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The validity of the rules given in previous papers for the solution of problems in quantum electrodynamics
is established. Starting with Fermi’s formulation of the field as a set of harmonic oscillators, the effect of
the oscillators is integrated out in the Lagrangian form of quantum mechanics. There results an expression
for the effect of all virtual photons valid to all orders in €?/%c. It is shown that evaluation of this expression
as a power series in ¢2/kc gives just the terms expected by the aforementioned rules.

In addition, a relation is established between the amplitude for a given process in an arbitrary unquantized
potential and in a quantum electrodynamical field. This relation permits a simple general statement of

the laws of quantum electrodynamics.

A description, in Lagrangian quantum-mechanical form, of particles satisfying the Klein-Gordon equation
is given in an Appendix. It involves the use of an extra parameter analogous to proper time to describe

the trajectory of the particle in four dimensions.

A second Appendix discusses, in the special case of photons, the problem of finding what real processes

are implied by the formula for virtual processes.

Problems of the divergences of electrodynamics are not discussed.

1. INTRODUCTION

N two previous papers' rules were given for the

calculation of the matrix element for any process in
electrodynamics, to each order in ¢%/%c. No complete
proof of the equivalence of these rules to the conven-
tional electrodynamics was given in these papers.
Secondly, no closed expression was given valid to all
orders in ¢?/#c. In this paper these formal omissions
will be remedied.?

In paper II it was pointed out that for many prob-
lems in electrodynamics the Hamiltonian method is not
advantageous, and might be replaced by the over-all
space-time point of view of a direct particle interaction.
It was also mentioned that the Lagrangian form of
quantum mechanics® was useful in this connection. The
rules given in paper II were, in fact, first deduced in
this form of quantum mechanics. We shall give this
derivation here.

The advantage of a Lagrangian form of quantum
mechanics is that in a system with interacting parts it
permits a separation of the problem such that the
motion of any part can be analyzed or solved first, and
the results of this solution may then be used in the
solution of the motion of the other parts. This separa-
tion is especially useful in quantum electrodynamics
which represents the interaction of matter with the
electromagnetic field. The electromagnetic field is an
especially simple system and its behavior can be
analyzed completely. What we shall show is that the
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net effect of the field is a delayed interaction of the
particles. It is possible to do this easily only if it is not
necessary at the same time to analyze completely the
motion of the particles. The only advantage in our
problems of the form of quantum mechanics in C is to
permit one to separate these aspects of the problem.
There are a number of disadvantages, however, such as
a lack of familiarity, the apparent (but not real)
necessity for dealing with matter in non-relativistic
approximation, and at times a cumbersome mathe-
matical notation and method, as well as the fact that
a great deal of useful information that is known about
operators cannot be directly applied.

It is also possible to separate the field and particle
aspects of a problem in a manner which uses operators
and Hamiltonians in a way that is much more familiar.
One abandons the notation that the order of action of
operators depends on their written position on the paper
and substitutes some other convention (such that the
order of operators is that of the time to which they
refer). The increase in manipulative facility which
accompanies this change in notation makes it easier to
represent and to analyze the formal problems in electro-
dynamics. The method requires some discussion, how-
ever, and will be described in a succeeding paper. In
this paper we shall give the derivations of the formulas
of II by means of the form of quantum mechanics
given in C.

The problem of interaction of matter and field will be
analyzed by first solving for the behavior of the field in
terms of the coordinates of the matter, and finally
discussing the behavior of the matter (by matter is
actually meant the electrons and positrons). That is to
say, we shall first eliminate the field variables from the
equations of motion of the electrons and then discuss
the behavior of the electrons. In this way all of the
rules given in the paper II will be derived.

Actually, the straightforward elimination of the field
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variables will lead at first to an expression for the
behavior of an arbitrary number of Dirac electrons.
Since the number of electrons might be infinite, this
can be used directly to find the behavior of the electrons
according to hole theory by imagining that nearly all
the negative energy states are occupied by electrons.
But, at least in the case of motion in a fixed potential,
it has been shown that this hole theory picture is
equivalent to one in which a positron is represented as
an electron whose space-time trajectory has had its
time direction reversed. To show that this same picture
may be used in quantum electrodynamics when the
potentials are not fixed, a special argument is made
based on a study of the relationship of quantum electro-
dynamics to motion in a fixed potential. Finally, it is
pointed out that this relationship is quite general and
might be used for a general statement of the laws of
quantum electrodynamics.

Charges obeying the Klein-Gordon equation can be
analyzed by a special formalism given in Appendix A.
A fifth parameter is used to specify the four-dimensional
trajectory so that the Lagrangian form of quantum
mechanics can be used. Appendix B discusses in more
detail the relation of real and virtual photon emission.
An equation for the propagation of a self-interacting
electron is given in Appendix C.

In the demonstration which follows we shall restrict
ourselves temporarily to cases in which the particle’s
motion is non-relativistic, but the transition of the final
formulas to the relativistic case is direct, and the proof
could have been kept relativistic throughout.

The transverse part of the electromagnetic field will
be represented as an assemblage of independent har-
monic oscillators each interacting with the particles,
as suggested by Fermi.* We use the notation of Heitler.®

2. QUANTUM ELECTRODYNAMICS IN
LAGRANGIAN FORM

The Hamiltonian for a set of non-relativistic particles
interacting with radiation is, classically, H=H,+H;
+H+H,, where Hy+Hr=3 , 3m, (pn—e.A"(xX,))?
is the Hamiltonian of the particles of mass m,, charge
e,, coordinate X, and momentum p, and their inter-
action with the transverse part of the electromagnetic
field. This field can be expanded into plane waves

Ar(x)= (87 x[ei(gr® cos(K-x)+gx® sin(K-x))
+e2(gx® cos(K-x)+gx® sin(K-x))] (1)

where e; and e, are two orthogonal polarization vectors
at right angles to the propagation vector K, magnitude
k. The sum over K means, if normalized to unit volume,
1 rd3K/8n3%, and each ¢gg” can be considered as the
coordinate of a harmonic oscillator. (The factor § arises
for the mode corresponding to K and to —K is the

4 E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
5 W. Heitler, The Quantum Theory of Radiation, second edition
(Oxford University Press, London, 1944).
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same.) The Hamiltonian of the transverse field repre-
sented as oscillators is

2 2 ((pr)*+ £ (qx)?)

1
Ht'n':_
2K r=1

where px(™ is the momentum conjugate to gg(. The
longitudinal part of the field has been replaced by the
Coulomb interaction,®

Hc= %Zn Zm enem/rnm

where 7,.2= (X,—Xn)%. As is well known,* when this
Hamiltonian is quantized one arrives at the usual
theory of quantum electrodynamics. To express these
laws of quantum electrodynamics one can equally well
use the Lagrangian form of quantum mechanics to
describe this set of oscillators and particles. The
classical Lagrangian equivalent to this Hamiltonian is
L=L,+ L+ LA+L, where

Lp=%3n maX 2 (2a)
Li=3"r exX n- A (X,) (2b)
Lei=32x 2.((¢x")*—k(gg™)*) (2c)
Le=—%>"12 m €nm/Tmn. (2d)

When this Lagrangian is used in the Lagrangian
forms of quantum mechanics of C, what it leads to is,
of course, mathematically equivalent to the result of
using the Hamiltonian H in the ordinary way, and is
therefore equivalent to the more usual forms of quantum
electrodynamics (at least for non-relativistic particles).
We may, therefore, proceed by using this Lagrangian
form of quantum electrodynamics, with the assurance
that the results obtained must agree with those obtained
from the more usual Hamiltonian form.

The Lagrangian enters through the statement that
the functional which carries the system from one state
to another is exp(#.S) where

S= f Ldt=S,+Sr+S.+S. 3)

The time integrals must be written as Riemann sums
with some care; for example,

Sr=2 | exa(t)- A (x,(2))dt 4)

becomes according to C, Eq. (19)

Sr=2"n2i5€n(Xn, it1— X0, ) (A (Xn, 1402) +A (X0, 5)) (5)

so that the velocity X', ; which multiplies A (x,,.) is
X i= 56 (Xn, 41— Xn, ) 567 (X0, i—Xnim1).  (6)

6 The term in the sum for n=m is obviously infinite but must
be included for relativistic invariance. Our problem here is to
re-express the usual (and divergent) form of electrodynamics in
the form given in II. Modifications for dealing with the diver-
}glences are discussed in II and we shall not discuss them further
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In the Lagrangian form it is possible to eliminate the
transverse oscillators as is discussed in C, Section 13.
One must specify, however, the initial and final state of
all oscillators. We shall first choose the special, simple
case that all oscillators are in their ground states initially
and finally, so that all photons are virtual. Later we
do the more general case in which real quanta are
present initially or finally. We ask, then, for the ampli-
tude for finding no quanta present and the particles in
state x at time ¢”, if at time ¢ the particles were in
state ¥, and no quanta were present.

The method of eliminating field oscillators is de-
scribed in Section 13 of C. We shall simply carry out the
elimination here using the notation and equations of C.
To do this, for simplicity, we first consider in the next
section the case of a particle or a system of particles
interacting with a single oscillator, rather than the
entire assemblage of the electromagnetic field.

