
STATISTICAL METHODOLOGY FOR OPTIMAL SENSOR 
LOCATIONS FOR DAMAGE DETECTION IN STRUCTURES 

James L. Beck, Eduardo Chan and Costas Papadimitriou 

California Institute of Technology 
Division of Engineering & Applied Science 

104-44 Thomas Lab 
Pasadena, CA 91125 

USA 

ABSTRACT. A Bayesian statistical methodol­
ogy is presented for optimally locating the sensors 
in a structure for the purpose of extracting the most 
information about the model parameters which can 
be used in model updating and in damage detection 
and localization. This statistical approach properly 
handles the unavoidable uncertainties in the mea­
sured data as well as the uncertainties in the math­
ematical model used to represent the structural be­
havior. The optimality criterion for the sensor lo­
cations is based on information entropy which is a 
measure of the uncertainty in the model parame­
ters. The uncertainty in these parameters is com­
puted by the Bayesian statistical methodology and 
then the entropy measure is minimized over the set 
of possible sensor configurations using a genetic al­
gorithm. Results presented illustrate how both the 
minimum entropy of the parameters and the opti­
mal sensor configuration depend on the location of 
sensors, number of sensors, number and type of con­
tributing modes and the structural parameterization 
(substructuring) scheme used. 

NOMENCLATURE 

model parameters 
nominal model parameters 
best model parameters 
sensor locations vector 
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f_ measurement/model error 
p(l) (g:_) normalized covariance matrix of g 

given measurement at DOF l only 

9_ model output 
Q(g) normalized covariance matrix of g 

}!_ observed output 

a(t) base acceleration 
8(t) delta function 
Ea mathematical expectation over g 
H information entropy 
J(g_) measure of fit 
ko nominal interstory stiffness 
ki ith interstory stiffness 
N number of data points 
Nd model degrees of freedom 
No instrumented degrees of freedom 
p(g) probability density of g 
(J2 vanance 
M class of structural models 
][J) measured dynamic data 

1. INTRODUCTION 

The goal in a structural model updating method­
ology is to select the model(s) from a parameter­
ized class of models that best fit measured dynamic 
data according to some criterion. The identified 
models can then be used for improved structural 
response predictions or structural damage detec-



tion and localization. The quality of the model 
updating can be judged by the uncertainty in the 
model parameters and the prediction error. Specif­
ically, the smaller these uncertainties are, the bet­
ter are the quality of the model updating and the 
reliability of the response predictions or damage 
detection, localization and assessment of severity. 
The difficulties associated with the inverse prob­
lem of model updating have been addressed by sev­
eral investigators (e.g. [1-4]). The quality of the 
model updating depends on the class of mathemat­
ical models chosen, the measurement error in the 
data, the number of contributing modes, the num­
ber and location of sensors, and the excitation and 
response bandwidth. Recently, a framework based 
on a Bayesian statistical methodology has been de­
veloped [2,3,5,6, 7] to effectively tackle these prob­
lems, including the modeling of the uncertainties 
due to modeling and measurement noise, the issue 
of identifiability, and the problem of reliably com­
puting the response prediction uncertainty. 

The problem that will be addressed in this study 
is related to the quality of the model parameter es­
timation in relation to the location of the array of 
sensors used. Specifically, the following issue will 
be addressed. Given a specified number of sensors, 
what are the best degrees of freedom (DOF) to in­
strument in a structure in order to give the smallest 
uncertainty when identifying the model parameters 
using structural response. Udwadia [8] has devel­
oped a rational approach to the problem based on 
Fisher's information matrix for the model param­
eters. He proposed that the sensor locations that 
maximize some norm of the Fisher information ma­
trix be taken as the optimal locations. In his exam­
ples, he chose as a "norm" the trace of the matrix. 

In the present approach, a different methodology 
is proposed based on the information entropy of 
the uncertain model parameters [9]. The Bayesian 
framework proposed by Beck and Katafygiotis [2] is 
extended to the computation of the optimal sensor 
locations. The uncertainty in these parameters is 
computed by the Bayesian statistical methodology 
and then the entropy is minimized over the set of 
possible sensor configurations using a genetic algo­
rithm. It is shown that the results of the present 
approach are equivalent to those proposed using the 

Fisher information matrix [8), provided the determi­
nant of that matrix is maximized and not its trace. 
Optimal sensor locations are computed for a nine­
story shear building and results are compared to the 
results of the method proposed in [8]. It is demon­
strated that the two methods give qualitatively dif­
ferent results. 

