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I. EXPERIMENTAL DETAILS

A. Setup

An illustration of our apparatus for the measurements in Ref. [S1] is presented in Fig. 1, with further details given
in Ref. [S2]. Briefly, a collection of 25 microtoroidal resonators with major diameter D � 25 μm and minor diameter
d � 6 μm is located within a vacuum chamber at 10−9 Torr. These resonators are monolithically fabricated from
SiO2 on a Silicon chip by a laser-reflow process [S3]. A probe beam of 5 pW is critically coupled to one particular
resonator via a tapered fiber. Critical coupling condition is achieved by adjusting the touching point of the taper on
the toroid surface. In the absence of atoms, the forward propagating flux 〈a†

outaout〉 drops 100× for resonant versus
nonresonant excitation (i.e., |α0|2Δ=0/|α0|2Δ�κ � 10−2 from Eq. (24) ).

Cesium atoms are laser trapped and cooled to T � 10μK at a distance 3 mm above the chip and dropped onto the
resonator (Fig. 1A), with some atoms transiting through the evanescent field of the resonator (Fig. 1B). Coupling
of individual atoms to the evanescent field modifies the resonance response of the atom-cavity system [S2], resulting
in clearly resolved transit events in the forward flux for aout for individual atoms as recorded by photon counting
detectors D1,D2 (Fig. 1C). A typical trace for a single drop of the atom cloud is shown in Fig. 1D. For critical
coupling with Δ � 0 � ΔAC , these events increase 〈a†

outaout〉, with roughly 20 events observed per drop in good

FIG. S1: A – Overall schematic of our experiment in Ref. [S1]. With a coherent input ain, the interaction of an atom with
the cavity fields (a, b) modifies the forward aout and backward bout propagating output fields from the cavity. B – A Cesium
atom falls through the evanescent field of a microtoroidal resonator. C – The forward propagating field aout is divided at a
50− 50 fiber beamsplitter and directed to two fiber-coupled avalanche photodiodes D1, D2 operated in photon counting mode.
D – Record of photoelectric detection events C(t) _ 〈a†

outaout〉 from the combined outputs of the detectors D1, D2. Evident
are peaks above the background that arise from individual transit events as in B [S2].
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accord with an independent estimate based upon the properties of the atom cloud and structure of the evanescent
field of the resonator [S2]. Here, ωA corresponds to the 6S1/2, F = 4 → 6P3/2, F

′ = 5 transition in atomic Cesium.
ωp is locked to ωA within ±0.5 MHz, while the atom-cavity detuning ΔAC is held only to within ±10 MHz, which is
however adequate given the broad cavity linewidth (±165 MHz).

B. Determination of effective coupling strength

The coherent coupling rate of an atom to the normal modes (A,B) is given by gA,B = g0f(ρ, z){cos(kx), sin(kx)}.
As described in Ref. [S2], we can experimentally determine g0 from measurements of transit events as a function of
cavity detuning ΔAC . Although the transit events are from atoms having different radial distance ρ, we can define
an effective coupling strength geff without taking account of ρ dependence of gA,B . By following the same procedure
as Ref. [S2], we determine geff/2π � 70 MHz. We also obtain the same value from measurements of transit events
as a function of intracavity photon number 〈n〉.

II. ANALYSIS RELATED TO FIGURES 3, 4

In this section, we describe our analysis for extracting transit events for individual atoms from the records C1,2(t) of
photoelectric counts events. For this purpose, we apply a selection criterion to the sum of counts

∑
i[C1(ti)+C2(ti)] ≡

CΣ over a sliding interval of length Δtatom and require that CΣ ≥ Cth to accept counts within Δtatom as representing
an actual transit event. For Δtatom = 1.5 μs and Cth = 4, we estimate that the probability for a false positive (i.e.,
identifying background counts as an actual atom transit) is less than 10−2. Although the results presented here are
for Δtatom = 1.5 μs and Cth = 4, we have verified that they are insensitive to this choice for reasonable values of
(Δtatom, Cth).

We apply this analysis to C1,2(ti) and retain only segments of total duration ±3 μs around the central window
Δtatom, where the time origin t = 0 is determined by the mean of the actual counts in Δtatom. The resulting lists of
photocounts are designated as A1,2(ti), from which the probabilities p1,2(ti) and p12(ti) are determined for single and
joint detection events for each atom transit recorded by detectors D1,2, respectively.

