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Explicit formulas for Neumann coefficients in the plane-wave geometry
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We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the
three-string vertex for type 1IB string theory in a plane-wave background, for any value of the mass parameter
. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which
the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for
large « and find unexpectedly simple results, which are valid to all ordersgn Wsing BMN duality, these
give predictions for certain gauge theory quantities to all orders in the modified 't Hooft coupling
specific example is presented.
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[. INTRODUCTION form that appears does not seem to be contained in the stan-
dard mathematical referencésuch as Bateman but we
This paper continues the study of the light-cone gaugdave not done an exhaustive search of the literature.
string field theory formulation of type 1B superstring theory ~ The formulas obtained at this point in the analysis are
in the maximally supersymmetric plane-wave geometryeXplicit and complete, but they are not yet in a form that is
[1-7]. Its purpose is to derive and analyze explicit formulasconvenient for exploring large. expansions. The larga
for the Neumann coefficients that enter in the three-strindiMit is of particular interest in light of the proposed corre-

interaction vertex that describes the process in which stringgPondence8] between type 1B superstring theory in the
No. 1 and No. 2 join to form string No. 3. In particulft], ~Plane wave background and a certain sectokef4 SU(N)

this requires an explicit formula for the inverse of a certaind2uge theory, since the dual gauge theory is believed to be

. . - _ 2
infinite-dimensional matrix calletl , (x,y) (and defined be- effectively perturbative in the parametsf =1/u". In the

low). Here,  is the mass parameter that appears in thglnal section of this paper we present explicit formulas,

. : . which are valid to all orders i’ perturbation theory, but
plane-wave metric. It becomes physically meaningful once

: . . omit non-perturbative terms of order 27+« The latter
yve_spec_lfy the coordinate f_ram_e, since only the promn .__terms can in principle be extracted from our results with
is invariant under a longitudinal boost. The combination

, N . ) sufficient effort. We use these formulas to make a specific
a'P_ for therth string is conventionally denoted, , with

; ) . gauge theory prediction to all orders ari.
the momentum taken to be negative for the outgoing string

so that=,«,=0. We makeun a meaningful dimensionless
parameter by choosing a frame for whiaih=—1. When

strings No. 1 and No. 2 join to form string No. 3, string No.  The three-string interaction vertex for type 1IB super-
1 carries momentum fractiom, =y and string No. 2 carries = srings in flat space was worked out{®10] and generalized
momentum fractionv,=1-y, with Osy<1. to the plane-wave geometry ii,2]. This vertex is repre-
Previously[4,5], the inverse ofl". was determined in sented as a state in the tensor product of three string Fock
terms of a certain infinite component vector calledspaces, where the individual strings are labeled by an index
Ym(u.y)=T:'B(y)m and a scalar functionk(u,y) r=1,2,3. Any particular three string coupling is then ob-
=BT 'B. HereB(y) is a known infinite component vec- tained by contracting it with three specific string states. The
tor. (The formula will be given later.In this paper we obtain  formula for the three-string interaction vertex contains a
explicit formulas forY,, andk, and hence also fd?;l. The  bosonic factor
first step is to derive a first-order differential equation that
determines the dependenceYgf on the mass parametgar. 1 B i
Since the value ofy,, for u=0 is known from previous |VB>=exp<§ > >
analysis of the flat-space problem, that knowledge can be rs=1mn=-
used to fix the “initial condition.” The resulting integrated -
expression fory,, is expressed in terms &f(w,y), which  The quantitiesN;>, are called Neumann coefficients. The
still needs to be determined. Knowledge of the leading largeéhree-string vertex also contains a similar fermionic factor
u asymptotic behavior of ,,, for all m, is sufficient to com-  |Vg) made out of the fermionic oscillators and a “prefactor”
pletely determine that function. The resulting equation in-that is polynomial in the various oscillators. We will not
volves a certain integral transform. The equation is solved byliscuss either of these in this paper. However, aside from an
the inverse integral transform. The particular integral transeverall factorv(u,y) that does not involve the oscillators,
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they are constructed out of essentially the same quantities, gonumber of useful identities relating these matrices are in-

the formulas that will be derived here determine them also.cluded in Appendix A. Out of these and the diagonal matri-
In describing the Neumann matrices, it is convenient tocesU, we construct

consider separately the cases in which each of the indices

m,n are either positive, negative or zero. Henceforth, the

symbolsm,n will always denote positive integers. One result I = 21 AU AT, ®

of [1], for example, using matrix notation for the blocks with

w

positive indices, is

Note that the onlyu dependence enters Vi, .

The quantities that we especially would like to evaluate

N'S=§9—2(C,C~H2ANTT IAG(Cc.c™HY2  (2)  explicitly are the matrid’*(u,y), the vector
Here Cpyp=M&mn and (C;)mn= @rmdmn are diagonal matri- Yin(,Y) = (T3 (1,Y)B(Y) ), 9)
ces, with
and the scalar
wm= M+ (ray)?. () k(w,y)=B'T;!B. (10)
The definitions of the matriceA™ and ', will be given In the case of flat spaceu=0) the results are known. Spe-
shortly. cifically, the Neumann matrices in E(R) may be written as
The blocks with both indices negative are related in a
simple way to the ones with both indices positive by Sis . Mha — B
B - Nin= Magtne, ™" for ©=0, (11)
Nrfsmfn:_(UrNrSUs)mm (4)
where
where
N[ =@f (—arii/ap)e™’e for u=0, (12
U,=C XC,—pay)=C(C+ua,) % (5) " M S ol

In the case oN3 these are the only nonvanishing terms. ForWNeréas= a; is understood,

the remaining Neumann coefficients the other nonvanishing T'(my)

terms are fm(y)= miT(my+1=m) (13
Nio=Nim=\2uas e'af(C,C™HPADT'B]y, and

site{l,2,re{1,2,3, 3
To=r21 anja,|=yIny+(1-y)in(1—-y). (14

_ o =

Ngo=(—1) "1+ pak) , r,se{1,2, _ _
Varasg In particular, still foru=0, I';*=24(1-N%), Y,,=—N3,,
. andk=27,/a. In other words,
Nob=NGo=—ar, re{12, ©)