2. FORMULATION 

The derivation of the uncertainty in the parameters 
g_ of a parameterized class of structural models cho­
sen to represent structural behavior is based on the 
work by Beck and Katafygiotis [2). Due to space 
limitations, only a brief summary of the derivation 
is presented in the following. Let q(n; g_) E JR.Nd be 
the model output (e.g. acceleration;) at all Nd DOF 
of the structural model, then the system output, '}!_, 

at the observed DOF is: 

'f!_(n) = Socz(n;g_) + So~(n;g_) (1) 

where the prediction error ~ accounts for the mod­
eling and measurement error. The selection matrix 
So E JR_No xNd has only one non-zero element (unity) 
in each row and no more than one non-zero element 
in each column. Thus, 

No 

So= LEif(i) (2) 
i=l 

where czf(t) is the model response correspond­

ing to system output Yt, i.e., f(i) E {1, ... , Nd}, 
Vi E {1, ... , No} and i -:/= k ::::} J(i) -:/= f(k), 
and Eik E JR_No xNd has all zero elements ex­
cept for unity for the element in the i-th row 
and k-th column. Note also that S'{; So 

2:~1 i:f~ 1 E'f;(i)Ejf(j) = i:~1 Ef(i)iEif(i) = b., 
where b.= diag(Jl, ... ,6Nd) and Oi = 1 if DOF 
i is observed, otherwise 6i = 0. Thus, only No of 
the Oi 's are non-zero. 

The uncertainty in g_ is described by a probability 
density function (PDF) which can be obtained using 
the class of structural models M, the class of prob­
abilistic models for the prediction error ~' and the 
observed dynamic data Ill Assuming a linear class 
of models, and assuming that the uncertainty in the 
components of ~( n; g_) are modeled by an indepen­
dent Gaussian probability density function (PDF) 
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with mean zero and variance cr2 , the updated PDF 
for the model parameters g_ for the class of models 
Ml is given by the asymptotic expression for large 
N: 

p(g_jlDlN, Ml) ~ IQ(g~j e -2h-(g-g_JTQ(.Q,)(g-.Q,) (3) 
(2nG-2 p- Na 

where lDlN is the data for the first N discrete times, 
Q E ]RNa xNa is given by equation (see [2]): 

N [aq(n·a)T aq(n·a)l Qij(g,_) ~"' ,_ ~ ,_ 
~ aai 8a-
n=1 1 

(4) 

It is assumed that the choice of the No observed 
DOF gives a globally identifiable model [3], i.e. g is 
the unique global minimum of 

1 N 
J(g,_) = N No L llu(n) - So_q(n; g_) 112 

n=1 

(5) 

and 8-2 = J (g) is assumed small. Equivalently, ( 4) 
can be written in a more convenient form: 

Nd 

Qij(g) ~ L r51Pi~)(g) (6) 
1=1 

where 

Note that this expression is a discrete version of 
an analogous result derived by Udwadia [8]. The 
expression has been derived without using the re­
sult that an efficient unbiased estimator satisfies the 
Cramer-Rao lower bound. Indeed, g is simply the 
most probable g_ based on lDlN and Ml, whereas in 
Udwadia's result, Q is evaluated at the 'true' value 
of g_ and g is the unbiased estimator of g_. Also, 
note that when we are doing experimental design 
for choosing the sensor location, l!JlN is not known 
and so g is uncertain. Note also that Q(g) depends 
on l!JlN only through g. 

Suppose the input (excitation) history ZN is pre­
scribed for the test to identify model parameters 
g_. By the previous assumptions, the uncertainty 
in the system output history, 1LN, is modeled by a 

Gaussian PDF with mean Sog_(n; g_) and variance cr5 

for each component, where g_0 and cr5 are the nomi­
nal model parameters and prediction error variance 
which are chosen by the designer to be representa­
tive for the structure and the given classes of mod­
els. 