III. THEORETICAL MODEL

A schematic of the microtoroidal resonator and fiber taper system investigated in [S1] is shown in Fig. S2. The
internal, counter-propagating resonator modes are described in terms of the annihilation operators a and b, while
the external input and output fields are described by the operators {ain, aout, bin, bout}. The internal fields suffer an
intrinsic loss at the rate κi and an extrinsic loss at the rate κex due to the fiber coupling. An atom is assumed to
couple to the evanescent fields of the intracavity modes with a strength of the form

gtw = gtw
0 f(ρ, z)e±ikx, (1)

where ρ is the radial distance of the atom from the surface of the toroid, x is the atom’s position around the
circumference of the toroid, and z is the vertical coordinate. The azimuthal variable φ in Ref. [S1] is given by φ = kx.
The ± refers to the clockwise or counterclockwise propagating mode.

A. Hamiltonian and master equation

We consider a two-level atom with transition frequency ωA and described by the raising and lowering operators σ±.
The “bare” cavity mode frequency is ωC, and the two counterpropagating modes are assumed to be coupled (due,
e.g., to scattering off imperfections) with a strength h. A coherent probe field of frequency ωp in the input field ain

drives the mode a with strength Ep. In a frame rotating at the probe frequency, the Hamiltonian for the system can
be written in the form [S2, S4]

H = Δσ+σ− + Δ
(
a†a + b†b

)
+ h

(
a†b + b†a

)
+

(E∗
pa + Epa†)

+
(
g∗twa†σ− + gtwσ+a

)
+

(
gtwb†σ− + g∗twσ+b

)
, (2)
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FIG. S2: Schematic of microtoroid and fiber coupler.

where, specifically, gtw = gtw
0 f(r)eikx, and we assume the atom and cavity frequencies to be resonant, so that the

detuning Δ = ωA − ωp = ωC − ωp. Introducing dissipation, the system can be described by the master equation

ρ̇ = −i [H, ρ] + κ
(
2aρa† − a†aρ − ρa†a

)
+ κ

(
2bρb† − b†bρ − ρb†b

)
+

γ

2
(
2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

, (3)

where ρ is the density operator for the atom-cavity system, κ = κi + κex is the field decay rate for the cavity modes,
and γ = 2γ⊥ is the atomic spontaneous emission rate. For a fully quantum mechanical treatment of the system we
can compute numerical solutions to the master equation (3) using truncated number state bases for the cavity modes.

B. Normal mode representation

The Hamiltonian and master equation for the atom-cavity system can also be usefully expressed in terms of the
normal modes of the cavity, which are defined by the operator combinations

A =
a + b√

2
, B =

a − b√
2

. (4)

In particular, one can show that

ρ̇ = −i [H, ρ] + κ
(
2AρA† − A†Aρ − ρA†A

)
+ κ

(
2BρB† − B†Bρ − ρB†B

)
+

γ

2
(
2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

, (5)

with

H = Δσ+σ− + (Δ + h)A†A + (Δ − h)B†B +
1√
2

(E∗
pA + EpA†) +

1√
2

(E∗
pB + EpB†)

+ gA

(
A†σ− + σ+A

) − igB

(
B†σ− − σ+B

)
, (6)

where gA = g0f(ρ, z) cos(kx), gB = g0f(ρ, z) sin(kx), and g0 =
√

2gtw
0 . So, depending on the position of the atom,

coupling may occur predominantly (or even exclusively) to only one of the two normal modes.
In the absence of an atom (g0 = 0), the normal mode steady state amplitudes are readily derived as

αA = 〈A〉 = −
(

i√
2

) Ep

κ + i(Δ + h)
, αB = 〈B〉 = −

(
i√
2

) Ep

κ + i(Δ − h)
. (7)
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C. Input and output fields

From the theory of inputs and outputs in optical cavities [S5], the output field operators for the two cavity modes
are given in terms of the input and intracavity field operators as

aout(t) = −ain(t) +
√

2κex a(t) = −ain(t) +
√

κex [A(t) + B(t)] , (8)
bout(t) = −bin(t) +

√
2κex b(t) = −bin(t) +

√
κex [A(t) − B(t)] , (9)

where [ain(t), a†
in(t′)] = [aout(t), a

†
out(t′)] = δ(t − t′), and similarly [bin(t), b†in(t′)] = [bout(t), b

†
out(t′)] = δ(t − t′). The

particular forms of the probe driving terms in the Hamiltonian correspond to coherent amplitudes of the input fields
given by