Jm I'(my)

m!T'(my+21—m)
~ F(+my)'@+m(l-y))

—m7g

wherea= aya,as=—y(1—y), andk=k(x,y) will be de- Ym(n=0y)=

fined shortly.
The matricesA()(y) and the vectoB(y) do not depend

e MoB, (15

on u, so they are the same as in flat space. Namely, 2T(1+m)
-y sinmay smmq-ry and
(1)_ m+n+1 /
m=0y)= 1—v y y .
A(z)_ —1)™J/m (1- y)zsmmfr);, In [4,5] the following identity was derived for arbitrany:
m(1-y)
{T;1,Ca= C+1 cuzlyy'cuzt. (17
AS)= . IO Tk
) sinm Note that this determinds; *(u,y) in terms ofY(u,y) and
B, =—(—1 m+1—7Ty_ (7) k(u,y). In particular, this formula was shown to imply that

y(1—y)m3? the generalization of Eq11) to nonzerou takes the form
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_ mna NENS F(py)=I[1+pak(p,y)]=IN[1-pny(1-y)k(u,y)].
N[T?n: o (18) 8
1+ pak asw,m+ a,wgn
This has the formal solution

where

ING -1 V2P —1a(NT = m o i s

Np=—[(C™"C) U, "A" Y]y, (19 Ym(ﬂ,y)—w—mex 2)oom 1—w—m du|Ym(0y).
but neither it nork(u,y) was determined explicitly at non- 27
Zeropu. Thus, if we knewk(u,y), we would knowF (u,y), and then

Some preliminary analysis of large asymptotics was
initigtled in[2—4,;3, though not much can be done WithO.Ut The derivation of EQ.(25) is rather involved. Let us
additional expl_|C|t formulas. _lt Was_f‘?””‘_’ that the Ief';\dlng sketch the derivation here and then fill in some of the details
(large u) term_ in the expansion df .~ is given by the first Appendix B. The matrid’, = SACU, AT only depends
term on the right-hand side of E1L7). DefiningR by on u through the dependence 0f on . Its derivative can

be written in the form

Y (w,y), and hence all the Neumann coefficients.

rii=lcc;ieR (20
o270 ’ ar ., 1
a—Z—EaBBT-i-,u,N, (29)
it is easy to see that the leading termRris of orderu %, K
Specifically, where
2 2
y“(1-y) 3
RHaRWTCSB B'C3+... (21 N= Zl a?AC-1C TAMT, (29
whereag is a constant and the next term in the expansion ist follows that
of order 6. Similarly,
aY 1 4
a, £= EkaY—,u,l—‘+ NY. (30)

1
K(,y) - +---. (22
wY(1=y)  aluy(1—y)]? m
[ny(1=y)] But NY can be recast in the for

Inserting these expansions into Ed7), one learns that

NY=g,C5°B+g,B, (31
1
aRak=a. (23)  where the coefficientg, andg, are scalar quantities:
It is very difficult to determineag anda, separately without g,= 2(1+ pak)
additional explicit formulas. The asymptotic expansionYof 2+ pak+ ,uzakl’
was found to have the structure
a\ ak®+ pwakk, +2k
1f1 (1 \m® 92=<E P (32)
YmH; Sm—|z-x ;+..- Bp. (24) 2+ pak+ paky

and
The value ofx is of particular interest. It was estimated nu-

merically to be approximately 1/16 {i8], and we will show ki=BTC;'Y. (33
below that this is correct.
The above equations imply that

IIl. THE DIFFERENTIAL EQUATION K v o1
d J

This section describes the derivation of a differential &—=BT(9—=§ak2—Mgzk—Mg1k2- (34)
equation involvingY ,(«,y) andk(u,y). For the benefit of H K
the reader who would like to skip the details of the deriva-Thjs is not very useful as it stands, since there is no other

tion, and move on to the next section, the result is State@pparent way to determirie. (k, could be determined, but

here: that will turn out not to be necessanBubstituting the equa-
tion for NY and an identity fof C;2,T'-'] deduced from
Nm [LoF[ | » Eg. (17), one can recast the derivative ¥fin the form
= 1 Ym, (25
p  |2dp om/ @2
Y
_ -1 -2

where w,= wsm=m?+ u? and I (FotFaCy L)Y, (35

086005-3



HE et al. PHYSICAL REVIEW D 67, 086005 (2003

where the scalar functiorfs; are given by fw( 243232 (04 - @)
z°4+x%) ¥ (x)dx=9g(z

Fom = ake ug,+ - Y (K~ pky) i

0= 5 K= uQot S ugi——— (K1~ uKa),

2 2 1+ pak [for Re(z)>0] is given by the inverse integral transform

1

(44
Fi=— =g ——— (k— uk X2 [
! 2/’Lgll+,uak( rka), f(x):—i;f g(—ix cos@)cose do
0

Fom — pO1t = u2g1 (ke prky) (36) X2 (2
2= TR M gllﬂwk HEB)- =—i;j [g(—ix cosd) —g(ix cosh)]cose d4.
0

Using Eq.(32) for g; andg,, and Eq.(34) to eliminatek; in (42)
favor of k', we find
We refer the reader to Appendix C for the proof of this theo-

o
Fo=—u, Fi=—uFq, Fo=5 ——(k+uk’), rem.
2 # ! o 02 1+Mak( Hk') - Applying the theorem to the problem at hand, we learn
3 that

so that Eq.(35) can be written in the forng25). 2 .

