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Inversion of refraction data by wave field continuation 

Robert W. Clayton* and George A. McMechant 

ABSTRACT 

The process of wave equation continuation (migration) is 
adapted for refraction data in order to produce velocity-depth 
models directly from the recorded data. The procedure con­
sists of two linear transformations: a slant stack of the data 
produces a wave field in the p - T plane which is then down­
ward continued using T = 0 as the imaging condition. The 
result is that the data wave field is linearly transformed from 
the time-distance domain into the slowness-depth domain, 
where the velocity profile can be picked directly. No travel­
time picking is involved, and all the data are present through­
out the inversion. 

The method is iterative because it is necessary to specify 
a velocity function for the continuation. The solution pro­
duced by a given iteration is used as the continuation velocity 
function for the next step. Convergence is determined when 
the output wave field images the same velocity-depth func­
tion as was input to the continuation. 

The method obviates the problems associated with deter­
mining the envelope of solutions that are consistent with the 
observations, since the time resolution in the data is trans­
formed into a depth resolution in the slowness-depth domain. 

The method is illustrated with several synthetic examples. 
and with a refraction line recorded in the Imperial Valley, 
California. 

INTRODUCTION 

Refraction profiles are conventionally analyzed by extracting 
traveltime information from the data and performing a Wiechert­
Herglotz integration to produce a velocity-depth profile. We present 
an alternate approach to refraction inversion which consists of 
transforming the entire data wave field into the slowness-depth 
domain. The process involves two linear transformations: a slant 
stack followed by a downward continuation. 

Applications of slant stacking to reflection data were first demon­
strated by Schultz ( !976) and Schultz and Claerbout ( 1978). 
Examples of the processing of refraction wave fields by slant stack­
ing were presented by McMechan and Ottolini ( 1980), Staffa and 
Buhl ( 1979), and Phinney et a! ( 1980). The result of this trans­
formation is a wave field in the ray parameter-time intercept (p - T) 

plane. The image that forms in the p - T plane is the '"tau" curve 
(cf., Bessonova eta!, 1976), required for Wiechert-Herglotz in­
version. Chapman ( !978) showed that the inverse slant stack was 
a general method of solving the forward problem and therefore 
the slant stack was a useful start to the inverse problem. 

Recently, Garmany et a! ( 1979) showed that the inversion of a 
tau curve can be expressed in linear form if the integration is per­
formed along lines of constant p. We employ a downward con­
tinuation method to transform linearly from the p - T domain 
directly into the slowness-depth domain. Since both slant stack­
ing and downward continuation transform the entire wave field, 
neither the traveltime curve nor the tau curve need be picked. In­
stead. picking is delayed until the last step when the slowness­
depth model is extracted directly from the output wave field. The 
wave field transformation approach to inversion has the advantage 
that all the data contribute to the final image: there is no sub­
jective selection of data (e.g., via traveltime picking) as in previous 
methods. In theory, since both downward continuation and slant 
stacking are reversible transformations. this approach could po­
tentially be used to generate synthetic refraction gathers from the 
p - z plane. 

The downward continuation part of this technique is iterative 
because it is necessary to specify a velocity function. Convergence 
is achieved when the extracted velocity function is the same as 
that input to the continuation. In the examples we have tested, 
convergence was obtained in less than five iterations. 

We present the theory for the inversion of refraction profiles 
by double transformation of the data wave field. The method is 
illustrated with several synthetic examples and with a line of re­
fraction data recorded in the Imperial Valley, California. 

For real data. the chief limitation on the method presented here 
is the ability to produce a reasonable slant stack of the data. The 
paucity and sometimes significant lateral variations that occur in 
typical refraction surveys will introduce artifacts into the slant 
stack. If the artifacts are too severe, then the applicability of the 
method is doubtful. Also, we make no attempt here to utilize the 
information contained in the subcritical reflections. 

