Additional file 2-Protocol: Preparation of [¹³C₁₁,¹⁵N]Indole-3-pyruvic acid (IPyA)

► *CRITICAL*: For absolute quantification of IPyA in biological samples, a known amount of $[{}^{13}C_{11}, {}^{15}N]$ IPyA is added to each sample as the internal standard, and $[{}^{13}C_{11}, {}^{15}N_1]$ IPyA has to be synthesized just prior to or no more than 2 days before use.

Materials:

- 50 mM Phosphate buffer (pH 8.0), made from sodium phosphate monobasic (NaH₂PO₄, Sigma-Aldrich, cat. no. S8282) and sodium phosphate dibasic (Na₂HPO₄; Sigma-Aldrich, cat. no. S7907)
- 0.2 mg/ml Transaminase (Sigma-Aldrich, cat. no. T7684) in 50 mM phosphate buffer
 ► *CRITICAL*: store as 100 µl aliquots at -20 °C. Use one aliquot for each reaction.
- [¹³C₁₁,¹⁵N₂]L- Trp (Cambridge Isotope Laboratories, cat. no. CNLM-2475)
- α-Ketoglutarate (Sigma-Aldrich, cat. no. K-1750)
- 5 mM Pyridoxal 5'-phosphate (PLP; Sigma-Aldrich, cat. no. 82870)
- 10 mM Ascorbic acid (Sigma-Aldrich, cat. no. A4544)
- 25% Phosphoric acid (PA) (ACS grade; Fisher, cat. no. A242)
- Indole-3-pyruvic acid (Sigma-Aldrich, cat. no. 17017)
 - ► *CRITICAL*: the compound is sensitive to oxygen. Keep container tightly closed and store in a dry place at -20 °C.
- Ethyl acetate
- 50% Isopropanol

Synthesis of [¹³C₁₁,¹⁵N]IPyA using an enzyme-catalyzed transamination reaction

1. Let one aliquot of transaminase solution thaw on ice.

2. In 1 ml of 50 mM phosphate buffer (pH 8.0), add 1 mg $[{}^{13}C_{11}, {}^{15}N_2]$ Trp and 1 mg α -ketoglutarate.

- 3. Add 20 µl 5 mM PLP and one aliquot of transaminase solution.
- 4. Mix the solution gently by inverting the tube several times.
- 5. Incubate the reaction mixture at 37 °C in the dark for 3 h.

6. Add 1 ml 10 mM ascorbic acid and 50 μ l 25% PA to bring the pH to 2.5.

7. Add 600 μ l ethyl acetate to partition the synthesized [¹³C₁₁,¹⁵N]IPyA.

8. Collect ethyl acetate (upper layer) into a 2-ml amber glass vial.

9. Add another 600 μ l ethyl acetate to partition, and collect the ethyl acetate into the same amber glass vial.

10. Evaporate ethyl acetate to complete dryness using a gentle N_2 gas stream in a sand bath heated to 55 °C.

11. Re-suspend the $[{}^{13}C_{11}, {}^{15}N]$ IPyA in 1 ml 50% isopropanol. The product can be verified by GC-MS using a "Full Scan" mode after NaBH₄ derivatization (see the procedure in the main text). An example spectral scan is shown in **Additional Figure 2**, which illustrates the identity and purity of the labeled compound.

12. Cap the vial and store the solution at -20 °C.

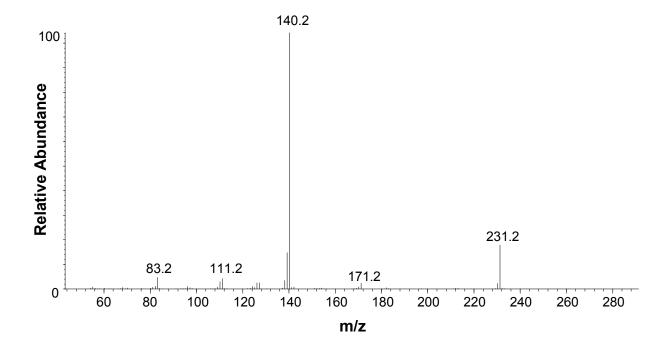
13. The yield of $[{}^{13}C_{11}, {}^{15}N]$ IPyA is about 0.1 mg.

► *CRITICAL*: The concentration of the $[{}^{13}C_{11}, {}^{15}N]$ IPyA solution has to be determined immediately before use (Step 2 in "Procedure").

Determine the concentration of [¹³C₁₁,¹⁵N]IPyA solution by reverse isotope dilution

14. Freshly prepare 0.1 mg/ml unlabeled IPyA in 50% isopropanol.

15. Freshly prepare 20 mg/ml NaB²H₄ in 0.3 N NaOH.


16. In a 0.5-ml microcentrifuge tube, accurately add 5 μ l each of unlabeled IPyA and synthesized [¹³C₁₁,¹⁵N]IPyA solution.

- CRITICAL STEP: for the ease of calculation in Step 15, it is recommended to add equal volumes of IPyA and [¹³C₁₁,¹⁵N]IPyA solutions.
- 17. Add 8 μ l NaB²H₄ solution and mix well.
- 18. Incubate the tube at 37 °C for 30 min.
- 19. Add 5 μ l 25% PA to acidify the mixture and consume the residual NaB²H₄.
- 20. Add 200 µl water and mix well.

- 21. Extract the reduced IPyA (now ILA) by adding 100 µl ethyl acetate to partition.
- 22. Collect the ethyl acetate extract in a 2-ml clear glass vial.
- 23. Add 100 µl methanol to the vial.
- 24. Methylate the sample by filling the vial with ethereal diazomethane.
- 25. Evaporate the solvents until complete dryness using a N₂ gas stream.
- 26. Re-suspend the compounds in 1 ml of ethyl acetate.

27. Analyze the sample using GC-MS/MS under SRM mode. For unlabeled methyl-ILA, the transition of parent ion m/z 220 to the product ion m/z 130 is monitored; for methyl-[$^{13}C_{11}$, ^{15}N]ILA, the transition of parent ion m/z 232 to the product ion m/z 140 is monitored.

28. The ion abundance ratio of m/z 130 over m/z 140 equals the ratio of IPyA concentration over $[{}^{13}C_{11}, {}^{15}N]$ IPyA concentration in the initial sample.

Additional Figure 2 Analyses of $[{}^{13}C_{11}, {}^{15}N]IPyA$ internal standards. A full-scan mass spectrum showing ions generated from Me- $[{}^{13}C_{11}, {}^{15}N]ILA$.