As a first application of Eq(25), let us consider it for Fu,y)=—i '“_J G(—ipcosd,y)cosd do. (43)
largex. The expansion in Eq22) implies that at large: the ™ Jo
leading behavior obF/du is —1/u. Substituting this into

Eq. (24), one deduces that=1/16. Substituting the formula fo6,
IV. AN INTEGRAL TRANSFORM F( )= 2+ a T do
MY)=ER-TOT ] Coso

In this section we show that the known largebehavior
Y~ (m/2u)B,,, together with Eq(27), is sufficient to de- I'(1—iucos)
duce an integral transform, whose solution we are able to XIn (1= T (=i n(1—y)cosd)|
determine explicitly, thereby obtaining explicit formulas for (1=ipycos Iu(1=y)cos
k(p,y), F(u,y) and henceY n(u,y). (44)

SinceY,,~(m/2u) B, for large u, Eq. (27) implies that

The formula forY, also requires the derivative

1 “&F( M ) m
G R L L B S 2 (= | |
T=270+ ;j do[(1l—ipucosh)—yh(l—iny
Taking the logarithm of both sides and integrating by parts, °
this becomes X cosh)—(1-y)p(l—iu(l—y)cosh)],
" (45)
f (M?+u?) " ¥F (w,y)du=G(m,y), (39
0 where, as usualy=(InT)’.
where, using Eq(15), Substituting the expansion
27y 2 I'i+z)
Gzy)= z * Z2ln(1“(1+zy)1“(1+z(1—y)) ' W(i+2) 7+Z,§1 n(z+n) (46
(40)
and using the integral
Equation(39), which must hold fom=1,2, ..., and &y
<1, determines$-(u,y) and hencek(u,y).
The functionG(z,y) is holomorphic in the right-half = deo T )
plane and goes to 0 @~ in that half plane like a power j =T
(1/z%). These properties make this extrapolation from the 0 a+bcosd a’~b*
positive integers to a continuous variatdeunique. More- )
over, they are exactly what is needed to construct an invers@ives the result
transformation giving= in terms ofG. Let us state this as:
Theorem.Suppose thagj(z) is holomorphic in the right- © 3
half z plane and vanishes like a power at infinity in that half IF (1Y) _ @
: \ 219+2>, >, —. (48)
plane. Then the solution of the equation I n=1r=1 Wy
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SinceF(0,y) =0, this integrates to asymptotic formulas are not well-suited for studying this
limit because we omit terms of order 27+,

Let us demonstrate how to use the integral equata@
directly to find the constana, introduced in Eq.(22). It
follows from Eqg.(22) that

F(u,y)=—In[7uy(l-y)/a]+--- (54

F(u,y)=270u+22 Inf (@ + par)/n]=27ou

—2IndetU,;U,Uj). (49

Note that det(J;U,U3) is convergent even though the indi-

vidual det(U,) diverge. We can regulate them in a way thatat large u. Let us define F(u,y)=F(u,y)+In[muy(1
does not change the produsinceXa,=0) by recasting=  —Y)/aJ. Then Eq.(39) implies that

in the form

fo (m?+ ?) "3 (u,y)dp

Fry)=2m0n+22 duar), (50)
1 mwy(l—y))
=G(my)+ —In| ————|. 55
where (my) m? ( 23y &9
< nZrx2+x\ xl & x| x Now letm=n\ and w=\w. After scaling out\, we find
H(X)= 2, In(— —==> arcsim{—)—— .
n=1 n nj n=1 n/ n P o 3
(51) . (wo+nc) > F(Aw,y)dw
The regulated determinant &f, is then exp— ¢ (ua,)]. 1 Anay(1—y)
Substituting the expansion 6F/du into the formula forY, =N\ G(An,y)+ In( Y Y ) .
gives \2n2 23,
m (56)
Ym(,u,y):ex;{(,u— wm) 7o+ 21 (= dmr) mBm, In the limit \— o the left-hand side goes to zero, while from

(52) Eqg. (40) it is easy to check using Stirling’s approximation
that the right-hand side goes to 6)In(4a,). This deter-
where ¢, = ¢(na,) and minesa,=1/4 and, from Eq(23), ar= 15

A. F(u,y) and k(p,y)

Let us proceed by studying the functi@(x) defined in
Eq. (51). Since ¢ is clearly odd, it is sufficient to consider
where, we remind the readet,,=m?’+x? and w,, large positivex here. Taking two derivatives gives
=Vym+(pa) %

The formulas(50) and (52) are explicit expansions df $ (0= xS 1 _ £+ 1
and Y, which converge for all finiteu. Thus, in a sense, A=1 (x?+n?)%? X 2y’
they solve our problem. However, they are not yet in the
most convenient form for exploring large expansions. where we have used E(ES) to evaluate the surfthe exact
result is given in Eq(F4)]. Integrating twice with respect to

V. ASYMPTOTIC EXPANSIONS FOR LARGE p x leads to

bmr= E

n=1

In , (53

n

ot wmar) ®ma;

(57)

In this section we develop asymptotic largeexpansions B(X)~— x+ 1
for all quantities that appear in the three-string vertex. It

turns out that the quantities all have essential singularities at
pu=00 arising from terms proportional te 27l The ex-
istence of such terms, which correspond to non—perturbatlvgq (50) gives

effects in the dual gauge theory, has been notelBjnWe F(m,y)=~—In[wy(1-y)]+2c,. (59)
proceed under the assumption that,| is sufficiently large

(for all r) that these terms can be neglected, and we use thEhe constant, has dropped out sincBa, =0, and we can
symbol ~ to denote this approximation. We stress that thedetermmecz— In4m by comparing Eq.(59) to Eq. (54)
formulas we present encapsulate all orders in a power serig¥th &=z, obtaining thereby

expansion around’ =0 from the dual gauge theory point of _ _

view. However, they do not match smoothly with the known Flpy)==Inf4muy(1=y)]. (60

flat space results ai=0 because the omitted terms becomeWe emphasize that EG60) is much stronger than E@54):
important in this limit. Finally, the limity— 0 (at fixedx) is ~ when we wrote the latter, we might have expected correc-
also of interest, because it can be used to extract vertex opions involving powers of 14, but in Eg. (60) we have
erators for the emission of on-shell particl¢8]. Our  proven that the only corrections are exponentially small. An