THEORY 

The data recorded in a typical refraction experiment is in the 
format of a common shot gather. Making the assumption that 
velocity varies only with depth, it is equivalent to treat such data 
as a common midpoint (CMP) gather. We shall use symbols t for 
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FIG. 1. The first transformation. The upper (a) half of this figure contains a synthetic refraction profile plotted in reduced time format. There­
duction velocity is 3. 7 km/sec. These data are transformed by slant stacking into the plane-wave decomposition shown in the lo»:er ~b) ha~f 
of the figure. This transformation is the first half of the process of inversion of the data wave field. The result of downward contmumg th1s 
slant stacked wave field (b) is shown in Figure 2. 

traveltime and h for half-offset in a CMP coordinate system. The 
inversion of an observed refraction wave field in these coordinates 
involves two linear transformations: a slant stack and a downward 
continuation. Each of these will now be considered in turn. 

A slant stack is a linear operation that transforms a wave field in 
the t - h domain into a wave field in the p - T domain. Here, 
p is the ray parameter (horizontal slowness), and T is the vertical 
component of t [t projected to zero offset along a line of slope p 
through the point (t, 2h)]. Slant stacking of refraction profiles has 
been discussed in detail by McMechan and Ottolini ( 1980), so 
only a brief summary is given here. 

Slant stacking can be performed in either the time or frequency 
domain; however, in the time domain, variable trace spacing is 
easier to handle. A slant stacked wave field is produced from a 
common shot gather by (Gel'fand et al, 1966; Chapman, 1978; 
McMechan and Ottolini, 1980): 

J
+x 

S(T, p) = -X P(T + 2ph, h)dh, (I) 

where P is the observed (seismogram) wave field and S is the 
transformed (p - T) wave field. A correction for the frequency 
dependence of the stack is performed by convolving S ( T, p) with 
an operator of the form H (t) t- 112 (cf., Phinney eta!, 1980). Equa­
tion (I) can be cast in the frequency domain by using the Fourier 

central slice theorem 

S(w, p) = P(w, -2wp). (2) 

In other words, the two-dimensional (2-D) Fourier transform of 
P evaluated along the slice - 2wp is the Fourier transform with 
respect to time of its projection S ( T, p). For a more detailed presen­
tation of these concepts, see Bracewell (1956) and Bracewell and 
Riddle (1967). 

The main result of slant stacking is that the observed wave field 
is decomposed into plane wave (fixed p) components, each of 
which can be downward continued separately. Figure I a contains 
an example of a synthetic common shot gather, and Figure I b is 
the corresponding slant stack. The finite aperture of the data set 
and spatial aliasing both contribute to artifacts in the slant stack. 
Relatively dense sampling of the offset coordinate is required to 
produce a reasonable image in the p - T domain ( cf., McMechan 
and Ottolini, 1980). Also, coherency of source signatures is re­
quired if multiple shots are involved in the field survey. 

The second transformation in this technique is a downward 
continuation of the slant stacked wave field. This step resembles 
a depth migration, except that in this case it is being applied in 
the offset domain rather than in the midpoint domain. When 
velocity varies only with depth [v = v(z)], the downward con­
tinuation of the wave field observed at the surface (z = 0) to any 
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FIG. 2. The second transformation. The upper (a) half of this 
figure shows the result of downward continuing the slant stacked 
wave field in Figure I b with the correct velocity-depth function 
(the solid line). The lower (b) half of this figure contains the same 
wave field as the upper, but with a phase rotation of 51T /4. All 
the downward continued wave fields in the remainder of this paper 
are presented with this phase shift applied. 

desired depth (z) can be implemented by a phase rotation in the 
frequency domain (cf.. Clacrbout, 1976; Gazdag, 1978): 

2 2 1•2 

P(w, kh, z) = P(w, kh, 0) cxp [-i21z [__:;---- kh ) dz]. 
0 I' (z) 4 

(3) 

where w is the temporal frequency and kh is the horizontal wave­
number (the dual of h). Equation (3) is an approximate solution to 
the wave equation 

[ 
a2 a2 w2 J 

- 2- + - 2- + 4-
2
- P(w. h. z) = 0. a z a h v (z) 

(4) 

The solution is approximate because amplitude terms depending 
on the logarithmic gradient of the velocity have been neglected. 
However, the traveltime aspects of the solution arc correct. The 
first minus sign in equation (3) indicates that we arc imaging up­
coming waves. 