3. FORCED HARMONIC OSCILLATOR

We consider a harmonic oscillator, coordinate g,
Lagrangian L=3}(¢’—w’¢?) interacting with a particle
or system of particles, action S,, through a term in the
Lagrangian ¢(t)y(¢) where v(f) is a function of the
coordinates (symbolized as x) of the particle. The
precise form of y(t) for each oscillator of the electro-
magnetic field is given in the next section. We ask for
the amplitude that at some time ¢’ the particles are in
state xy+ and the oscillator is in, say, an eigenstate m
of energy w(m-+%) (units are chosen such that z=c=1)
when it is given that at a previous time ¢’ the particles
were in state ¥ and the oscillator in #. The amplitude
for this is the transition amplitude [see C, Eq. (61)]

(Xt @m| 1| e @n)Sp+So+81
- f f X ¥ () o (qur) expi(Syp+-Sot-S1)

ﬁﬁn(qt’)‘//t' (x,:)dxwdxg'dm“dqg' li(t) j)(I(t) (7)

where x represents the variables describing the particle,
S, Is the action calculated classically for the particles
for a given path going from coordinate xy at ¢’ to xu-
at ¢/, Sy is the action S 3(§®— w?¢?)dt for any path of
the oscillator going from ¢, at ¢’ to g at ¢”/, while

Si= f O ()i, ®)

the action of interaction, is a functional of both ¢(z)
and «(f), the paths of oscillator and particles. The
symbols Dx(f) and Dg(f) represent a summation over
all possible paths of particles and oscillator which go
between the given end points in the sense defined in C,
Eq. (9). (That is, assuming time to proceed in infini-
tesimal steps, ¢, an integral over all values of the
coordinates x and ¢ corresponding to each instant in
time, suitably normalized.)
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The problem may be broken in two. The result can
be written as an integral over all paths of the particles
only, of (expiS,)-Gma:

(Xt @m| 1| W @aysp+So+81={x0| Gmn|¥e')5p  (9)

where G, is a functional of the path of the particles
alone (since it depends on y(¢)) given by

Gmn= <¢m ¢n>
So

= [ n*(aue) expiSu+-1) pnlar)dgedqu Do)

expi f (O ()l

-1
= f en*(q;) expieX [ F€72(qir1—¢:)* — 3wqd +qiv:]
=0

* oa(go)dgoadgqia7dg,- - -a~'dg; (10)

where we have written the Dg(f) out explicitly (and
have set a= (2wie)}, t"—t'=je, gy =qo, g =q;). The
last form can be written as

Gon= f on* (@R £ 4o, V) onlgo)dgedg;  (11)

where £(gj, ¢’ ; qo, t') is the kernel [as in I, Eq. (2)] for
a forced harmonic oscillator giving the amplitude for
arrival at ¢; at time ¢’ if at time ¢’ it was known to be
at go. According to C it is given by

k(gi, 15 o, )= 2miw™ sinw (¢’ —1'))
XexpiQ(g;, 5 90, 1) (12)

where Q(gj, "' go, ¢') is the action calculated along the
classical path between the end points g;, £”; qo, ¢/, and
is given explicitly in C.7 It is

7 That (12) is correct, at least insofar as it depends on go, can
be seen directly as follows. Let §(f) be the classical path which
satisfies the boundary condition ¢(#) =go, §(¢’) =¢;. Then in the
integral defining % replace each of the variables ¢; by g;= g+,
(g:=q(%:)), that is, use the displacement y; from the classical
path ¢ as the coordinate rather than the absolute position.
With the substitution ¢g;=g;+y; in the action

SotSi= [ G- hog+rod

= [ Q=3 +vpdr+ G- dutsar

the terms linear in y drop out by integrations by parts using the
equation of motion §=—w?§++(#) for the classical path, and the
boundary conditions y(#)=y(#')=0. That this should occur
should occasion no surprise, for the action functional is an ex-
tremum at g(¢)=q(¢) so that it will only depend to second order
in the displacements y from this extremal orbit g(f). Further,
since the action functional is quadratic to begin with, it cannot
depend on y more than quadratically. Hence

Se+S1=0+ [ G—detyt)ar
so that since dg;=dy;,
k(giy t”; qo, t’)=exp(iQ)f exp(if%(yz—w’y”)di Dy ().

The factor following the expz(Q is the amplitude for a free oscillator
to proceed from y=0 at ¢=¢ to y=0 at /=¢" and does not there-
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= M[ (g +90°) cosw(t”—#)—2¢590
o’ —

g

29; .
+— v(t) sinw(t—¢')dt

w &y

’

t
2 At at
_Z f f (O)y(s) sinw(t'—1)
Wy

Xsinw(s— t')dsdt]. (13)

2q0 ‘/I
+——f () sinw(t"’' —1t)dt
w

The solution of the motion of the oscillator can now
be completed by substituting (12) and (13) into (11)
and performing the integrals. The simplest case is for
m, n=0 for which case?

@0(q0) = (w/7)* exp(—$wqo?) exp(—}iwt’)

so that the integrals on ¢y, ¢; are just Gaussian integrals.
There results

1 t' t
Goo=exp(—5w“f fexp(——iw(t—-s))y(t)'y(s)dtds)

a result of fundamental importance in the succeeding
developments. By replacing ¢—s by its absolute value
|t—s| we may integrate both variables over the entire
range and divide by 2. We will henceforth make the
results more general by extending the limits on the
integrals from — e to 4. Thus if one wishes to
study the effect on a particle of interaction with an
oscillator for just the period ¢ to ¢’ one may use

1 e 0
Go=¢€x (——f f
00 p 1o

—a0 " —00

Xexp(—iw|t—s| )7(t)'y(s)dtds) (14)

imagining in this case that the interaction y(¢) is zero
outside these limits. We defer to a later section the
discussion of other values of m, n.

Since Gy is simply an exponential, we can write it as
exp(¢I), consider that the complete ‘‘action” for the
system of particles is S=S,+7 and that one computes
transition elements with this ‘“action” instead of S,

fore depend on g, g;, or ¥(¢), being a function only of #'—¢'.
[That it is actually (2miw™ sinw(¢’—#))~* can be demonstrated
either by direct integration of the y variables or by using some
normalizing property of the kernels %, for example that Goo for
the case y=0 must equal unity.] The expression for Q given in
C on page 386 is in error, the quantities go and ¢; should be
interchanged.

8Tt is most convenient to define the state ¢, with the phase
factor exp[—iw(n+3%)#] and the final state with the factor
exp[—iw(m+3)¢"] so that the results will not depend on the
particular times #, ¢/ chosen.
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(see C, Sec. 12). The functional 7, which is given by

I=Yigt f f exp(—iw|t—s| )y (s)y()dsdt  (15)

is complex, however ; we shall speak of it as the complex
action. It describes the fact that the system at one
time can affect itself at a different time by means of a
temporary storage of energy in the oscillator. When
there are several independent oscillators with different
interactions, the effect, if they are all in the lowest state
at ¢ and ¢, is the product of their separate Gy contri-
butions. Thus the complex action is additive, being
the sum of contributions like (15) for each of the
several oscillators.

4. VIRTUAL TRANSITIONS IN THE
ELECTROMAGNETIC FIELD

We can now apply these results to eliminate the
transverse field oscillators of the Lagrangian (2). At
first we can limit ourselves to the case of purely virtual
transitions in the electromagnetic field, so that there is
no photon in the field at ¢ and #’. That is, all of the
field oscillators are making transitions from ground
state to ground state.

The g™ corresponding to each oscillator gg™ is
found from the interaction term L; [Eq. (2b)], substi-
tuting the value of A (x) given in (1). There results,
for example,

Y@= (8m)¥% . en(e1-x,) cos(K-x,)
7K<3) = (81!') iZ n en(el X n) Sin(K * Xn)

the corresponding results for yg®, yx® replace e; by e..
The complex action resulting from oscillator of
coordinate gg is therefore

(16)

8i
IK(I)=ZI;Z ffenemexp(—iklt—si)(el-x',,(t))

X (€1 X m(s)) - cos(K-x,(2)) cos(K-x,(s))dsdt.

The term /x® exchanges the cosines for sines, so in
the sum /W4 7x® the product of the two cosines,
cosd -cosB is replaced by (cos4 cosB+sind sinB) or
cos(4—B). The terms Ik®4Ik® give the same
result with e, replacing e;. The sum (e;-V)(e; V')
+(ez-V)(e:- V) is (V-V)—k2(K-V)(K-V’) since it is
the sum of the products of vector components in two
orthogonal directions, so that if we add the product in
the third direction (that of K) we construct the com-
plete scalar product. Summing over all K then, since
> k=% /d*K/87* we find for the total complex action
of all of the transverse oscillators,

v
I,=i> dtf dsfenem exp(—ik|t—s]|)
n m g t’

XX 2(®) - X' m(s) = k(K- %0 () (K- X' (s)) ]

-cos(K- (x.(8) —xn(s5)))d*K/872k. (17)



444 R. P.

This is to be added to .S,+.S. to obtain the complete
action of the system with the oscillators removed.