By the law of large numbers, as N ---7 oo: 

1 N 
J(g_o) = N No L llu(n)- Sog_(n; Q..o) 11

2 

n=1 

-r ~o E [llu(n)- Sog_(n;g,_o)l12] 

= ~0 E [11So~li 2 ] 

1 [No l =No E ~~}(i)(n;g,_o) 

1 
No 

= N, L E [f}(i)] 
0 i=1 

- 2 - cro 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Also, since g is the maximum likelihood estimate 
(MLE), we know that g ---7 g_0 as N ---7 oo, con­
ditional on the nominal model, so 8-2 = J(g) ---7 

J (g_0 ) = cr5. Thus for large N: 

Nd 

Qij(g) = Qij(g_0 ) ~ L 81Pi~)(g_0 ) (14) 
1=1 

When an experimental design is being done, the 
best values for cr5 and g_0 are unknown. However, 
cr5 is a constant scaling factor and so does not affect 
the optimal sensor locations. For the uncertainty in 
g_0 , we could explore the sensitivity of Q about the 
nominal value or we could prescribe a PDF for g,_0 

to represent the designers uncertainty in the model 
parameters and take expectation over Q..o in the final 
result. In the latter case, the numerical integration 
over g_ involved in computing the expectation can 
be carried out approximately but efficiently using 
an asymptotic expansion developed to treat these 
type of integrals [10]. 

For large N, p(g_jlDlN, Ml) is a Gaussian PDF with 
mean g ~ g_0 and covariance matrix cr5Q(t1)- 1 ~ 
cr5Q(g,_0)- 1 . We wish to minimize the uncertainty 
in g_ over the sensor locations, i.e., over the r5i 's, 
where exactly No of the r5i 's are unity and the rest 
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are zero. As a measure of the uncertainty in g_, we 
take its (information) entropy [9]: 

H (g_jlDlN, M) =Ea [- ln p(g_jlDlN, M)] (15) 

1 1 2 
=2Na ln(27r) + 2Na + Na lna0 

-lndet Q(Q,_) (16) 

The entropy is well-known to be a unique mea­
sure of probabilistic uncertainty, as first shown by 
Shannon [9]. Thus, minimizing the uncertainty in 
g_ is equivalent to maximizing the determinant of 
Q(Q,_) ~ Q(g_0 ). Note that Q(g_) is always a pos­
itive semi-definite symmetric matrix and Q(il) is 
positive definite since g_ is globally identifiable. Let 
Ai, i = 1, ... , Na, be the eigenvalues of Q(Q,_) so that 
Ai > 0, Vi. The optimal locations for N0 sensors is 
given by maximizing: 

Na 

det Q(Q,_) = IT Ai (17) 
i=l 

or, equivalently, ln[det Q(Q,)] = 2::~1 ln Ai over ~ = 
[o1, ... , oNd]r. 

Udwadia [8] maximized the trace trQ(g_0 ) 

2::::~\ Ai. The choice of maximizing the trace, in­
stead of the determinant or any other measure of 
the Fisher information matrix, was justified due to 
its computational ease and the efficiency with which 
the maximization can be carried out. The choice of 
maximizing det ( Q) is justified in the present formu­
lation as giving the smallest amount of uncertainty 
in the parameters of the structure. It will be demon­
strated that the use of the trace in place of the de­
terminant results in sensor configurations which are 
qualitatively different from the optimal sensor con­
figuration obtained by maximizing det( Q). 

3. OPTIMIZATION 

It is straightforward to ascertain that there are 

(~~) = No!(~~No)! discrete values for the sensor 

location vector, ~. For a sufficiently large number of 
model degrees of freedom Nd, an exhaustive search 
over all possible values of~ may be computationally 
expensive or even prohibitive. Instead, genetic algo­
rithms can be used that are well-suited for this type 

of discrete optimization problem [11,12]. A simple 
genetic algorithm is used in this work to perform 
the optimization of the objective function. 

4. APPLICATION 

The methodology is applied to a nine-story uniform 
shear building represented by a mass-spring model 
as shown schematically in Figure 1. The stiffnesses 
and masses of the nominal sructure are chosen to 
be equal with k0 /mo = 1450 for each floor so that 
the fundamental frequency is 1Hz. Classical nor­
mal modes are assumed with the modal damping 
fixed at 5% for all modes. All results correspond 
to an impulse base acceleration of unit magnitude, 
that is, the base acceleration a(t) = o(t), where o(t) 
is the delta function. It should be noted that the 
impulse base excitation is chosen to focus on the op­
timal sensor location for recording seismic response 
produced by a broadband earthquake excitation. 