To convert equation (3) into slowness form, substitute -2wp 
for kh: 

P(w, -2wp, z) = P(w. -2wp, O)e-'"'"' 1p,z>. (5) 

where 

f
z 

2 2 1'2 'l'(p. z) = 2 [1· (z) - p ] ' dz. 
() 

(6) 

Using relation (2). equation (5) may be rewritten in terms of slant 
stacked wave fields: 

S(w, p, z) = S(w, (J. O)e-'w'i'lp,zJ_ (7) 

The inverse Fourier transform of equation (7) is 

S(T, p, z) = J S(w. p, ll)e iwl'l'(p,z\ - 71 dw. (8) 

With equation (8), the surface ( ~ = 0) slant stack can be extra­
polated (downward continued) to ;til depths. One could think of 
using this equation to fill out the entire T - p - z space with 
data extrapolated from the surface. However, this is not necessary 
because the slowness image we -.cek lies on a plane in the 
T - p - z space specified by the imaging condition. The desired 
image contains the bottoming points of all the plane-wave com­
ponents. The plane which image>. this trajectory is specified by 
the condition T = 0 because we wish to downward continue 
each p to the depth at which the currcsponding ray bottoms. At 
that depth. p of the ray equals the true -.lowness (v - 1 ) of the medium 
for refractions and postcritical rclkctions. Precritical reflections 
image in a trajectory that splits off from the main slowness image 
at the critical reflection point. Setting T = 0 in equation (8) yields 
the desired result: 

s(p, z) == S(O, p. z) = J Siw, p, O)e- iw'i'ip,z\dw, (9) 

where s (p. z) is defined as the slowness plane. 
Implementation of equation (9) is straightforward. Each plane­

wave component (each p) can be downward continued separately 
since p enters equation (9) as a parameter. A computer program 
which realizes (9) consists basically of three nested loops: an outer 
one over p. then one over z. and an inner one over w. For some 
applications, it may be more efficient to cast equation (9) in the 
time domain 1

. Inverse transformin12 over w, we have 

s (p, z) = S[ T - 'l' (p. z), p. 0], ( 10) 

which means that the slowness plane can be obtained by a normal 
moveout (NMO) correction applied to the slant stack. 

One minor problem that occurs in the application of equation 
(9) is that 'I' has a branch cut. We remedied this by altering the 
definition of 'I' to 

fz I 2 2[1:2 'l'(w, p. z) = 2w ' (z) - p dz. 
0 

(II) 

This stops the downward continuation from attenuating the wave 
field below depths where p is greater than v -!. 

The application of equation (9) produces an image in the slow­
ness plane. The image trajectory i> composed of wavelets whose 
shapes arc each defined by the phase shift associated with the 
reflection coefficient at each z. A 1 cfracted ray can be treated as 
having an effective reflection cocfti··icnt of -i sgn(w) (Chapman. 
197ll). 

Figure 2a shows the p - :: wan~ lield obtained by downward 

1 
We thank the two reviewers of the papc1 for pointing out this modification. 

In the examples presented. we implemented equation (9) in an array pro­
cessor. The computation time is minor compared to the time it takes to 
plot the results. However, for implementation on a general purpose 
machine, equation (I 0) is probably faster. 
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continuing the p - T wave field in Figure I b using the v (z) 
function (the solid line) superimposed on Figure 2a. This v (z) 

function used for continuation is the same as that used to generate 
the synthetic seismograms (Figure Ia). The wave field in Figure 
2a should therefore image the corresponding v (z) function exactly. 
The varying offset between the input v (z) function and the image 
is due to the fact that there are phase shifts related to reflection 
coefficients which are not yet taken into account. Accurate loca­
tion of the image trajectory is discussed below. 

The object of inversion is to find the v(z) [or, equivalently, in 
the present formulation, the v- 1 (z)j function. However. the con­
tinuation step requires a velocity-depth function. Thus, obtaining 
a solution is necessarily an iterative process. Convergence is 
presumably to a unique model because there are no artificial con­
straints on the convergence path; the data set itself contains and 
provides the solution. The convergence criterion is that the output 
wave field images the same v- 1 (z) function that was input to the 
downward continuation. and this state can be detected by com­
paring the p - z wave fields at successive iterations. 