The term in (K-x",(#))(K-x',(s)) can be simplified
by integration by parts with respect to ¢ and with
respect to s [note that exp(—4k|¢—s|) has a discon-
tinuous slope at {=s, or break the integration up into
two regions]. One finds

Itr=R—Ic+Itransient (18)
where
tll tl/
=—iy dtf dsfe,.em
nomSy t
Xexp(—ik|t—s|)(1—=x"u() - X m(s))
-cosK- (x,(8) —x.(s))d*K/8n2%k  (19)
and
"I
[o=—22" dtfe,,em
n m t
X cosK- (x,() — x,(£))d*K/4x2k2  (20)

comes from the discontinuity in slope of exp(—ik|/—s|)
at t=s. Since

f cos(K- R)@*K /dn2k= f " o)1 sin(kr)di/ = (2)

this term 7. just cancels the Coulomb interaction term
S.=JS L.dt. The term

@K
I transient = —Zzenemf

n m 4r7l’2k2

X{f [exp(—ik(t''—1)) cosK- (x.(t") — xu(t))

+exp(—k(t—1)) cosK- (x.(t) —x.(#')) ]d!
+(2k) 14 cosK- (x,(t'") —xn(t'"))
+cosK: (x,(t") —xn(t))

—2exp(—1k(’'—1)) cosK- (x,(#')—x.({"))];. (21)

is one which comes from the limits of integration at #
and ¢, and involves the coordinates of the particle at
either one of these times or the other. If # and ¢ are
considered to be exceedingly far in the past and future,
there is no correlation to be expected between these
temporally distant coordinates and the present ones,
so the effects of Itransient Will cancel out quantum
mechanically by interference. This transient was pro-
duced by the sudden turning on of the interaction of
field and particles at ¢ and its sudden removal at ¢’.
Alternatively we can imagine the charges to be turned
on after ¢’ adiabatically and turned off slowly before "
(in this case, in the term L., the charges should also be
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considered as varying with time). In this case, in the
limit, Ziransient 15 zero.” Hereafter we shall drop the
transient term and consider the range of integration of
¢t to be from — o to + o, imagining, if one needs a
definition, that the charges vary with time and vanish
in the direction of either limit.

To simplify R we need the integral

J=fexp(—ik|t|)cos(K~R)d3K/81r'3k

={ exp(—ik|t|) sin(kr)dk/2mr (22)

*’o0

where 7 is the length of the vector R. Now

fw exp(—ikx)dk= 1313 (—i(x—1e)™)
’ = —ix7 1+ 7w6(x) =m(x)

where the equation serves to define 8,(x) [as in II,
Eq. (3)]. Hence, expanding sin(kr) in exponentials find

J=—= ) (([t] =)= (1| +1)7)
+ (4ir)7(3([¢| —r)—8([¢]+7))

=—Q2m)7E—r) "+ Q)78 —1)
=—3i8,(F—r) (23)

where we have used the fact that

8(8—r)=(2r)7' (| ¢] —=r)+6([¢] +7))

and that 8(|¢|+7)=0 since both [¢| and r are neces-
sarily positive.
Substitution of these results into (19) gives finally,

1 o a+®
R=—5§Emf_w f entn(1=X a(t) X ()

XL ((F—5)2— (X2 () —xm(s))?)dtds. (24)

The total complex action of the system is then!®
S+ R. Or, what amounts to the same thing; to obtain

9 One can obtain the final result, that the total interaction is
just R, in a formal manner starting from the Hamiltonian from
which the longitudinal oscillators have not yet been eliminated.
There are for each K and cos or sin, four oscillators ¢,x corre-
sponding to the three components of the vector potential (u=1,
2, 3) and the scalar potential (u=4). It must then be assumed
that the wave functions of the initial and final state of the K
oscillatorsis the function (k/r) exp[— 3k(¢;x*+¢.k*>+ ;8% — ¢.x2) -
The wave function suggested here has only formal significance,
of course, because the dependence on ¢, is not square integrable,
and cannot be normalized. If each oscillator were assumed
actually in the ground state, the sign of the ¢,x term would be
changed to positive, and the sign of the frequency in the contri-
bution of these oscillators would be reversed (they would have
negative energy).

10 The classical action for this problem is just Sp+R’ where R’
is the real part of the expression (24). In view of the generalization
of the Lagrangian formulation of quantum mechanics suggested
in Section 12 of C, one might have anticipated that R would have
been simply R’. This corresponds, however, to boundary condi-
tions other than no quanta present in past and future. It is
harder to interpret physically. For a system enclosed in a light
tight box, however, it appears likely that both R and R’ lead to
the same results.
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transition amplitudes including the effects of the field
we must calculate the transition element of exp(iR):

(25)

under the action S, of the particles, excluding inter-
action. Expression (24) for R must be considered to be
written in the usual manner as a Riemann sum and the
expression (25) interpreted as defined in C [Eq. (39)].
Expression (6) must be used for x', at time ¢.
Expression (25), with (24), then contains all the
effects of virtual quanta on a (at least non-relativistic)
system according to quantum electrodynamics. It con-
tains the effects to all orders in €?/%c in a single expres-
sion. If expanded in a power series in €?/%c, the various
terms give the expressions to the corresponding order
obtained by the diagrams and methods of II. We
illustrate this by an example in the next section.

(xv | expiR|[ )8,

5. EXAMPLE OF APPLICATION OF EXPRESSION (25)

We shall not be much concerned with the non-
relativistic case here, as the relativistic case given below
is as simple and more interesting. It is, however, very
similar and at this stage it is worth giving an example
to show how expressions resulting from (25) are to be
interpreted according to the rules of C. For example,
consider the case of a single electron, coordinate Xx,
either free or in an external given potential (contained
for simplicity in Sp, not in'* R). Its interaction with
the field produces a reaction back on itself given by R
as in (24) but in which we keep only a single term
corresponding to m=mn. Assume the effect of R to be
small and expand exp(iR) as 14iR. Let us find the
amplitude at time ¢ of finding the electron in a state
¢ with no quanta emitted, if at time ¢’ it was in the
same state. It is

2z 1+iR|¢t'>Sp=<‘//t"|1|1//t’>Sp+i<‘Pt"[RWt'>Sp

where (yu|1|¢u)s,=exp[—iE('—¢#)] if E is the
energy of the state, and

el Rlwsy=—te [t [ s =x0x.)

X84 ((t—=5)— (x:—X,)%) [ Yi)Sp.

Here x,=x(s), etc. In (26) we shall limit the range of
integrations by assuming s<t, and double the result.
The expression within the brackets ( )s, on the
right-hand side of (26) can be evaluated by the methods
described in C [Eq. (29)]. An expression such as (26)

(26)

11 One can show from (25) how the correlated effect of many
atoms at a distance produces on a given system the effects of an
external potential. Formula (24) yields the result that this
potential is that obtained from Liénard and Wiechert by retarded
waves arising from the charges and currents resulting from the
distant atoms making transitions. Assume the wave functions
x and ¢ can be split into products of wave functions for system
and distant atoms and expand exp(iR) assuming the effect of any
individual distant atom is small. Coulomb potentials arise even
from nearby particles if they are moving slowly.
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can also be evaluated directly in terms of the propaga-
tion kernel K(2,1) [see I, Eq. (2)] for an electron
moving in the given potential.

The term x’,-X; in the non-relativistic case produces
an interesting complication which does not have an
analog for the relativistic case with the Dirac equation.
We discuss it below, but for a moment consider in
further detail expression (26) but with the factor
(1—x',-x",) replaced simply by unity.

The kernel K(2,1) is defined and discussed in L
From its definition as the amplitude that the electron
be found at X, at time f,, if at ¢, it was at x;, we have

K(Xz, tz, X1, t1)=<6(X—X2) tgl 1 | 6(X—‘X1)t1>3p (27)

that is, more simply K (2, 1) is the sum of exp(sS,) over
all paths which go from space time point 1 to 2.

In the integrations over all paths implied by the
symbol in (26) we can first integrate over all the x;
variables corresponding to times #; from ¢ to s, not
inclusive, the result being a factor K(x,, s; Xy, ) ac-
cording to (27). Next we integrate on the variables be-
tween s and £ not inclusive, giving a factor K(x,, {; Xs, $)
and finally on those between ¢ and ¢’ giving
K(x,, ;x4 t). Hence the left-hand term in (26)
excluding the x*,-x’, factor is

—e2fdtfdsf¢*(x,~, YK Xy, 875 X4, £)80((8—5)?

— (xt_XS>2) 'K(xly ta xsy S)K(XS) S; xt" t,)
XY (e, )% dixd*x,d% (28)

which in improved notation and in the relativistic case
is essentially the result given in IL

We have made use of a special case of a principle
which may be stated more generally as

(x| F(X1, 15 Xa, b5 =+ X, L) [ Yr)Sp
= fx*(x,n)K(xln, 15Xy, ) K(Xy, b1y Xa, 82) - - -

X K (Xi—1, bi—1; Xy te) K (Xny tr; Xory 8)
X, L)W (Xe)
X 3% d*%,d%%s - - - d3Xd3X 4

'F(X1, b Xa, ba;
(29)

where F is any function of the coordinate x; at time ¢,
X2 at £ up to X, I, and, it is important to notice, we
have assumed ¢/>#> 6> - 5> 1.

