover of recent issue) for price information. For an 
electronic copy visit the MSA web site at http://www.minsocam.org, go to the 
American Mineralogist Contents, find the table of contents for the specific volume/
issue wanted, and then click on the deposit link there.
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fIgure 9. (a) Initial solution of the correlation between the calculated 
and the measured <Z-O> distances. (b) Final solution of the correlation 
between the calculated and the measured <Z-O> distances.

examined. After removing outliers (>2 s.d. values; 7 for the first 
solution, 9 for the second solution for 54 samples; Table 71, on 
deposit), two almost equivalent solutions have been achieved: 
(1) <ZAl-O>SREF = 1.8884(71) + 0.0089(24)NFe2+(Y)+Mn2+(Y)+Mg(Y)+Zn(Y) 
+ 0.0097(391) NFe3+(Y) +0.0067(25) NAl(Y) + 0.0039(23) NLi(Y) + 
0.0136(136) NTi(Y) with R ≈ 0.83, SE = 0.0013 Å, MAE = 0.0010 Å 
for n = 47 crystals, and (2) <ZAl-O>SREF = 1.8865(67) + 0.0097(23) 
NFe2+(Y)+Mn2+(Y)+Mg(Y)+Zn(Y) + 0.0107(367) NFe3+(Y) + 0.0073(24) NAl(Y) + 
0.0045(22) NLi(Y) + 0.0088(128) NTi(Y), with R ≈ 0.85, SE = 0.0013 
Å, MAE = 0.0010 Å for n = 45 crystals.

Figure 9b presents the <Z-O>pred vs. <Z-O>obs co-variation of 
the second solution. In both solutions, C0 (1.8884 and 1.8865 
Å, respectively) corresponds to a hypothetical <Al-O> distance 
in the ZO6 octahedron shared with a vacant Y site. The occupa-
tion of an ith-cation at the three YO6 octahedra increases the 
<ZAl-O> distance for about CiNi, e.g., for elbaite with Al1.5Li1.5 
the predicted <ZAl-O> bond length should be ~1.904 Å, for lid-
dicoatite (AlLi2) ~1.903 Å, for dravite and schorl ~1.915–1.916 
Å, and for olenite (Al3) ~1.908 Å. For buergerite this parameter 
is in the range 1.918–1.919 Å. However, this buergerite value 
has significant uncertainty because Fe3+ is only present in two 
samples and only in very small amounts (0.02–0.03 apfu). These 

results also indicate that in (Al,Li)-tourmaline with a deficiency 
of Y-site cations the observed Al-O distance may be slightly 
lower than 1.904 Å. The results clearly show that Fe2+-Al, Mn2+-
Al, or even Mg-Al disorder in (Al,Li)-bearing tourmalines are 
potentially overestimated because the inductive effect of large 
Y-site cations on the mean size of the smaller ZO6 octahedron 
(cations from both sites form bonds with the same O3 and O6 
oxygen atoms) is usually not considered. Using this relationship, 
we can predict the <Z-O> bond lengths (except for buergerite) 
within an error of 0.002 Å, or < 1 e.s.d.

Oxidation experiments
Clark et al. (2008) stated that although the <B-O> bond length 

is reasonably constant for all tourmaline species, the B-O2 and 
B-O8 bond lengths are not, but vary according to the chemi-
cal composition of the tourmaline. The observed B-O2/B-O8 
ratios compared between the natural (~0.99) and the oxidized 
(~1.01) Fe3+-rich tourmaline (Table 3) are very similar to the 
values described by Clark et al. (2008) for schorl and buergerite, 
respectively. The structural data of this “synthetic” buergerite is 
very similar to data of natural buergerite except that there is three 
times as much Fe3+ at the Z site (for comparison with structural 
data of buergerite from Mexico see Barton 1969; Grice and Ercit 
1993; updated chemical data in Dyar et al. 1998). Oxidation 
experiments (at 700 °C) on Fe2+-rich tourmalines by Bačik et 
al. (2011a) resulted in tourmalines similar to buergerite. These 
authors described the substitution vector for oxidation of Fe as 
Fe3+OFe2+