〈ain〉 = − iEp√
2κex

, 〈bin〉 = 0. (10)

and corresponding input photon fluxes of

|〈ain〉|2 =
|Ep|2
2κex

, |〈bin〉|2 = 0 . (11)

IV. ADIABATIC ELIMINATION OF THE CAVITY MODES

For the situation in which the cavity field decay rate, κ, is much larger than the atom-field coupling strength, we
may use standard methods (see, e.g., [S6]) to adiabatically eliminate the cavity modes from the system dynamics.
The resulting master equation for the reduced density operator of the two-level atom, ρA, takes the form

ρ̇A = −i[HA, ρA] +
Γ
2

(
2σ−ρAσ+ − σ+σ−ρA − ρAσ+σ−)

, (12)

where

HA = ΔAσ+σ− +
(
Ω0σ

+ + Ω∗
0σ

−)
, (13)

with Ω0 = gAαA + igBαB ,

ΔA = Δ − g2
A(Δ + h)

κ2 + (Δ + h)2
− g2

B(Δ − h)
κ2 + (Δ − h)2

(14)

and

Γ = γ +
2g2

Aκ

κ2 + (Δ + h)2
+

2g2
Bκ

κ2 + (Δ − h)2
. (15)

The effective detuning ΔA is modified from Δ by light shifts due to the (off-resonant) coupling with the normal modes
at frequencies Δ ± h, while the parameter Γ gives the cavity-enhanced atomic decay rate. For the case Δ = 0, it
reduces to

Γ = γ +
2(g2

A + g2
B)κ

κ2 + h2
= γ +

2g2
0 |f(ρ, z)|2κ
κ2 + h2

, (16)

which we can write in the form Γ = γ(1 + 2C) with the cooperativity parameter

C =
g2
0 |f(ρ, z)|2κ
γ(κ2 + h2)

. (17)
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V. CAVITY-MODIFIED OPTICAL BLOCH EQUATIONS

From the master equation (12) we can derive effective optical Bloch equations for the two-level atom. Defining
σx = σ+ + σ−, σy = −i (σ+ − σ−), and σz = σ+σ− − σ−σ+, these equations take the form

˙〈σx〉 = −Γ
2
〈σx〉 − ΔA〈σy〉 − 2 Im{Ω0}〈σz〉, (18a)

˙〈σy〉 = −Γ
2
〈σy〉 + ΔA〈σx〉 − 2Re{Ω0}〈σz〉, (18b)

˙〈σz〉 = −Γ (1 + 〈σz〉) + 2 Im{Ω0}〈σx〉 + 2Re{Ω0}〈σy〉, (18c)

and have the steady state solutions

〈σx〉 = −2ΔARe{Ω0} − Γ Im{Ω0}
(Γ/2)2 + Δ2

A + 2|Ω0|2 , (19a)

〈σy〉 =
2ΔAIm{Ω0} + Γ Re{Ω0}
(Γ/2)2 + Δ2

A + 2|Ω0|2 , (19b)

〈σz〉 = − (Γ/2)2 + Δ2
A

(Γ/2)2 + Δ2
A + 2|Ω0|2 , (19c)

VI. OUTPUT FIELDS

To study the properties of the output fields, we need to compute moments of the output field operators, as defined
in (8,9). We can rewrite the expressions (8,9) in the forms

aout(t) = −〈ain〉 − a′
in(t) +

√
κex [A(t) + B(t)] =

iEp√
2κex

− a′
in(t) +

√
κex [A(t) + B(t)] , (20)

bout(t) = −〈bin〉 − b′in(t) +
√

κex [A(t) − B(t)] = −b′in(t) +
√

κex [A(t) − B(t)] , (21)

where a′
in(t) and b′in(t) are vacuum noise input operators. Quantum Langevin equations for the normal mode operators

A,B can be derived from the Hamiltonian (6), together with the input-output theory of [S5]. From these equations,
in the adiabatic regime of large κ, we can write

A(t) � αA − igA

κ + i(Δ + h)
σ−(t) +

√
2κ

κ + i(Δ + h)
Ain(t), (22)