Expressions of higher order arising for example from
R? are more complicated as there are quantities referring
to several different times mixed up, but they all can be
interpreted readily. One simply breaks up the ranges of
integrations of the time variables into parts such that
in each the order of time of each variable is definite.
One then interprets each part by formula (29).
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As a simple example we may refer to the problem of
the transition element
)

<X:"

arising, say, in the cross term in U and V in an ordinary
second order perturbation problem (disregarding radia-
tion) with perturbation potential U(x, #)+V(x,?). In
the integration on s and ¢ which should include the
entire range of time for each, we can split the range of
s into two parts, s<f and s>¢. In the first case, s<¢,
the potential V acts earlier than U, and in the other
range, vice versa, so that
vy

<Xz~ fU(x,, t)dth(xs, s)ds
1244 t

=f dtf dsfx*(xw)K(xw, t”; Xy, l)
v 1%

X U(x, )K (X4, 5 X6, $)V (X5, $)

fU(x(t), t)dtf V(x(s), s)ds

<K (Xs, 85 X¢r, V)Y (X0 )d3% 0 d3X,d3X 3K

tll tll
t t

X V(x«” S)K(X,, $5 Xy t) U(Xh t)

- K(xy, t; Xgr, )Y (Xer)B*Xpd3%,d3%,8%%, - (30)
so that the single expression on the left is represented
by two terms analogous to the two terms required in
analyzing the Compton effect. It is in this way that
the several terms and their corresponding diagrams
corresponding to each process arise when an attempt
is made to represent the transition elements of single
expressions involving time integrals in terms of the
propagation kernels K.

It remains to study in more detail the term in (26)
arising from x'(£)-x'(s) in the interaction. The interpre-
tation of such expressions is considered in detail in C,
and we must refer to Eqgs. (39) through (50) of that
paper for a more thorough analysis. A similar type of
term also arises in the Lagrangian formulation in
simpler problems, for example the transition element

e 5

arising say, in the cross term in A and B in a second-
order perturbation problem for a particle in a per-
turbing vector potential A(x,#)+B(x,?). The time
integrals must first be written as Riemannian sums, the
velocity (see (6)) being replaced by x =€ !(Xiy1—X;)
+3ei(x;—x;-1) so that we ask for the transition

f x()-A(), )it f x(5)-B(x(s), 5)ds
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element of

ZZI} (Xip1—%) +3(Xi—xi21) ]-A(x,, 22)

X[F(xjp1—x;) +3(x;—x;-1)]-B(x;, £,).  (31)
In C it is shown that when converted to operator
notation the quantity (x;—1—x;)/e is equivalent (nearly,
see below) to an operator,

(xip1—x:)/e>i(Hx—xH) (32)

operating in order indicated by the time index ¢ (that
is after x,’s for /<1 and before all x,’s for />17). In non-
relativistic mechanics 7(Hx—xH) is the momentum
operator p. divided by the mass m. Thus in (31) the
expression [3(Xiy1—X:)+3(Xi—x;_1) |- A(x;, ¢;) becomes
e(p-A+A-p)/2m. Here again we must split the sum
into two regions j<i and j>¢ so the quantities in the
usual notation will operate in the right order such that
eventually (31) becomes identical with the right-hand
side of Eq. (30) but with U(x,,?) replaced by the
operator

1710 10
(-2 A, 9 +Ax, 0 - —)

2m\ 1 9x; 7 90X,

standing in the same place, and with the operator

1,719 1 a
— (5 B )+ Bx, 9 )

2m\1 9%, 1 0X,

standing in the place of V(x,, s). The sums and factors
¢ have now become f'dt.f ds.

This is nearly but not quite correct, however, as there
is an additional term coming from the terms in the sum
corresponding to the special values, j=1, j=141 and
j=1—1. We have tacitly assumed from the appearance
of the expression (31) that, for a given ¢, the contribu-
tion from just three such special terms is of order €.
But this is not true. Although the expected contribution
of a term like (x;41— ;) (x;41—x;) for 751 is indeed of
order ¢, the expected contribution of (xiy1—x;)? is
+iem~t [C, Eq. (50)], that is, of order e. In non-
relativistic mechanics the velocities are unlimited and
in very short times e the amplitude diffuses a distance
proportional to the square root of the time. Making
use of this equation then we see that the additional
contribution from these terms is essentially

im 1A s 1) B(xi, 1) =im= f Ax(2), 2)-B(x(t), )dt

when summed on all 2. This has the same effect as a
first-order perturbation due to a potential A-B/m.
Added to the term involving the momentum operators
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we therefore have an additional term!?

i tl'
_f dtf X*(XLH)K(Xu', ' R t)A(xb t) 'B(xl; t)
me g

'K(Xt, t; Xy, t’)l’l(Xy)d3Xu'd3X1d3Xg'. (33)

In the usual Hamiltonian theory this term arises, of
course, from the term A?/2m in the expansion of the
Hamiltonian

H=(2m) (p—A)*= (2m) ' (p*—p-A—A-p+A?

while the other term arises from the second-order action
of p-A+A-p. We shall not be interested in non-
relativistic quantum electrodynamics in detail. The
situation is simpler for Dirac electrons. For particles
satisfying the Klein-Gordon equation (discussed in
Appendix A) the situation is very similar to a four-
dimensional analog of the non-relativistic case given
here.

6. EXTENSION TO DIRAC PARTICLES

Expressions (24) and (25) and their proof can be
readily generalized to the relativistic case according to
the one electron theory of Dirac. We shall discuss the
hole theory later. In the non-relativistic case we began
with the proposition that the amplitude for a particle
to proceed from one point to another is the sum over
paths of exp(iS,), that is, we have for example for a
transition element

<X| 1“I/>= liino f. ’ 'fx*(xN)®P(xN) XN—1, ** 'XO)
Y (X0)d®xod?k, - - -dPxy  (34)

where for exp(iS,) we have written &,, that is more
precisely,
q)p——— Im; A expiS(x,-+1, Xi).

As discussed in C this form is related to the usual
form of quantum mechanics through the observation
that

(X1 x)e= A7 exp[ES (Xit1, Xi) ] (35)

where (X;41|X:) is the transformation matrix from a
representation in which x is diagonal at time #; to one
in which x is diagonal at time #;;1=1{;+¢ (so that it is
identical to Ko(Xit1, fit1; Xs, £;) for the small time
interval €). Hence the amplitude for a given path can
also be written

®p= IL(Xip1| %) (36)

for which form, of course, (34) is exact irrespective of
whether (X;41]X:)e can be expressed in the simple form
(39).

For a Dirac electron the (X;11]|X:)e is a 4 X4 matrix

12 The term corresponding to this for the self-energy expression
(26) would give an integral over 8.,(({—?)*— (x;—x,)?) which is
evidently infinite and leads to the quadratically divergent self-
energy. There is no such term for the Dirac electron, but there
is for Klein-Gordon particles. We shall not discuss the infinities
in this paper as they have already been discussed in I
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(or 4¥ X4V if we deal with N electrons) but the expres-
sion (34) with (36) is still correct (as it is in fact for
any quantum-mechanical system with a sufficiently
general definition of the coordinate x;). The product
(36) now involves operators, the order in which the
factors are to be taken is the order in which the terms
appear in time.

For a Dirac particle in a vector and scalar potential
(times the electron charge e) A(x, #), Aa(x, (), the
quantity (Xi41]X:)4 is related to that of a free particle
to the first order in € as

(Xiga [ %) O = (X1 | x1)  exp[ —i(edu(x,, £:)
—(Xi—x)-A(x;, )] (37)

This can be verified directly by substitution into the
Dirac equation.’ It neglects the variation of A and A4,
with time and space during the short interval e. This
produces errors only of order € in the Dirac case for
the expected square velocity (X;+1—X;)?/€® during the
interval e is finite (equaling the square of the velocity
of light) rather than being of order 1/e as in the non-
relativistic case. [This makes the relativistic case
somewhat simpler in that it is not necessary to define
the velocity as carefully as in (6); (Xij1—X;)/e is
sufficiently exact, and no term analogous to (33) arises. ]

Thus &, differs from that for a free particle, ®,©,
by a factor II; exp—i(eda(Xs, t:)— (Xiy1—X:) - A(Xy, £5))
which in the limit can be written as

exp[ ~i [ LA, 9 -x 0 AG0) t)]dt} (38)

exactly as in the non-relativistic case.

The case of a Dirac particle interacting with the
quantum-mechanical oscillators representing the field
may now be studied. Since the dependence of ®,4 on
A, A, is through the same factor as in the non-relativ-
istic case, when A, A4 are expressed in terms of the
oscillator coordinates ¢, the dependence of ® on the
oscillator coordinates ¢ is unchanged. Hence the entire
analysis of the preceding sections which concern the
results of the integration over oscillator coordinates
can be carried through unchanged and the results will
be expression (25) with formula (24) for R. Expression
(25) is now interpreted as

el expiRIpe)= i [ X, %o -)

XTL(®,, n@d3% W% s - - - 3%, ™)
n

-exp(iR)Y(xv®, X @+ +)  (39)

13 Alternatively, note that Eq. (37) is exact for arbitrarily large
¢ if the potential 4, is constant. For if the potential in the Dirac
equation is the gradient of a scalar function A,=48x/dx, the
potential may be removed by replacing the wave function by
v=exp(—ix)y’ (gauge transformation). This alters the kernel by
a factor exp[ —4(x(2)—x(1))] owing to the change in the initial
and final wave functions. A constant potential 4, is the gradient
of x=A,x, and can be completely removed by this gauge trans-
formation, so that the kernel differs from that of a free particle
by the factor exp[—i(4uxue— Auxu1)] as in (37).
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where &, ., the amplitude for a particular path for
particle # is simply the expression (36) where (X;1|X).
is the kernel Ko n(Xi11™, tiy1; X;™, ;) for a free elec-
tron according to the one electron Dirac theory, with
the matrices which appear operating on the spinor
indices corresponding to particle (z) and the order of
all operations being determined by the time indices.