–1(OH)–1.
We conclude that there is no convincing proof that Fe2+ 

occupies the Z site, apart from that occupancy connected with 
delocalization of hopping electrons involving Fe cations at the 
Y and Z sites. We further conclude that there is no convincing 
proof for Mn2+ at the Z site. We consider that an unequivocal 
explanation of the reasons for the elongation of <Z-O> is also 
necessary for a correct assumption of the cation populations at 
the Y and Z sites, and for the evaluation of any possible disorder 
in the tourmaline structure. Inductive effects in the structure 
seem to have a significant influence to the <Z-O> bond length.
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Andreozzi et al. (2008) described a doublet (∆EQ = 1.38 
mm/s) that they consider consistent with Fe2+ at the Z octahe-
dron, which is smaller and less distorted than the Y octahedron 
(λZ = 1.014, λY = 1.024). This interpretation is problematic, 
and there are several issues with some of their fits.

(1) In four of the spectra, some values of the peak width (Γ) 
are anomalously small, e.g., below 0.24–0.25 mm/s, the small-
est acceptable peak width for a single line in a quadrupole dou-
blet (J. Kraczka, personal communication, 2000). Additionally, 
successive lines in a spectrum should be broader when the value 
for quadrupole splitting (QS) decreases, which is commonly the 
case when there is a decrease in intensity/abundance of a line/
quadrupole. Such a line/quadrupole is much less defined than 
lines with higher QS and usually higher intensity. Hence, such 
lines with an anomalous Γ value are more frequent in the data.

(2) These authors further do not explain the reason that 
quadrupoles with almost the same isomer shift (IS) and QS 
values are interpreted in a different way. For example, the 

interpretation of the curve fits of samples 61Vbh and 62ha 
(rim) are different: in the first sample quadrupole with IS = 
1.09 mm/s and QS = 2.39 mm/s was assigned to Fe2+(Y1), but 
in the second sample quadrupole with IS = 1.09 mm/s and QS 
= 2.35 mm/s is related to Fe2+(Y2). Both samples represent 
Li-bearing tourmalines, so almost the same values of the pa-
rameters suggest similar structural environments of Fe2+ both 
in the Y1 and Y2 positions. This is inconsistent because both 
positions should have two distinctly different surroundings.

(3) For the samples 62ha (rim) and 64gh (core) a quadrupole 
with IS between 1.15–1.19 mm/s and QS = 1.83–1.90 mm/s is 
interpreted as Fe2+(Y3), but the same assignment has a quad-
rupole with IS = 1.05 mm/s and QS = 1.55 mm/s found in the 
spectrum of the L2al crystal. Furthermore, in other crystals, a 
quadrupole with QS varying from 1.45 (a value close to 1.55 
mm/s) to 1.29 mm/s is related to Fe2+ at the Z site. Such varia-
tions of the QS values is more likely due to variations of the 
W-site occupation, because this site can be mainly occupied 
by OH or F, but it also can be occupied just by O (e.g., oxy-
varieties). In such a situation, the Y site occupied by Fe2+ can 
have a similar first-coordination sphere as Fe2+ apparently 
located at the Z site (O5OH).