InXx+cyx+cCy, (58

wherec; are constants of integration. Inserting E§8) into
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alternative derivation of this result is presented in Appendix AW Ty)
D, where we show that the absence of power law corrections

follows from a simple contour integral argument. In Appen- 2 (_1)n+1\/ﬁ " sir(mmy) VAt Vpl+m?
dix F we derive the exact formula ~\|— .
2y2(1—y) m=1 m2—n?/y? /M2+m2
Flu,y)=—In[4muy(1-y)]+I(ny)+I(u(1-y)) 67)
—J(w), (61)
Using Eq.(E9), we find
where ing Eq.(E9), we fi
s |n(1 e 27TXZ) 1
J(x _—f —dz 62 (AOTY) e —————
) z722-1 62 "o y(1-y)2\y2u
1012
It is easy to read off all the exponential corrections to Eq. X (-1 l\/—"’rn U re{l2.
(61) by writing out the series expansion of the logarithm. (68)
However, we will not keep track of these exponential correc-
tions in the following sections, and instead simply use Eq. .
(60) and the definitior(26) to write 'Ia'2e Neumann vectors in E¢L9) can therefore be expressed
k(w,y) - (63)
oY) = IRV 2,2 2 — 1
My(l y) 47T,u y (1_Y) NL%m(_1)r(n+l)\/a—r(zﬂnwrnurn)illa
B. Ym(KLY) re{l,2,
Although it is straightforward to develop an asymptotic
expansion for the functio,,, defined in Eq.(53), a more n
direct route is simply to rewrite Eq27) as Ni~— E(Z,uwgnum)*l’an. (69
m 1 (~oF M
Yomlp,y)= P f—l——du : o
2Jo dp W Actually we can combine these expressions in a useful way.
If we define
JF
—f . (1— —)dﬂ Yu(0y).  (64)
# Sin=Sem=1, Sgm=-2sin(mmy), (70

The first integral is just Eq(38), and the second integral is
elementary after substituting the asymptotic expangiéon then we have simply
~ —1/u. The final result is

o ( 1)r(n+l) | |
Mmoo, m Nj~ o Sm, ref{l,2,3.
Y(w,y)=~ 2my(1-y) V2unw;,U

m

2u 2wy (71)
1 Vut v m2+ ,u,2 )
= mB,, (65) D. Consistency checks
f [(2, 2
2V2p me+u We should check that the vect¥rwe have found indeed
, , , satisfiesBTY~k andI', Y~B. First we have
which can be conveniently summarized as
4 1 1
Y~ ! ulacsec; 1B, (66) BTY%_z 2(1-y)2 220
22, 2 3 m y(1-y 7
sirf(rmy) Vu+ Vu?+m?
C. The Neumann vectors X . (72

me1 m2 /,U~2+m2

The final step in the construction of the Neumann matri-
ces involves evaluating the matrix produd$§’TY which
appear in the Neumann vectors in E9). From Eq.(65) With the help of Eq.(E10), it immediately follows that this
we have expression equals E¢63).
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In [3] it was shown thal, =2C;C 1—H, whereH is
given up to exponential corrections by

8
Hopn~ ﬁ(_ DM yYmnsin(amy)sin(ny)

@ Vz2-1
Xf dz
1

(Z2+m? u?) (2 +n? u?)

(73

PHYSICAL REVIEW D 67, 086005 (2003

where(as beforg
> > ontu
on=VMm-+u, U= .

(79

Finally, we remarked above that the prefactor is polyno-
mial in quantitiesX and Y which are constructed out of
bosonic and fermionic oscillators respectivésee[2,5,7)).
The normalization oX andY involves a factor called ()

[The integral is easily evaluated, but it is convenient to leaven [5]. It may be obtained from the formu[&,5]

Eqg. (73) in this form for the calculatiod. The condition

I' , Y=B which we would now like to check is equivalent to

HY=2C,C lY-B. (74)
Using Eqgs.(73) and (65) we can write
2\2n%B, (= \Z2-1
(= w2\ It 24 n?p?
5 siamy)? Vet m?
X > . (79

\/m2+,u2

m=1 m2+ 722

After substituting Eq(E11) for the sum, the remaining inte-

gral overz is elementary and takes the form

= N=1+iyzZ2-1
Re[ dz———
1 2(Z?+a?)

T 1
=— \/Eaz[l—ﬁ\/brm

for a=n/u. Assembling all factors from Eq$75), (76) and

(E11), we find
1
1- T\/1+\/1+ %/ u?
2

Recalling Eq.(65), we see that the desired relation Eg4)
is indeed satisfied up to exponential corrections.

(76)

(HY),~—B, . (T

E. Some remaining quantities

The Neumann matrices are completely determined, to allﬁf_sm ICS

f(u)=V—2mayasl
n

im (—1)"CAMTT1B),. (80

—

It follows immediately from Eq(68) that

~\1+ uak.

(81)

1
flu)~ —
W Ty

In fact, closure of the supersymmetry algebra requiigs)
=/1+ nak [7]. Note that thisf(u) is separate from a still
undetermined functiorv(u), to appear below, which ap-
pears as an overall factor in the cubic part of the Hamiltonian
and supersymmetry generators.

F. Summary of Neumann matrices

We summarize here the final expressions for the Neumann
matrices obtained in this paper. As before, we use the nota-
tion

a1=y, Ct’zzl_y, a3=—1, (82)
Sim=Som=1, Szm=—2sin(7Tmy), (83
and o, = Vm?+ (na,)?. Then form,n>0 we have
1 1
— mi(_l)r(er )+s(n+1)
M 27 agwimt arwgn
X\/|ara's|(wrm+ﬂar)(wsn+ﬂas)n
WrmWgn Srmesn
(84)

1 (_ 1)r(m+1)+s(n+1)

AsWim T arwgp

orders in 14, by the factorization identity18) and the Neu-

mann vectors given in Eq71). For the sake of complete-
ness, we catalog here two more quantities of interest, which
follow easily from our results. The first is the matfkde-
fined in Eq.(20). By comparing the expressiof2) and(18)

for r=s=3 we can determinE ', and henc®, in terms of
Y. Using Eq.(66), we arrive at

2
a-x Wrm— LA Wen— LA
X\/l r s|( rm— M) (Wsn— 1 S)Srmssn- 85)