For calculational purposes we can, as before, expand
R as a power series and evaluate the various terms in
the same manner as for the non-relativistic case. In
such an expansion the quantity x'(¢) is replaced, as we
have seen in (32), by the operator {(Hx—xH), that is,
in this case by e« operating at the corresponding time.
There is no further complicated term analogous to (33)
arising in this case, for the expected value of (x;41—x:)?
is now of order € rather than e.

For example, for self-energy one sees that expression
(28) will be (with other terms coming from those with
x'(¢) replaced by @ and with the usual B in back of
each K, because of the definition of K, in relativity
theory)

Wor| R pe)s,=—e f P (xe) Kolxen ' %1, 1) B,

. 5+((t"‘5)2— (xt—xs)2)KU(Xty t) x37 S)nBal‘

-Ko(Xs, 55 Xpr, £)BY (X0 )d3X 0 dPx, 43X d3x o dEds,  (40)
where as=1, 1,5 3=,y . and a sum on the repeated
index p is implied in the usual way; @,b,=asbs—a1b,
—asby—aszh;. One can change Ba, to v, and ¥* to ¥8.
In this manner all of the rules referring to virtual
photons discussed in II are deduced; but with the
difference that K, is used instead of K, and we have
the Dirac one electron theory with negative energy
states (although we may have any number of such
electrons).

7. EXTENSION TO POSITRON THEORY

Since in (39) we have an arbitrary number of elec-
trons, we can deal with the hole theory in the usual
manner by imagining that we have an infinite number
of electrons in negative energy states.

On the other hand, in paper I on the theory of
positrons, it was shown that the results of the hole
theory in a system with a given external potential 4,
were equivalent to those of the Dirac one electron
theory if one replaced the propagation kernel, K,, by a
different one, K, and multiplied the resultant ampli-
tude by factor C, involving 4,. We must now see how
this relation, derived in the case of external potentials,
can also be carried over in electrodynamics to be
useful in simplifying expressions involving the infinite
sea of electrons.

To do this we study in greater detail the relation
between a problem involving virtual photons and one
involving purely external potentials. In using (25) we
shall assume in accordance with the hole theory that
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the number of electrons is infinite, but that they all
have the same charge, e. Let the states ¢, x,-, repre-
sent the vacuum plus perhaps a number of real electrons
in positive energy states and perhaps also some empty
negative energy states. Let us call the amplitude for
the transition in an external potential By, but excluding
virtual photons, To[ B], a functional of B,(1). We have

seen (38)
To[B]={xu"|expiP|¥¢) (41)
where

P=-% f [B.(x™ (1), )—x (1) BE(0), 1)
by (38). We can write this as
P=—-% f B, (1), (0)de

where x4(f)=t¢ and #4=1, the other values of u corre-
sponding to space variables. The corresponding ampli-
tude for the same process in the same potential, but
including all the virtual photons we may call,

T2[ B]=(xu'|exp(iR) exp(iP)| Y1) (42)

Now let us consider the effect on T.2[B] of changing
the coupling ¢ of the virtual photons. Differentiating
(42) with respect to €2 which appears only 4 in R we find

s f f dtdsi, ™ (£)3, (s)

dT 2[B]/d(&)= <x/’
2 n m

54 (B (0) =2, (5))?) expi(R+P) ¢> 43)

We can also study the first-order effect of a change
of B,:

ST 2 B)/6B,(1)= —i<><w

> f i, D 541,00 (£) — X1)

-expi(R+P)

by @)

where x,, 1 is the field point at which the derivative with
respect to B, is taken'® and the term (current density)
=3, S Atz P ()64 (xa P () —x4,1) 1S just 6P/6Bu(1).
The function 6%x,”—2x,1) means &(xsP—xy1)

14 In changing the charge e? we mean to vary only the degree
to which virtual photons are important. We do not contemplate
changes in the influence of the external potentials. If one wishes,
as e is raised the strength of the potential is decreased propor-
tionally so that B,, the potential times the charge e, is held
constant.

15 The functional derivative is defined such that if T[B] is a
number depending on the functions B,(1), the first order variation
in T produced by a change from By to By+AB,, is given by

T[B+AB]-T[B]= f (8T[B1/5Bu(1))AB,(1)drs

the integral extending over all four-space %4, 1.
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X 6(x3(")—x3, 1)6(x2("’~—x2, 1)5(]51(")—371, 1) that iS, 5(2, 1)
with x4, :=2x,"(¢). A second variation of T gives, by
differentiation of (44) with respect to B,(2),

8T 2[B]/8B,(1)8B,(2)

= “<Xt”

*84(xa{" (1) = 20, 1) 84 (5 () — 23,2)

55 [t f dsit, ™ (D), (s)

Xexpi(R+P)

v).

Comparison of this with (43) shows that

dT o[ BY/d()=1i f f (PT.2[B)/5B,(1)3B,(2))

X5+(8122)d7'1d1'2 (45)

where s192= (X4, 1— Xy, 2) (Xp, 1— Xy, 2).

We now proceed to use this equation to prove the
validity of the rules given in II for electrodynamics.
This we do by the following argument. The equation
can be looked upon as a differential equation for T',2[ B].
It determines 7'.2[ B] uniquely if 7o B] is known. We
have shown it is valid for the hole theory of positrons.
But in I we have given formulas for calculating T,[ B]
whose correctness relative to the hole theory we have
there demonstrated. Hence we have shown that the
T 2[ B] obtained by solving (45) with the initial condi-
tion T, B] as given by the rules in I will be equal to
that given for the same problem by the second quant-
ization theory of the Dirac matter field coupled with
the quantized electromagnetic field. But it is evident
(the argument is given in the next paragraph) that the
rules®® given in II constitute a solution in power series
in ¢ of the Eq. (45) [which for ¢?=0 reduce to the
To[B] given in I']. Hence the rules in II must give, to
each order in ¢?, the matrix element for any process
that would be calculated by the usual theory of second
quantization of the matter and electromagnetic fields.
This is what we aimed to prove.

That the rules of II represent, in a power series
expansion, a solution of (45) is clear. For the rules
there given may be stated as follows: Suppose that we
have a process to order k in ¢* (i.e., having % virtual
photons) and order » in the external potential B,.
Then, the matrix element for the process with one more
virtual photon and two less potentials is that obtained from

16 That is, of course, those rules of II which apply to the un-
modified electrodynamics of Dirac electrons. (The limitation
excluding real photons in the initial and final states is removed
in Sec. 8.) The same arguments clearly apply to nucleons inter-
acting via neutral vector mesons, vector coupling. Other couplings
require a minor extension of the argument. The modification
to the (Xiy1|X:)e, as in (37), produced by some couplings cannot
very easily be written without using operators in the exponents.
These operators can be treated as numbers if their order of oper-
ation is maintained to be always their order in time. This idea
will be discussed and applied more generally in a succeeding paper.
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the previous malrix by choosing from the n potentials a
pair, say B,(1) acting at 1 and B,(2) acting at 2, replacing
them by 1€%6,,0.+(s12?), adding the results for each way of
choosing the pair, and dividing by k41, the present
number of photons. The matrix with no virtual photons
(k=0) being given to any » by the rules of I, this
permits terms to all orders in ¢ to be derived by
recursion. It is evident that the rule in italics is that of
II, and equally evident that it is a word expression of
Eq. (45). [The factor % in (45) arises since in integrating
over all dry and dr; we count each pair twice. The
division by k41 is required by the rules of II for,
there, each diagram is to be taken only once, while in
the rule given above we say what to do to add one
extra virtual photon to & others. But which one of the
k41 is to be identified at the last photon added is
irrelevant. It agrees with (45) of course for it is canceled
on differentiating with respect to e the factor (e?)%+!
for the (k+41) photons.]

8. GENERALIZED FORMULATION OF QUANTUM
ELECTRODYNAMICS

The relation implied by (45) between the formal
solution for the amplitude for a process in an arbitrary
unquantized external potential to that in a quantized
field appears to be of much wider generality. We shall
discuss the relation from a more general point of view
here (still limiting ourselves to the case of no photons
in initial or final state).