(4) There is some confusion in explaining the Fe2.5+ 
quadrupole(s). This quadrupole corresponds to electron hop-
ping between two cations with different valence states, e.g., 
in the pairs Fe2+-Fe3+, Fe2+-Ti4+, Fe3+-Mn2+, etc. and such Fe is 
defined as 2.5+ v.u. Theoretically, IS and QS of a quadrupole (as 
mentioned above) with the presence of Fe2.5+ should have mean 
values, respectively, of parameters characteristic of Fe2+ and 
Fe3+ in 6-coordination. Thus, a Fe2.5+ quadrupole doublet should 
have a characteristic IS close to 0.70–0.75 mm/s, regardless of 
the location of Fe2+ and Fe3+ cations in the tourmaline structure. 
Typical IS values of Fe2+ and of Fe3+ vary from 1.09–1.02 
mm/s and from 0.30–0.45 mm/s, respectively. However some 
authors, e.g., Ferrow et al. (1988) and Andreozzi et al. (2008) 
themselves, accept significantly different IS values for the quad-
rupole, reaching even 0.96 mm/s. Such values are very close 
to the lowest IS values accepted for VIFe2+ and might indicate a 
resolution that should not be accepted as the final result. Such 
a value might be an indication for the need of subsequent fits 
with an additional Fe2+-quadrupole with a low QS value, and 
Fe3+- and Fe2.5+-quadrupoles. Andreozzi et al. (2008) present 
for samples 60e and 65e a doublet assigned to ZFe2+ with a very 
low IS close to 0.97–0.99 mm/s and a very similar doublet as-
signed to Fe2.5+(Y-Z or Y-Y) with IS close to 0.92–0.96 mm/s. 
It is questionable that such a difference between the doublets 
allows such a different assignment.

(5) The Fe2.5+-quadrupole can only occur in a spectrum with 
the simultaneous presence of Fe3+-quadrupole(s). Because, 
when a spectrum shows only a Fe2.5+-quadrupole, the entire Fe3+ 
should be clustered in the surrounding octahedron filled with 
Fe2+. It shares a common edge with the octahedron that is occu-
pied by Fe3+. However, it is unlikely that the entire Fe3+ content 
would be placed in an adjacent site to the Fe2+ octahedron. For 
example, the three Y sites of the Y-octahedra triad (“Y-Y” charge 
transfer) can be occupied in many variants like Fe2+Fe2+Fe2+ 
or Fe2+Fe2+Fe3+ with possible charge transfer between Fe2+ and 
Fe3+, or Fe2+Fe3+Fe3+ also with possible charge transfer, but with 
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an excess of Fe3+, or Fe3+Fe3+Fe3+ for which charge transfer is 
impossible, Fe3+ doublets must occur in the spectrum. There 
are also many other variants of the triad for which the charge 
transfer process is impossible, e.g., MgMgFe3+, MgFe3+Fe3+, 
AlAlFe3+, AlFe3+Fe3+, etc. Thus, it is not likely that the entire 
Fe3+ present in the triad is clustered with Fe2+. A similar situa-
tion is in the case of ZFe2+– ZFe3+ charge transfer. Fe3+ from such 
Z sites must also occur in short-range structures obviating the 
presence of Fe3+ in the second coordination sphere.

(6) Further, it is not clear if the charge transfer process at 
the Z sites is possible. Assuming the presence of Fe2+ at the 
Z site, the transition ZFe2+– ZFe3+ (also YFe2+– YFe3+) is only 
theoretically possible, because the presence of both cations in 
two adjacent Z sites is almost impossible, i.e., the probability 
of such structural variant is almost equal to zero.

(7) In many tourmaline samples from Andreozzi et al. 
(2008) abundances for Fe3+ are relatively high. However, 
charge transfer processes are invisible in these samples (29% 
Fe3+ in L4aa, 47% Fe3+ in L3l, 11% Fe3+ in 235b, 14% Fe3+ in 
84a, 31% Fe3+ in 112a, 28% Fe3+ in 233g), but conversely, the 
charge transfer quadrupole has been detected in samples for 
which no Fe3+-quadrupole has been observed (e.g., 9% Fe2.5+ in 
sample L2al). Such an interpretation is questionable.

In conclusion, we consider the Mössbauer fits from An-
dreozzi et al. (2008) to be imprecise and of limited use in 
evaluating the possibility of having disorder of Fe2+ between the 
Y and the Z sites. Moreover, it is important to recognize that site 
assignments based on Mössbauer spectroscopy do not provide 
unequivocal evidence unless they are firmly based on other 
types of data (usually single-crystal structure refinements).