WrmWgn

As before, the symbot denotes that we have omitted terms
of ordere~27#l«| (for all r). Forr=s=3 these are the only
nonzero components. If we define

1 m
Run= (T 1 Y= = ——— 8 1
mn= (14 Jma™ 5 mZ+p2 5102320251 S30=0, (86)
1 sin(rmy)sin(an
~—mn(—1)M*" nimmy)sintny) , (78  then Eq.(84) continues to hold whem is zero andn is
m On@Om(@mt oy) VU, positive (or vice versa Finally, if n=m=0 we have
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. 1 (—1)+s where the S@) index (which we have suppresset$ con-
o~ ———, rIse{l2, (87)  tracted betweem' anda. Finally, the functionv(u,y) is a
dmp o, aq Yy (m.y)

measure factor which has not yet been determined. It arises
— =3 from the path integral which defines the cubic string vertex.
Noo=Nogo=—~ \/;r’ re{l,2. (88) In flat space, the function can be determined by Lorentz in-
&/tariance(it is 1 in the supersymmetric theory, and some very
complicated function of in the bosonic theoty The plane
wave superalgebra does not have enough generators to fix
this overall factor, although comparison with gauge theory
?equires that (u,y)— 1 for largew. The corresponding fac-
tor in the supergravity vertex in the plane wave background
has been determined to be a consfdii.

For the state$89) we find the matrix element

We remark here that we have been assuming througho
this work thatu is positive, since it is clear from the analysis
of [1] that only the absolute value q& enters into the
bosonic matrix elements. The behavior of various quantitie
underu— — u was exploited if4] to derive several useful
identities. Although we have not considered this involution
here, it may be worthwhile to do so.

VI. A MATRIX ELEMENT W1im

Hamy=(1121(3IH)=0(u.3) 3 3(—+ ﬂ)[Z(Wﬁ? :
In this section we use our result to calculate, to all orders 42\ \pay pag

in \', a particular matrix element of the Hamiltonian which (N2 2 o2
has so far only been computed to first ordeikinin the dual (NZm—n)°T- (92)

gauge theor)[6,;5,19. We then explain in detail how this Using Eqgs.(84) and(85), we find after dramatic cancellation
matrix element is encoded in the gauge theory. the simple result

A. String field theory 1 sirt(mny) [v(w,y) uy
: & Hnmy"N’_(l_y) . (93
Consider form,n>0 the three states 2u? w2 W1m®3an
(1]="%(0l(ap,—ia’ ) (ah+ial ), The quantity in brackets is equal to 1 at leading order for

large u, reproducing the result presented[B]. As is now
' standard in the literature, it should be understood that the
cubic interactionH considered here enters the full Hamil-
tonian with a coefficient equal to the effective string cou-

(2[=(0

(3]=*%(0|(a}—ia’ ,)(al+ial ), (89)

i — 2
wherei andj are S@4) indices. The two-impurity state/d | pling, g;=4mgsu”.
and (3| decompose into thd, 6 and 9 representations of .
SQ(4). For definiteness, we fik# j, and we could choose to B. Relation to gauge theory
symmetrize or antisymmetrize inat the end of the calcula- The result(93) provides a concrete all-loop prediction for
tion. Actually, it turns out that the matrix element vanishesthe gauge theory, which we now explain. Consider the
when either two-impurity state is in th& large J limit) the normalized Berenstein-Maldacena-Nastase
We have not discussed the prefactor in this paper, but i(BMN) [8,14—14 operators
has been shown ifR,6] that for states of the formi89) (in

. . S e J
particular, for states with no fermionic excitationthe three- o 1 S @Ak i Zk i)
string coupling|H) in the Hamiltonian is given effectively n— IF2 = e r '
by VINTF2
[H)=v(1.y)PIVe), (90) ot L
n _ J+2
where|V;) was defined in Eq(1) and we have definéd Wy(1-y) VIN
Jy
3 % . L
o w 2mikny/J. i7k 1j7Jy—k (1=-y)Jy-
PSS S Cmymal a |, xgo e Tr('Z¥ iz~ K Tr(ZE- Yy,
2 r=1|m=—-owo WA
1 m=0 1 o .
_ ’ TV=—=:Tr(¢'Z0 ) Tr(p'2VY):, (94)
e(m) [—1 m<0, (91) JINTF2

wherei #j €{1,2,3,4 are S@4) indices[see the discussion
We caution the reader that the basis of oscillators employed herB€lowW Eq.(89)] labelling four of the six ssca!areflelds ov/
and in[1,2] differs from that used by8] and most gauge theory =4 SUN) gauge theory, and = (1\2)(¢°+i¢°).

papers by the transformatioal"" = (1/y2)(a,—i sgn®)a_q) At zero string coupling §,=0), the single-(double)

for n#0. trace operator® (T) defined in Eq(94) correspond respec-
2The apparent discrepancy between this formula and the one giveively to one-(two-) string states and have definite conformal

in [6] is entirely due to the change of basis in footnote 1. dimensions
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Ap=J3+2V1+N'n?, AY=3+2\1+N\'n%y?, AY=J+2. ondly, we have investigated the large behavior of these
(95)  coefficients and presented simple formulas in Sec. V F which

give the Neumann matrices to all orders in @ Bxpansion.
For finite g,, these operators mikl4—16, and the state- Note that although we have not discussed the matrix ele-
operator correspondence has been worked out to geder - ments of the prefactgnor the fermionic Neumann matrides
[6,15] (see alsd19]). The operators which correspond to the in detail, they are very easily obtained from the Neumann

desired one- and two-string states are vectors(71) using the results df1,2,5,7.