In earlier sections we pointed out that as a conse-
quence of the Lagrangian form of quantum mechanics
the aspects of the particles’” motions and the behavior
of the field could be analyzed separately. What we did
was to integrate over the field oscillator coordinates
first. We could, in principle, have integrated over the
particle variables first. That is, we first solve the
problem with the action of the particles and their
interaction with the field and then multiply by the
exponential of the action of the field and integrate over
all the field oscillator coordinates. (For simplicity of
discussion let us put aside from detailed special con-
sideration the questions involving the separation of the
longitudinal and transverse parts of the field.?) Now
the integral over the particle coordinates for a given
process is precisely the integral required for the analysis
of the motion of the particles in an unquantized po-
tential. With this observation we may suggest a
generalization to all types of systems.

Let us suppose the formal solution for the amplitude
for some given process with matter in an external
potential B,(1) is some numerical quantity 7). We
mean matter in a more general sense now, for the
motion of the matter may be described by the Dirac
equation, or by the Klein-Gordon equation, or may
involve charged or neutral particles other than electrons
and positrons in any manner whatsoever. The quantity
T, depends of course on the potential function B,(1);
that is, it is a functional 7,\[B] of this potential. We
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assume we have some expression for it in terms of B,
(exact, or to some desired degree of approximation in
the strength of the potential).

Then the answer T.2[ B] to the corresponding prob-
lem in quantum electrodynamics is T[4 ,(1)+Bu(1)]
Xexp(iSy) summed over all possible distributions of
field A,(1), wherein S, is the action for the field
So=—87we®) X, S ((04,/0t)*—(VA,)?)d*xd!t the sum
on u carrying the usual minus sign for space compo-
nents.

If F[A] is any functional of 4,(1) we shall represent
by o/ F[A]|o this superposition of F[A] exp(iSo) over
distributions of A, for the case in which there are no
photons in initial or final state. That is, we have

The evaluation of | F[A]|, directly from the defini-
tion of the operation ¢| |o is not necessary. We can
give the result in another way. We first note that the
operation is linear,

o| FiLAT+FoLA][o=0| Fi[A]| oo FLAT|0  (47)

so that if F is represented as a sum of terms each term
can be analyzed separately. We have studied essentially
the case in which F[ 4] is an exponential function. In
fact, what we have done in Section 4 may be repeated
with slight modification to show that

esp( =i 0,000 )

—exp( e [ | i @845)irsdrs)  (39)

0 0

where 7,(1) is an arbitrary function of position and
time for each value of u.

Although this gives the evaluation of | |, for only
a particular functional of 4, the appearance of the
arbitrary function j,(1) makes it sufficiently general to
permit the evaluation for any other functional. For it
is to be expected that any functional can be represented
as a superposition of exponentials with different func-
tions 7,(1) (by analogy with the principle of Fourier
integrals for ordinary functions). Then, by (47), the
result of the operation is the corresponding superposi-
tion of expressions equal to the right-hand side of (48)
with the various j’s substituted for j,.

In many applications F[ 4] can be given as a power
series in A,:

FLAT=fo+ f £DA,(1)dry

+fff'”(1’ 2)A,.(1)A,(2)d-rld1-2+. .. (49)

where fo, fu(1), fus(1,2)- -+ are known numerical func-
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tions independent of 4,. Then by (47)

OIF[A][0=f0+ffu(1)o|Au(1)[odﬁ

+ f f Fi(l, 2ol Au(1)A,(2) | adridrat- - (50)

where we set o|1]o=1 (from (48) with j,=0). We can
work out expressions for the successive powers of 4,
by differentiating both sides of (48) successively with
respect to 7, and setting j,=0 in each derivative. For
example, ‘the first variation (derivative) of (48) with
respect to j.(3) gives

—i4,(3) exp( —ifj»(l)/l.(l)dﬂ)

0 0

=— ie2f5+(5342)ju(4)d74

Xexp(—%ie2fij(1)j,(2)5+(s122)dnd12). (51)

Setting j,=0 gives
of 4u(3)[0=0.

Differentiating (51) again with respect to j,(4) and
setting 7,=0 shows

OIA“(S)A y(4) l 0=i625py6+(5342) (52)

and so on for higher powers. These results may be
substituted into (50). Clearly therefore when T B+ 4]
in (46) is expanded in a power series and the successive
terms are computed in this way, we obtain the results
given in IL.

It is evident that (46), (47), (48) imply that T',2[ B]
satisfies the differential equation (45) and conversely
(45) with the definition (46) implies (47) and (48). For
if To[ B] is an exponential

To[B]=eXp(—i [ ju(l)Bu(l)dn) (53)

we have from (46), (48) that

T,z[B]==exp[-—%iéffj,.(l)j,.(2)5+(sm2)dndr2]

Direct substitution of this into Eq. (45) shows it to be a
solution satisfying the boundary condition (53). Since the
differential equation (45) is linear, if T, B] is a super-
position of exponentials, the corresponding superposi-
tion of solutions (54) is also a solution.
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Many of the formal representations of the matter
system (such as that of second quantization of Dirac
electrons) represent the interaction with a fixed po-
tential in a formal exponential form such as the left-
hand side of (48), except that j,(1) is an operator
instead of a numerical function. Equation (48) may
still be used if care is exercised in defining the order of
the operators on the right-hand side. The succeeding
paper will discuss this in more detail.

Equation (45) or its solution (46), (47), (48) consti-
tutes a very general and convenient formulation of the
laws of quantum electrodynamics for virtual processes.
Its relativistic invariance is evident if it is assumed that
the unquantized theory giving To[ B] is invariant. It
has been proved to be equivalent to the usual formula-
tion for Dirac electrons and positrons (for Klein-Gordon
particles see Appendix A). It is suggested that it is of
wide generality. It is expressed in a form which has
meaning even if it is impossible to express the matter
system in Hamiltonian form; in fact, it only requires
the existence of an amplitude for fixed potentials which
obeys the principle of superposition of amplitudes. If
To[B] is known in power series in B, calculations of
T2[B] in a power series of ¢ can be made directly
using the italicized rule of Sec. 7. The limitation to
virtual quanta is removed in the next section.

On the other hand, the formulation is unsatisfactory
because for situations of importance it gives divergent
results, even if To[B] is finite. The modification pro-
posed in II of replacing 8.(s12?) in (45), (48) by f+(s12%)
is not satisfactory owing to the loss of the theorems of
conservation of energy or probability discussed in II at
the end of Sec. 6. There is the additional difficulty in
positron theory that even T [B] is infinite to begin
with (vacuum polarization). Computational ways of
avoiding these troubles are given in Il and in the refer-
ences of footnote 2.

9. CASE OF REAL PHOTONS

The case in which there are real photons in the initial
or the final state can be worked out from the beginning
in the same manner.'” We first consider the case of a
system interacting with a single oscillator. From this
result the generalization will be evident. This time we
shall calculate the transition element between an initial
state in which the particle is in state ¥, and the
oscillator is in its nth eigenstate (i.e., there are » photons
in the field) to a final state with particle in x,, oscillator
in mth level. As we have already discussed, when the
coordinates of the oscillator are eliminated the result
is the transition element (xy|Gmn|¥) where

%Ff%wmmwa%mmm (11)

where ¢m, ¢. are the wave functions?® for the oscillator

17 For an alternative method starting directly from the formula
(24) for virtual photons, see Appendix B.
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in state m, » and & is given in (12). The Gn, can be
evaluated most easily by calculating the generating
function

X, V)= 0 LnGuaXnV (min)=t  (55)

for arbitrary X, V. If expression (11) is substituted in
the left-hand side of (55), the expression can be simpli-
fied by use of the generating function relation for the
eigenfunctions® of the harmonic oscillator

2 on(g) Y r(n!)~t=(w/m)t exp(—Fiwt’)
X expi[wgo?— (¥ exp[—iwt']— (2w)¥q0)2]

Using a similar expansion for the ¢.* one is left with
the exponential of a quadratic function of ¢ and ¢;.
The integration on ¢, and ¢; is then easily performed
to give

g(X, Y)=Go exp(XY+if*X+ipY) (56)

from which expansion in powers of X and ¥ and
comparison to (11) gives the final result

m! n!
Gmn= GOO(m In !)_‘}Z

r(m—r)lr! (n—r)lr!