To study the effects of structural parameterization 
on the optimal sensor location, results are presented 
for the following three cases, designated by Case A, 
Case B, and Case C. In Case A, the uncertainty in 
the stiffness is assumed to be fully correlated for 
all stories, that is, only one parameter a is con­
sidered with ki = ako, i = 1, ... , 9. In Case B, 
only three uncertain parameters are considered by 
dividing the structure into three substructures with 
k1 = k2 = k3 = a1ko, k4 = ks = k6 = a2ko and 
k7 = ks = kg = a3ko. In Case C, nine uncertain pa­
rameters are considered, one for each story stiffness, 
so that ki = aiko, i = 1, ... , 9. 

Although, in principle, the impulse excitation will 
excite all modes of the structure, parametric studies 
as a function of the number of modes used are justi­
fied since in real applications the information from 
higher modes will be lost due to the larger measure­
ment noise-to-signal ratio for higher modes, which 
is primarily due to low energy of the earthquake 
motion at the frequency range corresponding to the 
higher modes. 

In case A, the optimal location of N0 sensors are 
found to be at the No highest floors of the uniform 
shear building. The optimal sensor locations for 
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Case B and C are given in Tables 1 and 3, respec­
tively. Values of the sensor locations are reported 
only for the cases for which the problem is identifi­
able. The non-identifiability can easily be predicted 
by observing the condition number of the matrix Q. 
Specifically, one eigenvalue of Q equals zero for a 
non-identifiable structure. Usually, due to numeri­
cal errors, the eigenvalues are all different from zero 
and the non-identifiability is predicted by the ratio 
1>-max/Aminl which is expected to be very large for 
non-identifiable or ill-conditioned cases. 

Tables 2 and 4 show the variation of the uncertainty 
in the parameter g, as a function of the number of 
sensors placed at the optimal locations for Cases B 
and C, respectively. Results are given for different 
number of modes. For any given number of modes, 
the value of - det ( Q), and thus the uncertainty in 
the prediction of the value of Q, is seen to reduce 
as additional sensors are placed in the structure. 
Increasing the number of sensors extracts more in­
formation from the data, which is reflected by the 
lower values of- det(Q). 

The results from the entropy approach are com­
pared to those obtained by maximizing the trace 
of the Fisher information matrix [8]. For case A, 
the results obtained by maximizing the det(Q) or 
the tr( Q) are identical since Q is a scalar in this 
case. However, in almost all the results obtained 
for cases B and C, the optimal sensor location mea­
sures det(Q) and tr(Q) give qualitatively different 
results. Specifically, tr( Q) predicts that for cases 
B and C, all of the N 0 sensors should be placed at 
the highest No floors of the shear building, indepen­
dently of the number of modes and the parameter­
ization used. However, the locations of the sensors 
predicted by det( Q) is qualitatively different. As 
an example, consider finding the optimal locations 
of four sensors for Cases B and C. The results for 
Case B shown in Table 1 indicate that three of the 
sensors should be placed on floors 2 to 6, with the 
exact locations depending on the number of modes 
contributing significantly to the response, and one 
sensor should be placed at the ninth floor. Similarly, 
the results for Case C in Table 3 indicate that for 
five modes or more, three sensors should be placed 
at the lowest three floors and one sensor should be 
placed at the highest floor. Also, comparing the op-

timal sensor location results for both cases B and 
C (Tables 1 and 3), it is concluded that the opti­
mal location of the four sensors also depends on the 
structural parameterization scheme employed. 

From the results in Tables 1 and 3, one can conclude 
in general that for a very small number of sensors, 
specifically one sensor for case Band up to two sen­
sors for case C, the optimal locations are generally 
on the lower floors, while for a larger number of sen­
sors, the optimal locations consist of a combination 
of lower and higher floors. The number of modes 
has some effect on the sensor location problem, but 
it is not strong. 

Additional studies on the ninth story building 
demonstrate that the optimal sensor configuration 
also depends on the the type and location of the 
excitation. For example, it depends on whether 
the excitation is broad-band ambient, impulsive or 
forced harmonic, and on the location of the excita­
tion, such as whether it is base excitation or exci­
tation at other degrees of freedom. 