SYNTHETIC EXAMPLES 

It is possible to implement wave field inversion in an interactive 
mode in which the slowness function extracted from the imaged 
wave field at each step is used as the continuation velocity for the 
next iteration. In this section we present a detailed example of 
inversion in an interactive mode. An example of automated 
convergence is included. but the production of a totally automatic 
inversion scheme that is able to adapt to a variety of conditions is 
far. hc.yand the. s.c.op.e. of. this. pa)lcr .. 

The most important aspect of inversion by wave field imaging 
is the determination of the location of the desired slowness 
trajectory in the downward continued (p - z) wave field. In 
Figure 2a, which illustrates the result of continuation with the 
correct v (z) function, it is clear that the relationship between the 
image in the wave field and the corresponding slowness trajectory 
(the solid line) is not trivial. Fortunately. this relationship can be 
predicted. As we show below, the continuation itself has certain 
self-stabilizing feedback properties which enable a velocity pro­
file to be estimated accurately from the usc of any arbitrary 
criterion for locating the slowness trajectory. provided that it is 
consistently applied. 

In Figure 2a it can be seen that the optimal slowness trajectory 
is near. but not coincident with, the maximum amplitude locus in 
the imaged wave field. Part of the reason for this is that the p - z 
wave field images reflection coefficients. and each of these con­
tains a phase shift which depends upon the angle of incidence and 
the velocity gradient at the ray bottoming point. Specifically, if 
one assigns zero shift to refraction branches and precritical re­
flections, then wide-angle reflections have phase shifts which 
progress from TI I 2 at the critical reflection to TI at large offsets, 
and any ray which touches an internal caustic receives an addi­
tional TI 12 shift. The latter occurs, for example. to rays which 
are refracted in a region of sufficiently high velocity gradient that 
a triplication is produced in the traveltime curve. The existence 
of these phase shifts suggests that better convergence could be 
obtained by identifying those p ranges containing particular types 
of arrivals and applying appropriate phase shifts. This identifica­
tion could be made in the p - T plane since the radii of curvature 
of refraction and reflection p - T loci have opposite signs (cf.. 
Figure I b). Alternatively, an algorithm which is independent of 
phase shift could be sought. 

We refrain from making progressive phase shifts as a function 
of p in the p - T wave field. as described above. because this 
requires one to make a specific interpretation which may bias the 
inversion results. Instead, we have shifted the phase of the entire 
wave field by 5TI I 4. The result. for the wave field in Figure 2a. 
is shown in Figure 2b. This phase shift consists of three contribu­
tions. First, there is a TI 12 shift associated with the requirement 
that the far-field radiation condition be satisfied (cf., Aki and 
Richards, 1980, p. 417). Then. there is a TII4 shift due to the 
fact that we arc dealing with a 2-D representation of propagation 
in three dimensions (Chapman. 1978). These two shifts are exact 
for all p values. The final shift of TI 12 is the average associated 
with the range of reflection coefficients expected for the various 
arrivab (refractions and reflections) in a typical refraction profile. 

With the net phase shift of 5TII4. the locus containing the 
maximum positive amplitudes lor the first significant pulse when 
considering real data) in an imaged wave field should everywhere 
be within TI 12 of the correct slowness locus. Using this modified 
form of the imaged wave fields. it was straightforward to obtain 
convergence to the neighborhood of the correct model by using a 
very simple criterion for determining the approximate location 
of the slowness trajectory at each iteration. The exact phase shift 
applied is not critical since it docs not enter into the end product 
directly. It simply alters the criterion for locating the optimal 
slowness trajectory relative to the p - z wave field without 
altering the position of the trajectory itself. 