Xrl(ig*) ™= (@g)  (57)
where Gy is given in (14) and
tll
B=(20)} f (1) exp(—iwt)d,
’ (58)

¢

m=amﬂf +(0) exp(+it)di,

and the sum on 7 is to go from 0 to 7 or to » whichever
is the smaller. (The sum can be expressed as a Laguerre
polynomial but there is no advantage in this.)
Formula (57) is readily understandable. Consider
first a simple case of absorption of one photon. Initially
we have one photon and finally none. The amplitude
for this is the transition element of Go;=18Gy or
{x¢+|iBGoo| ¥v). This is the same as would result if we
asked for the transition element for a problem in
which all photons are virtual but there was present a
perturbing potential — (2w)~}y(f) exp(—iwt) and we
required the first-order effect of this potential. Hence
photon absorption is like the first order action of a
potential varying in time as y(f) exp(—iwt) that is with
a positive frequency (i.e., the sign of the coefficient of ¢
in the exponential corresponds to positive energy).
The amplitude for emission of one photon involves
G1=18*Gy, which is the same result except that the
potential has negative frequency. Thus we begin by
interpreting i8* as the amplitude for emission of one
photon 73 as the amplitude for absorption of one.
Next for the general case of # photons initially and
m finally we may understand (57) as follows. We first
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neglect Bose statistics and imagine the photons as
individual distinct particles. If we start with » and end
with m this process may occur in several different ways.
The particle may absorb in total n—r of the photons
and the final m photons will represent 7 of the photons
which were present originally plus m—r new photons
emitted by the particle. In this case the #—r which are
to be absorbed may be chosen from among the original
n in n!/(n—r)!r! different ways, and each contributes
a factor 78, the amplitude for absorption of a photon.
Which of the m—r photons from among the m are
emitted can be chosen in m!/(m—r)!r! different ways
and each photon contributes a factor ¢8* in amplitude.
The initial » photons which do not interact with the
particle can be re-arranged among the final 7 in 7! ways.
We must sum over the alternatives corresponding to
different values of r. Thus the form of G.. can be
understood. The remaining factor (m!)~}(n!)~* may be
interpreted as saying that in computing probabilities
(which therefore involves the square of Gn.) the
photons may be considered as independent but that if
m are actually equal the statistical weight of each of
the states which can be made by rearranging the m
equal photons is only 1/m!. This is the content of Bose
statistics; that m equal particles in a given state
represents just one state, i.e., has statistical weight
unity, rather than the m! statistical weight which
would result if it is imagined that the particles and
states can be identified and rearranged in m! different
ways. This holds for both the initial and final states of
course. From this rule about the statistical weights of
states the derivation of the blackbody distribution
law follows.

The actual electromagnetic field is represented as a
host of oscillators each of which behaves independently
and produces its own factor such as Gn,. Initial or final
states may also be linear combinations of states in
which one or another oscillator is excited. The results
for this case are of course the corresponding linear
combination of transition elements.

For photons of a given direction of polarization and
for sin or cos waves the explicit expression for 8 can be
obtained directly from (58) by substituting the formulas
(16) for the 4’s for the corresponding oscillator. It is
more convenient to use the linear combination corre-
sponding to running waves. Thus we find the amplitude
for absorption of a photon of momentum K frequency
k= (K-K)? polarized in direction e is given by including
a factor ¢ times
g
BK,e= (41r)"(2k)'5Ze,.f exp(—ikt)

¢

Xexp(iK-x,()e-x .(t)dt (59)

in the transition element (25). The density of states in
momentum space is now (27)~3d°K. The amplitude
for emission is just ¢ times the complex conjugate of
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this expression, or what amounts to the same thing,
the same expression with the sign of the four vector &,
reversed. Since the factor (59) is exactly the first-order
effect of a vector potential

APH=2r/k)}e exp(—i(ki— K-x))

of the corresponding classical wave, we have derived
the rules for handling real photons discussed in IL.

We can express this directly in terms of the quantity
T.:[B], the amplitude for a given transition without
emission of a photon. What we have said is that the
amplitude for absorption of just one photon whose clas-
sical wave form is 4,P#(1) (time variation exp(—zkt,)
corresponding to positive energy k) is proportional to
the first order (in €) change produced in T.:[B] on
changing B to B+eA?#. That is, more exactly,

f (GT[BY/sB))A, A Wdr,  (60)

is the amplitude for absorption by the particle system
of one photon, APH#. (A superposition argument shows
the expression to be valid not only for plane waves,
but for spherical waves, etc., as given by the form of
APHE ) The amplitude for emission is the same expression
but with the sign of the frequency reversed in APH,
The amplitude that the system absorbs two photons
with waves 4,F¥1 and 4,72 is obtained from the next
derivative,

f f (PT o[ BY/6B,(1)6B,(2)) A4 ,PHi(1) A, PH(2)dridrs,

the same expression holding for the absorption of one
and emission of the other, or emission of both depending
on the sign of the time dependence of 47#1 and APHz,
Larger photon numbers correspond to higher deriva-
tives, absorption of /; emission of /, requiring the
(li+1,) derivaties. When two or more of the photons
are exactly the same (e.g., APHi=APH2) the same
expression holds for the amplitude that /, are absorbed
by the system while /, are emitted. However, the
statement that initially # of a kind are present and m
of this kind are present finally, does not imply /;=n
and ly=m. It is possible that only n—r=I; were
absorbed by the system and m—r=I, emitted, and that
r remained from initial to final state without interaction.
This term is weighed by the combinatorial coefficient

m\ (n
(m!n !)—%( , ) (r ) r! and summed over the possibilities

for 7 as explained in connection with (57). Thus once
the amplitude for virtual processes is known, that for
real photon processes can be obtained by differentiation.

It is possible, of course, to deal with situations in
which the electromagnetic field is not in a definite state
after the interaction. For example, we might ask for
the total probability of a given process, such as a
scattering, without regard for the number of photons
emitted. This is done of course by squaring the ampli-
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tude for the emission of 7 photons of a given kind and
summing on all m. Actually the sums and integrations
over the oscillator momenta can usually easily be
performed analytically. For example, the amplitude,
starting from vacuum and ending with m photons of a
given kind, is by (56) just

Gmo= (m!)"¥Goo(18%) ™. (61)

The square of the amplitude summed on 7 requires
the product of two such expressions (the y(f) in the g8
of one and in the other will have to be kept separately)
summed on m:

> Guo*Gmd’ = > m Goo*Goo’ (m!)~1Bm(B*)m
=Go*Goo' exp(BB™).

In the resulting expression the sum over all oscillators
is easily done. Such expressions can be of use in the
analysis in a direct manner of problems of line width,
of the Bloch-Nordsieck infra-red problem, and of sta-
tistical mechanical problems, but no such applications
will be made here.

The author appreciates his opportunities to discuss
these matters with Professor H. A. Bethe and Professer
J. Ashkin, and the help of Mr. M. Baranger with the
manuscript.

APPENDIX A. THE KLEIN-GORDON EQUATION

In this Appendix we describe a formulation of the equations
for a particle of spin zero which was first used to obtain the rules
given in II for such particles. The complete physical significance
of the equations has not been analyzed thoroughly so that it may
be preferable to derive the rules directly from the second quanti-
zation formulation of Pauli and Weisskopf. This can be done in a
manner analogous to the derivation of the rules for the Dirac
equation given in I or from the Schwinger-Tomonaga formulation?
in a manner described, for example, by Rohrlich.!® The formulation
given here is therefore not necessary for a description of spin
zero particles but is given only for its own interest as an alternative
to the formulation of second quantization.

We start with the Klein-Gordon equation

(0/x,— Ap) 2 =m2 (1A)

for the wave function y of a particle of mass m in a given external
potential 4,. We shall try to represent this in a manner analogous
to the formulation of quantum mechanics in C. That is, we try
to represent the amplitude for a particle to get from one point to
another as a sum over all trajectories of an amplitude exp(iS)
where S is the classical action for a given trajectory. To maintain
the relativistic invariance in evidence the idea suggests itself of
describing a trajectory in space-time by giving the four variables
xu(u) as functions of some fifth parameter « (rather than expressing
x1, %2, %3 in terms of x4). As we expect to represent paths which
may reverse themselves in time (to represent pair production,
etc., as in I) this is certainly a more convenient representation,
for all four functions x,(x) may be considered as functions of a
parameter % (somewhat analogous to proper time) which increase
as we go along the trajectory, whether the trajectory is proceeding
forward (dxs/du>0) or backward (dxs/du<0) in time.!* We shall

18 F. Rohrlich (to be published).

19 The physical ideas involved in such a description are discussed
in detail by Y. Nambu, Prog. Theor. Phys. 5, 82 (1950). An
equation of type (2A) extended to the case of Dirac electrons has
l()een7)studied by V. Fock, Physik Zeits. Sowjetunion 12, 404

1937).
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then have a new type of wave function ¢(x, #) a function of five
variables, x standing for the four x,. It gives the amplitude for
arrival at point x, with a certain value of the parameter u. We
shall suppose that this wave function satisfies the equation

1dp/du=—134(id/0x,— Au)% (2A)
which is seen to be analogous to the time-dependent Schrodinger
equation, # replacing the time and the four coordinates of space-
time x, replacing the usual three coordinates of space.

Since the potentials 4,(x) are functions only of coordinates x,
and are independent of %, the equation is separable in % and we
can write a special solution in the form ¢=exp(}im?u)y(x) where
¥(x), a function of the coordinates x, only, satisfies (1A) and the
eigenvalue 3m? conjugate to u is related to the mass m of the
particle. Equation (2A) is therefore equivalent to the Klein-
Gordon Eq. (1A) provided we ask in the end only for the solution
of (1A) corresponding to the eigenvalue $m? for the quantity
conjugate to u.

We may now proceed to represent Eq. (2A) in Lagrangian form
in general and without regard to this eigenvalue condition. Only
in the final solutions need we apply the eigenvalue condition.
That is, if we have some special solution ¢(x, #) of (2A) we can
select that part corresponding to the eigenvalue 3m? by calculating

Y(x)= J._ Zexp( — Yim2u) o(x, u)du

and thereby obtain a solution y of Eq. (1A).