B(t) � αB − gB

κ + i(Δ − h)
σ−(t) +

√
2κ

κ + i(Δ − h)
Bin(t), (23)

where Ain(t) and Bin(t) are independent, vacuum noise input operators. As far as the computation of normally-
ordered moments of the output fields (e.g., 〈a†

outaout〉 and 〈a†
outa

†
outaoutaout〉) are concerned, we can therefore make

the following substitutions in the correlation functions:

aout → α0 + α−σ−, bout → β0 + β−σ− (24)

corresponding to Eq. (1) of [S1], with

α0 =
iEp√
2κex

+
√

κex (αA + αB) , (25)

α− =
√

κex

[
− igA

κ + i(Δ + h)
− gB

κ + i(Δ − h)

]
, (26)

β0 =
√

κex (αA − αB) , (27)

β− =
√

κex

[
− igA

κ + i(Δ + h)
+

gB

κ + i(Δ − h)

]
. (28)
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So, in particular, for the output photon fluxes we have

〈a†
outaout〉 = |α0|2 + α∗

0α−〈σ−〉 + α0α
∗
−〈σ+〉 + |α−|2〈σ+σ−〉

= |α0|2 + Re{α∗
0α−}〈σx〉 + Im{α∗

0α−}〈σy〉 +
1
2
|α−|2 (1 + 〈σz〉) , (29)

〈b†outbout〉 = |β0|2 + β∗
0β−〈σ−〉 + β0β

∗
−〈σ+〉 + |β−|2〈σ+σ−〉

= |β0|2 + Re{β∗
0β−}〈σx〉 + Im{β∗

0β−}〈σy〉 +
1
2
|β−|2 (1 + 〈σz〉) , (30)

while for the second-order correlation functions we have

〈a†
outa

†
outaoutaout〉 = |α0|2

(|α0|2 + 2α∗
0α−〈σ−〉 + 2α0α

∗
−〈σ+〉 + 4|α−|2〈σ+σ−〉)

= |α0|2
[|α0|2 + 2Re{α∗

0α−}〈σx〉 + 2Im{α∗
0α−}〈σy〉 + 2|α−|2 (1 + 〈σz〉)

]
, (31)

〈b†outb
†
outboutbout〉 = |β0|2

(|β0|2 + 2β∗
0β−〈σ−〉 + 2β0β

∗
−〈σ+〉 + 4|β−|2〈σ+σ−〉)

= |β0|2
[|β0|2 + 2Re{β∗

0β−}〈σx〉 + 2Im{β∗
0β−}〈σy〉 + 2|β−|2 (1 + 〈σz〉)

]
. (32)

VII. TRANSMISSION SPECTRA

The normalized output photon fluxes in the forwards and backwards directions are defined by

TF =
〈a†

outaout〉
〈a†

outaout〉Δ�κ

=
〈a†

outaout〉
|Ep|2 /(2κex)

, TB =
〈b†outbout〉

〈a†
outaout〉Δ�κ

=
〈b†outbout〉

|Ep|2 /(2κex)
. (33)

For detunings |Δ| 	 κ, h (where α0 � 0) and weak driving (i.e., |Ω0| small), we can write

〈a†
outaout〉 � 1

2
|α−|2 (1 + 〈σz〉) � |α−|2|Ω0|2

(Γ/2)2 + Δ2
A

. (34)

For kx = π/2 as in Fig. 1 of [S1] we have |α−|2 � κexg
2
B/(κ2+h2), |Ω0|2 � g2

B |Ep|2/2(κ2+h2), ΔA � Δ+g2
Bh/(κ2+h2),

and Γ � γ + 2g2
Bκ/(κ2 + h2), so (34) describes a Lorentzian in Δ of full width Γ centered at Δ = −g2

Bh/(κ2 + h2).
For 2g2

Bκ/(κ2 + h2) 
 γ (i.e., large single-atom cooperativity C), the normalized maximum of this Lorentzian is
approximated by (κex/κ)2, which can approach unity at critical coupling for h 
 κi, as illustrated in Fig. 1B of [S1].