Downward continuation is a stable operation, even with highly 
erratic velocity-depth input functions. It does not matter if slow­
ness trajectories are located incorrectly in intermediate iterations; 
these effects are not cumulative from iteration to iteration because 
the. downwar.d c.ontinuation. at c.ach. step. always. star.ts. with. the. 
original slant stacked wave field. Also, it docs not matter if the 
criterion used to find the slowness trajectory changes from one 
intermediate iteration to the next. In fact, we found that when 
picking trajectories by hand, the picking criterion evolved from 
iteration to iteration. and different criteria were used over differ­
ent p ranges in the attempt to attain convergence. All of this is 
expected and is a direct consequence of the various phase shifts 
associated with different types of arrivals as described above. 
None of the evolutionary process enters or biases the final solution. 
provided identical picking criteria are used on the two successive 
output wave fields used to identify the condition of convergence. 
The appropriate criterion is a function of p and is definable as that 
which produces convergence to a single slowness-depth line. This 
definition can be used directly to obtain convergence without any 
knowledge of arrival types or phase shifts. 

The slant-stacked wave field in Figure I b was chosen to illu­
strate the convergence of the inversion. This example was done 
in an interactive format, in which the slowness trajectory at each 
iteration was extracted by hand using the criterion of the maximum 
positive amplitude at each p. lise of this inflexible criterion pre­
cludes convergence to a single line. The results are shown in 
Figure 3. Beyond iterations 4 and 5 (Figures 3c and 3d), the solu­
tion did not converge further. but oscillated between the two 
positions represented by iterations 4 and 5. This oscillation in­
dicates a consistent bias associated with the criterion of maximum 
positive amplitude used for picking the slowness locus. This 
oscillation is a useful behavior and will be discussed below. It 
is encouraging that such a simple criterion produces a result 
close to and exhibiting the same general shape as the desired curve 
(Figure 3e). In fact, for many practical purposes, this level of 
convergence ( <2 percent error in velocity when averaged over 
the profile) is already adequate. 
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FIG. 3a, 3b. Convergence by iteration in an interactive mode. The 
wave field being downward continued is the plane-wave decom­
position of the synthetic data shown in Figure I b. Figure 3a con­
tains the starting v(z) model, a constant velocity of 2.6 km/scc 
at all depths (see the solid line), arid the resultant wave field. The 
solid line in (b) is the slowness trajectory which was extracted by 
hand from the wave field in (a). Downward continuation with this 
slowness function produced the wave field in (b). The later stages 
of this inversion are shown in Figure 3c to 3f. 

The example in Figure 3 illustrates one approach to inversion­
finding a model which is in some sense a single best-fit curve to 
the data. The uncertainty in such a model is indicated in the present 
scheme by the width of the p - z image at convergence and is 
directly derived from the frequency content and the time resolu­
tion in the original data. 

Another approach to inversion concentrates on determining 
the envelope of all possible models that are consistent with a given 
data set (cf., McMcchan and Wiggins. 1972: Bessonova et al, 
1974, 1976). In wave field inversion an explicit envelope can be 
determined by using a property of the downward continuation 
algorithm. If a continuation is performed with a velocity estimate 
that is too high at every depth, it will indicate depths that are 
everywhere too great. Conversely, if the continuation velocity is 
consistently too low, consistently shallow depths are produced. 
We have also seen (Figures 3c and 3d) that a consistent bias 
produces convergence to two pseudo-stable states. These states 
are mutually inverse (i.e., imaging with either of the correspond­
ing velocity functions produces the other). This idea has a num-
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FrG. 3c. 3d. Similar to Figures 3a and 3b in that they illustrate inter­
mediate results in the process of inversion of the slant stacked 
wave field in Figure lb. Iteration 4 is shown in (c) and iteration 5 
is shown in (d). The final results of the inversion arc shown in 
Figures 3e and 3f. 

bcr of implications. First, such a pair of mutually inverse func­
tions constitutes an envelope since one is everywhere too deep 
and the other is everywhere too shallow. In this context. the term 
envelope refers to a pair of lines between which the optimal 
solution lies and is not to be confused with the depth resolution of 
a soiution as indicated by the width of the p - z image at con­
vergence. Second, it implies that one need not determine sophisti­
cated criteria for locating the slowness locus when envelopes are 
the primary desired result (all that is required is any picking 
criterion that is consistently biased). Third, a good estimate of 
the desired v ( z) function can be ohtaincd simply by averaging 
those of the two states. (An example of this was presented above.) 
Finally, the potential now exists for complete inversion by a 
computer program since a simple criterion is sufficient and pro­
duces both an envelope and a reasonably accurate estimate of the 
velocity profile. 