Perhaps the most remarkable fact about our results is that
~ (o) 1 y 92 1 although the Neumann matrices are very complicated func-
Op=0p— > k;_m fo dyCoky Ti— ?L dyCpyTY tions of u, the final expression&4) and (85) for the 1ju

expansion are very simple. Ours was a lg@gd perhaps
+0(g?), circuitous road, and although we have derived a number of

nontrivial identities along the way, one cannot help but won-

5 9 < der whether there is a more direct path which yields the same
TI=T)— > > CpkyOp+ ga(triple trace + O(g3), final result. In particular, our predictiof®9) for a particular
p=== gauge theory calculation is so simple that it cries out for
(96) explanation by some clever argument, perhaps along the
where lines of [17].
The origin of this simplicity is the fact that the function
\/lfy Sir2(mpy) Sir2(mpy) F(um,y) behaves for large: like
pky ™ ' VST 2.2 ¢
Y i (p-kiy)® Imp? o F(u.y)=—I[4muy(1-y)]

—|—O(e_ZW“,e_ZW”y,e_zw'u(l_y)), (100
The triple-trace operators in E¢Q6) will not be important

for this calculation. The anomalous dimension matrix ele'with no perturbative correction.e., inverse powers of).

ment between the single-string ste@eand the two-string  This remarkable fact, which we have proven in two different
stateT is read off from the two-point function ways (in Appendices C and P is reminiscent of various
o non-renormalization theorems. Indeed, although the BMN
(2wx)An+A¥w<6n(x)?I'¥n(0)>=—gzhmnyln(xA)z. (98)  operators in Eq.(94) are non Bogomol'nyl-Prasad-
Sommerfield BPS in general, their anomalous dimensions
The prediction from EQ.(93), when expressed in gauge
theory variables, is simply

2
N
A(O,)—J—2=2J1+\'n2=2, \'= gYJ“g (101)
Hmny

hmn T
Y 3y(i-y)

are nevertheless finite in the limit of large 't Hooft coupling,

N [1—ysir(mny) provided that] is simultaneously taken to infinity so that
~5 J——Z[lﬂt)\’nz]*l’2 remains finite. This suggests that there should be some re-
y ™ sidual “effective supersymmetry” protecting these operators
X[1+N m2/y?2]~ 2, (99) and their interactions.

We have not worked out explicit formulas for the non-

up to the overall functiow (u,y) discussed in the previous Perturbative terms in E¢99), although these could in prin-
subsection. The leading’ term in this result agrees with the CiPIe be obtained by extending the analysis of the appendi-
one-loop field theory calculations pf3,14,16 when the ap- ~ C€S- _Flnall_y, th_e presence of fractional powers \df in _
propriate operator redefinition in E¢96) is taken into ac- certain string fleld_ 'gheory observables _has be_en noted in
count. Note that since EG99) is already proportional ta’,  [2,3]- These surprising powers appear in matrix elements
probing the subleading terms in this expression would re¥hen the total number of “impurities” is not conserved. For
quire a two-loop gauge theory calculation, which has not yefexample, a matrix element in which two impurities are cre-

been reported in the literature. ated or destroyed is in general a factorof 1/\\" larger
than a similar matrix element with conserved impurity num-

ber. Although this seems enigmatic from the dual gauge
theory point of view, it has been stresd&l18] that there is
The primary results of this paper are twofold. First, weno reason why the largé limit of the A expansion has to
have shown through a quite intricate analysis that it is posagree, order by order i\, with the N’ expansion—
sible to determine all Neumann coefficients in the planeespecially in light of the fact that the BMN limit requires
wave background exactly in terms of a single functiontaking A\ — o, which need not be a trivial extrapolation. For
F(w,y), for any value of the mass parameter and we the anomalous dimensions E40J) it seems to work, but in
have provided an explicit formula fdf in Eq. (50). Sec- order to reproduce impurity non-conserving interactions on

VII. CONCLUSION AND DISCUSSION
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the gauge theory side one might have to sum\tlexpansion
to all orders and then take the largdimit.
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APPENDIX A: BASIC IDENTITIES

The infinite matricesA{"), C and the infinite vectoB,,

satisfy a number of useful relations which we record here:

1
A(r)TCA(S)=a— Cé's, r,se{1,2, (A1)
r

ANTCIAG=¢, C716S, r,se{1,2, (A2
ANTCB=0, re{1,2, (A3)

and
B'CB= , A4
y(1-y) (A4

where we have used;=—1. Some additional useful iden-
tities are

3
2 i ANCANT=0
=1 a; '

(A5)
3 o
> arA“)c*A(')T:EBBT, (A6)
r=1
where, as before,
a=ajazaz=—Yy(1-y). (A7)

APPENDIX B: DERIVATION OF THE DIFFERENTIAL
EQUATION

In this appendix we fill in the details of the derivation in

Sec. Ill, making frequent use of the identities presented i

Appendix A.
We start by deriving Eq(31). Using Eq.(A1) to simplify
I' . CA" gives the identity

1
F;1C3A(’)=CA(”—;F;lA“)Cr, re{1,2. (Bl
r

It follows from this that

(B3)

Comparing this to Eq(17), we can write the following for-

énUIa for allr:

I 'aA0c, —qa,cr A0

1

=Cais 2 l+,uak

cuzlyyY'Acu; .
(B4)
Multiplying this further by BTC;! on the left and by

a,C~1C;*AMT on the right, then summing over gives

1 1 a
_ T_VIN=—BTCZ2-2_~ (k-
2ale Y'N B'Cy 51 k(k ukq)

1
X EakBT-i—,uYTN . (B5)

The transpose of EqB5) is a linear equation foNY whose
solution is Eq.(31).

Next we obtain Eq(35). We start by using a variant of
Eq. (17 to obtain an identity for [C52,T
=[C;1{r;!,C5 %] which yields

1
[C52 I 11B=~ 5 5 gl (k— k) (C5 = uC3?)
— (k1= ko) (1= uC3 MY (B6)

and hence

r.'c;’B= ZH—[(kzﬂ—k1)+(k—M2kz)C !

Y. (B7)

E 2 -2

Then we can substitute E¢31) into Eq. (30) and use Eq.

n(B?) to arrive at Eq(35).

APPENDIX C: ON AN INTEGRAL TRANSFORM

In this appendix we show that the general solution of the
Fredholm integral equation of the first kind
o f(x
f dx (x)

0

(X2+22)3/2 (Cl)

=9(2)
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’ o)
-1 -1 -1
X2 2
@ ®) ©)

f(x)=i ;fo [g(ix cos#)—g(—ix cosh)]coshda.