5. CONCLUSIONS 

The optimal sensor locations are chosen to corre­
spond to the minimum information entropy of the 
uncertainty of the model parameters. The uncer­
tainty in these parameters is computed using a 
Bayesian statistical methodology. A genetic algo­
rithm is especially suited for solving the resulting 
discrete optimization problem over all possible sets 
of sensor configurations. The optimal sensor con­
figuration depends on the number of contributing 
modes, the parameterization scheme employed, and 
the type and location of excitation (for example, 
force excitation applied at specific degrees of free­
dom, base excitation due to earthquakes, or wind­
excited ambient excitation). The optimal sensor 
configuration can be used in conjunction with a sys­
tem identification technique to provide significantly 
improved and more reliable estimates of the identi­
fied model parameters from test data. In damage 
detection applications, the optimal sensor locations 
predicted by the methodology are expected to pro­
vide significantly improved estimates of the severity 
and location of damage. 
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bl 0 . Ta e 1: Jptlma sensor ocatwns fi C B or ase 
Number of Sensors 

modes I 2 3 4 5 6 7 8 
1 36 369 3 56 9 34689 345689 2345689 23456789 
2 4 3 9 349 3489 23459 234589 2345789 23456789 
3 9 39 349 3459 23489 234589 2345689 23456789 
4 3 39 349 3469 34569 234689 2345689 23456789 
5 3 39 349 3459 34569 234569 2345689 23456789 
6 3 39 349 2369 23469 234569 23456 89 23456789 
7 3 39 369 2369 23569 234569 2345689 23456789 
8 3 39 369 3469 23469 234569 2345689 23456789 
9 3 39 239 2369 23569 234569 2345689 23456789 
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Table 2: Information Entr~y_ measure -ln[det(Q)] for Case B 
Number of Sensors 

modes 1 2 3 4 5 6 7 8 9 
1 10.4 -21.3 -22.6 -23.2 -23.7 -24.1 -24.4 -24.6 -24.7 
2 -26.5 -28.7 -29.9 -30.6 -31.0 -31.4 -31.7 -31.9 -32.0 
3 -27.2 -29.5 -30.5 -31.2 -3I.8 -32.3 -32.6 -32.9 -33.1 
4 -27.4 -30.0 -30.9 -31.6 -32.1 -32.6 -33.0 -33.3 -33.5 
5 -27.6 -30.2 -31.2 -31.9 -32.5 -32.9 -33.3 -33.6 -33.8 
6 -27.8 -30.3 -31.3 -32.1 -32.6 -33.1 -33.5 -33.9 -34.1 
7 -28.3 -30.7 -31.7 -32.5 -33.1 -33.5 -33.9 -34.2 -34.4 
8 -28.3 -30.7 -31.7 -32.5 -33.0 -33.5 -33.9 -34.3 -34.5 
9 -28.3 -30.7 -31.7 -32.5 -33.1 -33.5 -33.9 -34.2 -34.5 

a e Jptlma sensor ocat1ons or ase T bl 3 0 . I tl c c 
Number of Sensors 

modes I 2 3 4 5 6 7 8 
I 12345678 
2 125678 1245678 12456789 
3 1 4 58 1 2 4 7 8 123478 1234789 12345789 
4 1 9 239 1 2 3 8 1 2 3 8 9 123489 1234589 12345789 
5 1 1 3 1 2 9 1 2 3 9 12349 123479 1234579 12345679 
6 1 1 3 1 2 3 1 2 3 9 12349 123479 1234679 12345679 
7 1 1 3 1 2 3 1 2 3 9 1 2 3 4 9 123469 1234569 12345679 
8 1 1 3 1 2 3 I 2 3 9 I 2 3 4 9 123469 1234569 12345679 
9 I I 3 I 2 9 1 2 3 9 12349 123469 1234569 12345679 

Table 4: Information Entropy measure -lnfdet(Q)] for Case C 
Number of Sensors 

modes 1 2 3 4 5 6 7 8 9 
1 172 139 107 77.2 46.7 -18.1 -9.62 -37.8 -39.4 
2 105 44.6 -11.0 -42.8 -49.5 -54.4 -56.7 -59.2 -59.4 
3 39.1 -43.1 -57.1 -62.5 -65.1 -66.9 -68.5 -69.7 -70.6 
4 -19.6 -62.2 -68.2 -70.7 -72.8 -74.4 -75.8 -76.8 -77.8 
5 -59.6 -68.5 -72.7 -75.4 -77.3 -78.7 -79.9 -81.0 -81.7 
6 -60.9 -70.0 -74.3 -77.0 -78.8 -80.2 -81.4 -82.4 -83.2 
7 -62.2 -71.5 -75.3 -78.1 -79.9 -81.4 -82.5 -83.5 -84.4 
8 -63.7 -72.2 -75.9 -78.6 -80.4 -81.8 -83.0 -84.0 -84.7 
9 -64.4 -72.3 -76.2 -78.8 -80.5 -81.8 -83.0 -83.9 -84.6 
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