The interactive mode is likely the most viable form for practical 
application since it can avoid, through the introduction of human 
intuition and experience, most of the potential problems in identify-
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FIG. 3e, 3f. The final results of the inversion of the synthetic data 
wave field in Figure l a. Figure 3e contains the average of the slow­
ness loci of iterations 4 and 5 (the dashed line) and the correct solu­
tion (the solid line). Except for differences in the velocity gra­
dients near 2- and 5-km depth, the obtained and desired profiles 
are very similar. Figure 3f shows the slowness trajectory obtained 
by averaging the results of iterations 4 and 5 superimposed on the 
wave field obtained by downward continuing the slant-stacked 
wave field in Figure I b with this function. 

ing the slowness trajectory from the artifacts. However, for cer­
tain data sets, it will be possible to do an inversion in a completely 
automated mode. Figure 4 contains an example of the result of 
an automated inversion. The solid velocity-depth line in Figure 4a 
was used to generate a synthetic refraction profile which was 
then slant stacked. This p - T wave field was then iteratively 
continued using a constant velocity of 2.6 km/scc as the starting 
model. The picking criterion for finding a slowness locus was the 
maximum positive amplitude at each p. The velocity-depth func­
tions produced by the first three iterations arc shown in Figure 4a 
as the dashed lines. Both iterations 2 and 3 are everywhere within 
0.2 km/sec of the correct solution. As a final estimate, the results 
of iterations 2 and 3 were averaged and a continuation was done 
with this slowness function. The output wave field of this last 
iteration is shown in Figure 4b. The solid line superimposed in 
Figure 4b is the slowness function used for this iteration. 

Figure 4b also illustrates the effect of the failure of the algorithm 
used to find the slowness trajectory that would compensate for 
the varying phase shifts on different arrival branches. Through 

0 

oi 

0 -· E"' 
~ 

N"1 
"' 
0 

"' a 
0 

d 

0 

oi 

0 

e..: 
~ 

N"/ 
"' 
0 
a, 

0 
b 

0 -e.5 

v lkm/secl 
4.0 4.5 

',-- ................ 

' ' ' ' 
' 

' ' 
' \ ' 

' 

p lsec/km) 

_, 

3.5 4.0 
v lkm/secl 

5 0 5.5 

--1 

---z 
----- 3 

........ ........ 
......... 

s.o 

I 
I 

FIG. 4. Convergence in an automatic mode. The solid line in (a) 
is the velocity model for this example. The dashed lines are the 
results of the first three iterations. where at each step the slowness 
curve was picked automatically. The lower panel (b) shows the 
results of downward continuing with a velocity function (the solid 
line) that is the average of iterations 2 and 3. 

the downward continuation algorithm, an uncompensated phase 
shift at some z (which in effect produces a shifted slowness 
estimate) leads to an offset in : for all greater values of z. An 
error in picking at shallow z will be present at all greater z, and 
subsequent errors are cumulative. 

Although many of the examples presented here involve the use 
of maximum positive amplitude as a slowness picking criterion, 
this restriction is easy to relax. Maximum positive amplitude has 
been used because it is a stable criterion for producing rapid con­
vergence to the neighborhood of the correct solution but, by itself, 
it cannot produce complete convergence to a single line. In general, 
it is sufficient to know that convergence is defined by the coin­
cidence of the input slowness trajectory and its image. When this 
coincidence is obtained, no matter how devious or empirical the 
route. all the correct phase shifts will have been included and any 
envelopes obtained at previous steps will have collapsed to a 
single line. 