(C2 FIG. 1. The contou€ for Appendices C and D. Ifa) and(b) we
show the singularity structure of EGC8), with branch points at-1
For the amusement of the reader we present two derivationghd —y’/y. In (c) we show the structure of Eq&C11) (for integer
of this result. The first is a set of manipulations that indicatex) and(D4).
how we arrived at the solution, while the second is a more

rigorous proof of the theorem as stated in the text. Therefore all dependence on the coefficietsirops out and
we have a generalized Fourier transform of rather simple
1. An elementary manipulation form.

The main shortcoming of this derivation is that it assumes
the existence of a rather peculiar expansion, which might not
>R§ necessary. The alternative approach presented in the re-

mainder of this appendix is clearer in this regard.

As integral equations of the first kind are notoriously dif-
ficult to solve, let us attempt to circumvent the problem. The,
method used here does not seem to be in the canonical te
and is hoped to be of some use.

Consider the following integral identity20]:
2. Representation of a delta function

= xJo(xj)dx _e Here we consider the integral
fo (x2+22)3’2_ _— j>0, Rdz)>0. (C3
, y
Next suppose thatg(z) can be expanded as a power series x(yy')= A L JI+w (wy+y’)3’2’ (C8

ine *—1:
o o i wherey,y’>0 and(C is the contour shown in Fig. 1. For
z9(2)= > aj(e - 1)i=> a E ( )( 1)l ~kg=2K y' <y the singularity structure is shown in Fig(al, and the
=0 j=0 "k=0 contour can be pushed off to infinity, giving zero for the
(C4 integral. Fory’ >y, the contour encloses no singulaijfig.
1(b)], so the result is again zero.

Therefore by Eq(C3), we have Sincex(y,y’) vanishes foy’ #y, let us check whether it

o Iy o2k is a delta functiorand in particular, that it does not involve
9(2)=2 a >, )(—1)1‘k any derivatives of delta functiondy integrating it against
j=0 k=0 z Syl
the test functiore™ " :
” |y [ xJo(xkydx
e R P
“ ~ |k 2. 521312’ dy’ yye V=_—"| —— [1+eW
j=0 k=0 0(X+Z) OYX(YY) ZWICM\/W[
from which we can directly read off the solution
y X Nmtwy(P (Vitwy)—1)],
(01°)
f(x)= xE a,E ( (=17 3p(xk).  (CB) ©9

where the result of thg’ integral involves the error function
This formidable sum can actually be performed due to the

identity [20] 2 (x

®(x)= —f e Udt. (C10

NEN

1 (=
Jo(kx)=— f elkxcosfg g, (C6)
0 Next we make use of the elementary integral

from which we obtain

0= (C1D)

R I e e
> a-E( )(—1)J—kJ (e™coshkdg 2mi Je 1+ ww
<o o \k 0 k

SIS

X (7 A . In particular, note that this is zero whéris a positive half-
= —f E a;(e cosxb_1)de integer since the branch cut then runs frerml to —«, so
mJo = there is no singularity within the contour. The term in Eq.
2 (C9) proportional to “— 1" therefore integrates to zero, since
_ f d6cosd g(—ix cosh). (C7) it contains only half-lnteggr powers @f. For the remaining
™ terms we use the expansion
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[’

1+emxd(Vx)= 2,

k=0

2kyKk

(k-1 (€12

Note that (—1)!!=1. Combining Egs.(C12 and (C1))
leads to

(C13

where we have used the identity K21)!!=

(—2)%k!(~¥3). If x contained any terms proportional to de-
rivatives of delta-functions, we would have obtained a poly-

nomial int timese™" in Eq. (C13. Since this did not hap-
pen, we have proven that

()= \/yf dw 1
XY= 441 ), Ji+w (wy+y')32

=d(y-y"), v,y'>0.

(C14
More precisely, we have proved thdty(y,y’)f(y’)dy’

PHYSICAL REVIEW D 67, 086005 (2003

contour into one that encircles the pole-ar?, thereby re-
ducing the integral to exactlg(z).
We have proven that the functidiix) given in Eq.(C2),

when substituted into EGC1), indeed giveg(z). It remains

to show that the result is unique, in other words that when

g(z) from Eg.(C1) is substituted into E¢(C2), we recover

f(x). To this end, we define first
f(x)=xF(x?), (C18

and letv’ =x? so that the integral equatidiC1) becomes

1fmolu'(zzw')*3”4?(1)'):9(2). (C19

2Jo

Our proposed solution is, in terms fv),
~ i ™
f(v)=— %;f g(—iv cosf)coseds.  (C20)
0

Letting yw= —i cosé gives

\/5 f dw
2m@iJe 1+w
where the contou€ is as in Fig. 1. Substituting E¢C1) for
g(z) and using the delta-function representation Ezgjl4)

Tv)= g(vwo), (C21)

—1f(y) for anyf that can be written as a convergent Laplace€Stablishes EqC21) and hence completes the proof.
transform. It is not excluded that an even weaker condition

would suffice.

3. Formal proof

To verify our solution let us substitufgx) from Eq.(C2)
into the integral equatiofiC1) and replace the integration
variablex by t=x cosé. This gives

i (= (72 t¥g(—it)—g(it)]cosh
_;fo dtjo do (t?+Z%cos6)%?

(= tfg(—it)—g(it)]
=——| dt , C1
TJO (t?+2%) (€19
where we have used
jwlZ cosfd o B 16
0 (t2+Z%c0€0)%? t(t12+2%)

We can now recast the remaining integral in 915 as a
contour integral with the contoul’ enclosing the positivel
axis. This gives

ijrdufﬂ‘_i@: 17

2mi)e " (u+2?)