VIII. PHOTON STATISTICS

For resonant driving (Δ = 0), where α0 = 0, it follows immediately from (29) and (31) that

g
(2)
F (τ = 0) =

〈a†
outa

†
outaoutaout〉

〈a†
outaout〉2

= 0,

i.e., the light transmitted into aout is sub-Poissonian as a consequence of the photon blockade mechanism described
in [S1]. This result is illustrated numerically in Fig. 1D of [S1] (reproduced in Fig. S3 below) and demonstrated
experimentally in Fig. 3B of [S1] for Δ � 0.

In contrast, the light transmitted into bout in this regime is strongly bunched, as illustrated in Fig. S3 below.
With the assumption of weak driving, and for |Δ| 	 κ, h, one may show from the expressions given above for
〈b†outb

†
outboutbout〉 and 〈b†outbout〉 that, at a detuning Δ � −g2

Bh/(κ2 + h2) (where the central resonances in TF and TB

are located),

g
(2)
B (τ = 0) =

〈b†outb
†
outboutbout〉

〈b†outbout〉2
� 16h2κ2

(
κ4 + h4 − h2κ2

)
(κ4 − h4)2


 1 for h � κ. (35)

These contrasting behaviors of g
(2)
F (τ = 0) and g

(2)
B (τ = 0) at Δ � 0 form the basis of the photon turnstile. For

κ � κex (i.e., low intrinsic losses in the resonator), such that TF(Δ � 0) � 1 and TB(Δ � 0) � 0 (Figs. 1B,C of [S1]),
this turnstile can efficiently regulate the transmission of photons into the forward and backward propagating fields of
the fiber coupler.
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Returning briefly to g
(2)
F (τ = 0), we note from Fig. S3 that the sub-Poissonian nature of the forward light persists

over a reasonably wide range of detunings (about Δ = 0), and survives averaging over the azimuthal coordinate
φ = kx, as demonstrated in Fig. 1G of [S1]. For a certain range of detunings it is also apparent that strong bunching
can occur; the center of this range coincides with a distinct minimum in the transmitted forward flux (in the presence
of an atom) where, in particular, TF (Δ) � 0 (see Fig. 1B in [S1]). The extreme bunching is associated with a large
relative increase in the forward flux given the detection of a first photon in aout [S8].

While the curves in Fig. S3 are for the case of small intrinsic losses, i.e., κi 	 κ � κex � h, in Fig. S4 we plot the
corresponding results for the parameters actually realized in the experiment reported in [S1]. Note that the range of
Δ considered is reduced, given that in this case κ/2π = 165 MHz (cf. 255 MHz in Fig. S3). The large scale structure
of the curves differs somewhat from Fig. S3, but the key features of g

(2)
F (τ = 0) and g

(2)
B (τ = 0) at Δ � 0 relating to

the photon turnstile effect are still clearly evident. Note that in contrast to the sub-Poissonian nature of the resonant,
forward light, the backward light exhibits slight bunching on resonance.
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FIG. S3: Intensity correlation functions g
(2)
F (τ = 0) (left) and g

(2)
B (τ = 0) (right) as a function of probe detuning, for parameters

as in Figs. 1B-D of [S1], i.e., for (g0, κi, h, γ)/2π = (70, 5, 250, 1) MHz and κex = κcr
ex, with f(ρ, z) = 1 and azimuthal position

φ = kx = π/2.
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FIG. S4: Intensity correlation functions g
(2)
F (τ = 0) (left) and g

(2)
B (τ = 0) (right) as a function of probe detuning, for parameters

as realized in the experiment reported in [S1], i.e., (g0, κi, h, γ)/2π = (70, 75, 50, 5.2) MHz and κex/2π = κcr
ex/2π = 90 MHz,

with f(ρ, z) = 1 and azimuthal position φ = kx = π/2.
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For Δ = 0 the time-dependent correlation function, g
(2)
F (τ), can be computed straightforwardly from solutions to

the modified optical Bloch equations; in particular, one can show that [S7]

g
(2)
F (τ) =

1 + 〈σz(τ)〉ρA(0)=|0〉〈0|
2〈σ+σ−〉 ,

which, for weak driving (i.e., |Ω0| 	 Γ/2), reduces to

g
(2)
F (τ) �

(
1 − e−Γt/2

)2

.

This closely approximates the theoretical curve shown in Fig. 4 of [S1] and reaches a value of 0.5 at the time

τB = − 2
Γ

ln
(

1 − 1√
2

)
� 2.5

Γ
,

which we can use to characterize the time over which the photon blockade mechanism operates.
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