Amplitude information can be used to speed convergence. For 
example, in Figure 2a, the existence of precritical reflections (the 
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FIG. 5. The transformation of multiple reflections. First-order 
multiples were included in the synthetic data profile used to pro­
duce the slant-stacked wave field in (a). Migration of this wave 
field with the correct velocity profile [the solid line in (bJ] pro­
duces the wave field in (b). In both (a) and (b) the image labeled 
M is the first multiple. 

extension of the image through lower slowness values from the 
critical reflections at the ··knees·· of the image) indicates the 
presence of a significant velocity contrast. The use of such addi­
tional information would produce better estimates of appropriate 
slowness trajectories. Additionally. where a true reflection exists. 
the associated progressive phase shifts are evident in the output 
wave field (cf.. Figures 2a and 2bJ. Another subjective aid is in­
herent in the level of focusing of the slowness image in the imaged 
wave field. The image becomes better focused as the correct 
velocity estimate is approached (compare Figures 3a and 3bJ. 
The reason that amplitude constraints (e.g .. the increased ampli­
tude associated with a critical reflection) enter the solution only in 
a subjective way is that the present form of wave field inversion 
is still based on integral constraints (in the form of traveltimes) 
on the velocity-depth function. Amplitude information is an ex­
pression of the behavior of velocity gradients and so provides 
derivative constraints. In order to make use of such information 
the data must be recorded so that true amplitudes may be re­
covered. and a pre stack scaling of data by (2h) -l 

2 can be included 
to compensate for geometrical spreading ( cf .. Phinney eta!. 1980). 

Certain types of data, such as typical marine profiles and the Im­
perial Valley data presented below. contain prominent multiple 
reflections. Since these arrivals often mask primary arrivals. their 
removal is the topic of much research. The transformations dis­
cussed here may be applied to this problem. Figure Sa contains 
the plane-wave decomposition of a synthetic data profile consisting 

of both primary arrival branches and their first free-surface multiple 
branches. In the p - T plane. the energy in the multiple is separated 
from the primary energy since. for each p. it plots at twice the T of 
the primary. Similarly. in the imaged wave field in Figure Sb. the 
primary and multiple images are separated. 

Note this approach to multiple removal is also valid for data 
collected over structures other than flat layers. The transformations 
themselves do not contain any restricting assumptions about the 
origin of the data (slant stacking does not involve any velocity 
assumptions. and even migration at a grossly incorrect velocity 
would still separate primaries and multiples). There are. however. 
still problems where a precritical reflection branch of a multiple 
crosses a primary branch. An alternate approach to multiples 
attempts to utilize the information present in them. We leave 
migration of multiples for future consideration. 

The presence of a low-velocity zone in the velocity model will 
introduce an unknown which cannot be determined by examining 
refracted arrivals alone. The traveltime shadow zone associated 
with a low-velocity zone (in the t - h domain) becomes trans­
formed into a jump in T at constant p in the p - T domain. The 
subcritical reflections may provide the necessary information to 
determine the structure of the low-velocity zone. 

Finally. it is of theoretical interest that we have empirically 
shown there is a direct correspondence between Wiechert-Herglotz 
inversion and downward continuation. We expect that an asymp­
totic or stationary phase form of the inversion equation (to delete 
the w-dependenceJ can formally he shown to be equivalent to the 
Wiechert-Herglotz integral. Also. these concepts are expected to be 
applicable to the inversion of surface waves as well as body waves 
since it is possible. with certain assumptions. to invert a dispersion 
curve with the Wiechert-Herglotz integral (Takahashi. 1955: Nolet 
and Kennett. 1978). The">c topics are the subjects of current 
investigation. 

APPLICATION TO RECORDED DATA 

In order to evaluate the applicability of wave field inversion to 
actual field data. a digitized refraction profile of high spatial density 
was obtained from the United States Geological Survey (USGS). 
These data. which arc presented in Figure 6a. were recorded in 
the Imperial Valley of southern California in 1979. 

With one important exception. the analysis of the Imperial 
Valley data followed closely the interactive procedure outlined 
above in the analysis of the synthetic data of Figure I a. The ex­
ception is that the slowness picking criterion was not fixed. but 
was allowed to change progressively so the solution converged 
to a single line rather than an envelope. The data were slant 
stacked to produce the p - T wave field shown in Figure 6b. At 
each iteration. the slowness trajectory was extracted by hand from 
the imaged wave field. Convergence was obtained in four itera­
tions. In Figure 6c. the velocity-depth profiles corresponding to 
the second and the final (the fourth) iterations. are shown. Also in 
Figure 6c is the velocity profile obtained independently by W. 
Mooney of the USGS from a detailed ray-tracing analysis of an 
earlier reversed refraction line in the same area. This previous 
line was approximately parallel to the one analyzed here: the shot­
point for the later profile also corresponded nearly exactly to the 
previous shotpoint. Thus, it is reasonable to make a general com­
parison of the results of the two studies as presented in Figure 6c. 