9(2),

APPENDIX D: ASYMPTOTIC BEHAVIOR OF F(u,y)

The analysis of Appendix C was completely general, and
we only used rather weak assumptions about the form of
g(z). Here we use the contour integral techniques above to
study the particular case of interest, witf{z) given by
G(z,y) from Eq. (40). Recall Stirling’s asymptotic expan-
sion
© e
2n+1"

(B1)

1 1
InT'(1+2z)~|z+ z|Inz—z+=zIn27+
2 2 i

=0 7

The coefficientsc, may be expressed in terms of Bernoulli
numbers, but they will turn out to be irrelevant. The crucial
fact is that only odd inverse powers pappear in Eq(D1).

It follows that

©

1 b,
G(z,y)~— ; IN2mzy(1—y))+ ngl ()

Z2n+1

(D2)

Now letting yw=—i cos6 in Eq. (43), as in the previous
subsection, gives

2
M

dw
F(MJFﬁL\/ﬁG(MMJ)- (D3)

where we have used the assumed analytic and asymptotieonsider first the inverse odd powers in EQ2). They lead
properties ofg, which are just what are needed to deform theto integrals of the form
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(D4)

w
fc J1+w wnti2

for n a positive integer. The branch cut is now as shown in
Fig. 1(c), so the contour may be pulled off to infinity, giving
zero. Therefore only the first term in E@P2) contributes, so

-
\“\/

Fp, y>~—2mj \/—ln(277,u\/—y1 y)

L g L 4 — @
-2 -1 T 1 2
—In@mpy(1-y)5— f _aw
2 1+w TN
D
1 Inw é
“a e .

The first integral gives 1 since it just picks off the pole at
w=0. Itis an interesting though straightforward exercise to
check that the second term givedn 2. This completes the
direct proof of Eq.(60).

FIG. 2. This figure shows the contours relevant for analyzing the
various sums and integrals in Appendix E. In each case, the contour
APPENDIX E: ADVANCED SUMS is deformed from the one enclosing the real axis to the one enclos-
ing the branch cuts on the imaginary axis. Note that the integrands
Let us review an elementary trick which can be used tan Egs. (E3) and (E11) have two additional poles on top of the
evaluate certain infinite sums. Consider first the sum branch cuts, while the integrand in E€E7) has two additional
poles on the real axis.
- 1 1
n;w f(n), f(z)= 2t X2l VTR (ED)  Asin Sec. V, the symbok denotes that we have dropped
v terms of ordere 2™, Taking the limitv—1 from above
finally gives the result

for x>0 andv>1. This sum can be written as the contour

integral o 1
—~ . E5
1 J'd ; Eo nSu (n24x2)%2 2 (ES)
2mi e 2i(z)m cotmz, (B2 For sums in whiclf(z) itself contains trigonometric func-

tions, it is convenient to expand these and write the sum in
where(C passes from-~—ie to +~—ie slightly below the the form
real axis, and then returns slightly above the real gsée
Fig. 2. The contour may be deformed away from the poles
ofgf(z))wcoth on the rgal axis to pick up t%e other sirF:gu— n;_m [fa(n)+(=1) ()] (E6)
larities instead. In this case the only other singularities are
branch cuts from+ix to *i%, and poles at=*ixv sitting  The term withf,(z) can be evaluated using the above trick,
on the branch cuts. Rescalim@nd combining the two cuts, while the second term can be evaluated by deforming the

we find therefore that contour integral of ,(z) 7 cscmrz. Applying this method and
. taking into account both the contribution from the poles at
D 1 1 dz cotl‘( 7TXZ) +n/y and the discontinuity across the branch cuts gives
e M2 x22 JnZixE 7?—1 722-v?

(E3 i sirt(mmy) Vx+ Vx?+m?

where P stands for the principal value. This is an exact for™=1 m>—n?y?  x2+m?

mula, but if we are not concerned with terms vanishing ex-
ponentially for largex, then we can set cothk2=1 in the R foc Vi+ivz2-1 1
integral, which is then easily evaluated to give == e
g y g 2x3¥2  J1 \z22—1 2+n?(x%y?) F(XY,2)
> ! ! ~ E arc COSI(IU). (E4 when 0<y<1, x>0, andn is a non-zero integer. We have
=== n2+x%? n?+x%  x2 vv?-1 defined the function
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1 which is valid forv>1.
F(x,y,z)= E[cotr( wxyz)+coth(mx(1-y)z)]. (E8

) _ ) APPENDIX F: SOME EXPONENTIAL CORRECTIONS
Ignoring exponentially small corrections, we can Bet1

and evaluate the integral in EGE7) explicitly, arriving at In this appendix we derive the exact formufd) which
allows systematic determination of the exponential correc-

“ sirf(7my) Vx+ X2+ m? tions toF(u,y). It follows from Eq.(E3) that

>

m=1 m?—n?/y? \x®+m? ., ” 1 1 1
— A e v A L

my¥2 \ 2+ x2y2—xy

~— . E9
an /n2+x2y2 E9 where
The casen=0 must be considered separately since the poles = coth( mx2) 1 coth( mx2)
atm?=*n/y are then lost. The result in this case is I(x)= Pf T aapdie 5 § % .92
1 (22-1) 2 Jiz-11=€ (2-1)

(F2)

i siP(mmy) Vx+ Vx2+m?  w2y(1-vy) T = coth mx2)
m=1 m? VX2 4+ m? \V2x 4+/2x53/2 f

(E10

— a,UZ
1+e (22-1)%2

Integrating the second term by parts gives a divergent piece

A combination of all of the above techniques is needed tc{hat cancels the divergent piece from the first term, leaving

tackle the final sum

o . = zdz 1
sirf(7my) Vx+ Vx2+m? |(x)=—1—7rxf : : (F3
> 1 \Z?—1 sint(mx2)
m=1 m?+x%?  Jx®+m?
Therefore
2 » dz 1+iVz2-1
~——ReP
312 [52 2_.2 1 1 = zdz 1
X 1 zc—1 Z"—v ¢//(X):__+_2_ﬂ, . . ) (F4)
X 2x 1 {z°—1 sink(7x2)
7 ImVi-iyv?-1
=— , (E1D Integrating twice with respect was in Sec. V A and using
2x%2  p\v?-1 Eq. (50) yields the formulag61) and (62).
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