Figure 6d contains the slowness trajectory extracted from the 
imaged wave field of the fourth iteration. This line is superimposed 
upon the wave field obtained by downward continuing with it to 
illustrate the convergence condition. The slowness locus is par­
ticularly clear in this wave field. 



Inversion of Refraction Data 867 

'-' ., 
"' 

'-' 
~ 

1-' 

o.o 

o.s 

1.0 

1.5 

10 

x ( km) 
12 14 16 

Fro. 6a. 6b. Processing of real data. The record section in (a) was 
recorded in the Imperial Valley by the USGS. For this ligure. each 
seismogram was scaled to have the same maximum amplitude 
and is plotted at approximately its correct offset (the actual spacing 
was not constant and there were a few bad traces that were not 
included). For the slant stack, the actual offset of each trace was 
used. The slant-stack wave field is shown in (b). The result of 
inversion of these data bv downward continuation is shown in 
Figures 6c an·d 6d. The i~age labeled M in (b) corresponds to 
the first multiple (PP). 

There are some features of this Imperial Valley example which 
illustrate points made in the theoretical discussion above. For 
example, the data (Figure 6a) contain two regions of decreased 
resolution in the first arrival branch, one between 7- and 9-km 
offset where there is a decrease in amplitude. and one between 13-
and 15-km offset where there is an apparent increase in the noise 
level. These two regions can be seen in transformed form in both 
the slant-stacked and downward-continued wave fields where 
they indicate an increased local uncertainty in T and z, respectively. 
From the width of the slowness image. the depth resolution is 
estimated to be of the order of 0.1 km on the average, with better 
resolution at those depths associated with clear arri vats in the data 
and worse at those depths associated with noisy and less coherent 
arrivals. The prominent free-surface multiple PP, which can be 
seen in the data, is also transformed into the p - T and p - z 
domains as predicted in Figure 5. 

During the inversion of the recorded data, the focusing ob­
served with the synthetic data was very noticeable. As the correct 
velocity profile was approached. the sharpness of focus of the 
slowness trajectory approached that seen in the slant stacked 
wave field. 

In comparing Figures 6b and 6d. there are some p - T loci 
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Fro. 6c, 6d. The result of inversion by wave field transformation 
of the data in Figure 6a. The two dashed lines in (c) are the slow­
ness trajectories for iterations 2 and 4. The solid line is the result 
of inversion (by detailed ray tracing) of a reversed refraction pro­
file near the line along which the data in Figure 6a were recorded. 
The lower (d) part illustrates the relationship between the slowness 
locus (the solid line) and the output wave field at convergence. The 
image labeled M in (d) corresponds to the first multiple (PP). 

which seem to image to horizontal lines. These are located near 
1.5-km depth and may be precritical reflections from small 
velocity contrasts, but we see no evidence for any large velocity 
discontinuities in this profile. 

In this section the inversion of refraction data by wave field 
transformations has been demonstrated by the processing of a real 
data set from the Imperial Valley. California. These preliminary 
results encourage further application and development of the 
method. 

CONCLUSIONS 

We have presented an alternate method for inversion of spatially 
dense refraction data that is based on the technique of wave field 
continuation. The main advantages of the method are that the 
entire wave field is present throughout the inversion and the desired 
feature (the velocity--depth curve) is extracted directly from its 
image in the output wave field. This eliminates the subjective 
bias which can occur when traveltime or tau curves are picked. 
The method is robust and is self consistent in the sense that a con­
sistent bias in extracting the image will produce convergence to a 
bistable state which envelops the optimal solution. The depth 
resolution is indicated by the width of the p - z image and is 



868 Clayton and McMechan 

derived directly from the frequency content and the time resolu­
tion in the original data. The method has been used. apparently 
successfully, to invert a data set recorded in the Imperial Valley. 
California. 
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