Since (2A) is so closely analogous to the Schrédinger equation,
it is easily written in the Lagrangian form described in C, simply
by working by analogy. For example if ¢(x, %) is known at one
value of « its value at a slightly larger value #+e¢ is given by

. (xp—2x)?2 1fx,—2,

o(x, ute) = f expte[-— T + 4u)

<@, u)dity (2mie) "I (—2wie) "t (3A)
where (x,—x,/)? means (x,—x,)(xu—x,"), direr=dx)'dxs'dxy'dxy
and the sign of the normalizing factor is changed for the x4
component since the component has the reversed sign in its
quadratic coefficient in the exponential, in accordance with our
summation convention aub,=asbs—a1b1—asbs—asb;. Equation
(3A), as can be verified readily as described in C, Sec. 6, is equiva-
lent to first order in ¢, to Eq. (2A). Hence, by repeated use of this

equation the wave function at #,=ne can be represented in terms
of that at =0 by:

i€ X Xpi— 2 i-1\2
‘P(xv. ny uO) =f exp——i Z [(%l')
=1

+ € (@, i 2, 1) (A () +A,.(x;~1))]

n—-1
- @(,0, 0) TI (dir:/4n2).  (4A)
=0

That is, roughly, the amplitude for getting from one point to
another with a given value of %, is the sum over all trajectories
of exp(zS) where

S=— fo L3 (dx/d)?+ (A /due) A u(x) Jdu,

when sufficient care is taken to define the quantities, as in C.
This completes the formulation for particles in a fixed potential
but a few words of description may be in order.

In the first place in the special case of a free particle we can
define a kernal k@ (x, uo; %', 0) for arrival from x,/, 0 to x, at u,
as the sum over all trajectories between these points of
exp—1 J°3(dxy/du)*du. Then for this case we have

(54)

o, 10) = ROz, uo; o, 0) o, 0)dor» (6A)
and it is easily verified that ko is given by
kO (x, ug; 2', 0) = (4nue®%) " exp—i(xu—2x4")2/2uy  (7A)

for #9>0 and by 0, by definition, for #,<0. The corresponding
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kernel of importance when we select the eigenvalue 3m? is®
%1, (x, ') = f kO (x, uo; 2, 0) exp(— Yim*uo)duo
=j;mduo(41r’uo’i)‘1 exp—i}i(m’uo-l-uo_‘(xu—xu')’) (8A)

(the last extends only from #o=0 since kg is zero for negative u,)
which is identical to the I, defined in IL2 This may be seen
readily by studying the Fourier transform, for the transform of
the integrand on the right-hand side is

f (4m%uy%) ! exp(ip - x) exp— 3i(m2uo+x,2/uo)d*r,
=exp— §iuo(m?— p,?)

so that the u, integration gives for the transform of 7, just
1/(pu2—m?) with the pole defined exactly as in II. Thus we are
automatically representing the positrons as trajectories with the
time sense reversed.

If ®O[x(u)]=exp—i/y°3(dxu/du)?*du is the amplitude for a
given trajectory x,(ux) for a free particle, then the amplitude in
a potential is

P [x(u) ]=PO[x(u)] exp—1i jo‘ uo(dx“/du)A w(@)du.  (9A)

If desired this may be studied by perturbation methods by
expanding the exponential in powers of 4,.

For interpretation, the integral in (9A) must be written as a
Riemann sum, and if a perturbation expansion is made, care must
be taken with the terms quadratic in the velocity, for the effect
of (%, 41— % i) (%y,i41—%5,5) is not of order € but is —zd,e. The
“velocity” dx,/du becomes the momentum operator p,= +19/9x,
operating half before and half after 4, just as in the non-relativ-
istic Schrédinger equation discussed in Sec. 5. Furthermore, in
exactly the same manner as in that case, but here in four dimen-
sions, a term quadratic in A, arises in the second-order perturba-
tion terms from the coincidence of two velocities for the same
value of u.

As an example, the kernal k4 (x, uo; 2/, 0) for proceeding from
x,’, 0 to %y, uo in a potential A, differs from £© to first order in
A, by a term

—i [k, u0; 3, W HPuAY) + AP PR (3, w; ¥, 0)dr,

the p, here meaning +i9/dy,. The kernel of importance on
selecting the eigenvalue §m? is obtained by multiplying this by
exp(—3%im*u,) and integrating #o from O to «. The kernel
kO (x, uo; v, u) depends only on #'=u—u and in the integrals on
wand uo; Sy duo Sy °du exp(— $im2u,) - - -, can be written, on inter-
changing the order of integration and changing variables to
and o', Sy du Sy duw' exp(—im?*(u+u'))- - -. Now the integral on
u' converts kO (x, uo; y, u) to 2¢I .(x, ) by (8A), while that on u
converts kO (y, u; ', 0) to 2¢1 (v, %), so the result becomes

f %1 4(2, 3) (pudu+Aup ) (3, ¥)dir,

as expected. The same principle works to any order so that the
rules for a single Klein-Gordon particle in external potentials
given in II, Section 9, are deduced.

The transition to quantum electrodynamics is simple for in
(5A) we already have a transition amplitude represented as a
sum (over trajectories, and eventually #%,) of terms, in each of
which the potential appears in exponential form. We may make
use of the general relation (54). Hence, for example, one finds

20 The factor 2 in front of 7, is simply to make the definition
of I, here agree with that in I and IL In II it operates with
p-A+A-p as a perturbation. But the perturbation coming from
(3A) in a natural way by expansion of the exponential is
—3i(p-A+A-p).

2t Expression (8A) is closely related to Schwinger’s parametric
integral representation of these functions. For example, (8A)
becomes formula (45) of F. Dyson, Phys. Rev. 75, 486 (1949) for

Ap=AW—2A=2] + if (22)71 is substituted for .
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for the case of no photons in the initial and final states, in the
presence of an external potential By, the amplitude that a particle
proceeds from (x,’, 0) to (xy, %o) is the sum over all trajectories
of the quantity

exp— [1 N d"“) dut [ %Bﬂ(x(u))du

o [ [ B B, ()t | (108)

This result must be multiplied by exp(—3}im?uo) and integrated
on u, from zero to infinity to express the action of a Klein-Gordon
particle acting on itself through virtual photons. The integrals
are interpreted as Riemann sums, and if perturbation expansions
are made, the necessary care is taken with the terms quadratic
in velocity. When there are several particles (other than the
virtual pairs already included) one use a separate # for each,
and writes the amplitude for each set of trajectories as the expo-
nental of —7 times
2
2,

1 me dx“(”))z
E%J; ( du du+t

& 0™ g™ de, ™ () dog, ™ ()
+EIT [ T e

du du’
X84 (2™ (0) = 20, (1)) 2)dudns’, (11A)

where x,™ (%) are the coordinates of the trajectory of the nth
particle? The solution should depend on the wu,™ as
exp(—3im2Z, uo™).

Actually, knowledge of the motion of a single charge implies a
great deal about the behavior of several charges. For a pair
which eventually may turn out to be a virtual pair may appear
in the short run as two “other particles.” As a virtual pair, that
is, as the reverse section of a very long and complicated single
track we know its behavior by (10A). We can assume that such a
section can be looked at equally well, for a limited duration at
least, as being due to other unconnected particles. This then
implies a definite law of interaction of particles if the self-action
(10A) of a single particle is known. (This is similar to the relation
of real and virtual photon processes discussed in detail in Appendix
B.) It is possible that a detailed analysis of this could show that
(10A) implied that (11A) was correct for many particles. There
is even reason to believe that the law of Bose-Einstein statistics
and the expression for contributions from closed loops could be
deduced by following this argument. This has not yet been
analyzed completely, however, so we must leave this formulation
in an incomplete form. The expression for closed loops should
come out to be C,=exp+L where L, the contribution from a

(n) dx“(n)

By (2, (u))du

2 The form (10A) suggests another interesting possibility for
avoiding the divergences of quantum electrodynamics in this
case. The divergences arise from the §, function when w=1’.
We might restrict the integration in the double integral such that
|u—u ?>6 where § is some finite quantity, very small compared
with m~2. More generally, we could keep the region u=u" from
contributing by including in the integrand a factor F(u—u«')
where F(x)—1 for x large compared to some §, and F(0)=0 (e.g.,
F(x) acts qualitatively like 1—exp(—x?572). (Another way might
be to replace » by a discontinuous variable, that is, we do not
use the limit in (44) as e—0 but set e=4.) The idea is that two
interactions would contribute very little in amplitude if they
followed one another too rapidly in . It is easily verified that
this makes the otherwise divergent integrals finite. But whether
the resulting formulas make good physical sense is hard to see.
The action of a potential would now depend on the value of % so
that Eq. (2A), or its equivalent, would not be separable in « so
that 4m2 would no longer be a strict eigenvalue for all disturbances.
High energy potentials could excite states corresponding to other
eigenvalues, possibly thereby corresponding to other masses. This
note is meant only as a speculation, for not enough work has
been done in this direction to make sure that a reasonable physical
theory can be developed along these lines. (What little work has
been done was not promising.) Analogous modifications can also
be made for Dirac electrons.
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single loop, is
L=2 £ L) exp(— yim*uo)duo/ o

where (1) is the sum over all trajectories which close on them-
selves (2u(10) =x4(0)) of exp(iS) with S given in (5A), and a
final integration dr.() on x,(0) is made. This is equivalent to
putting

(o) = f (B (x, uo; x, 0) — kO (x, uo; %, 0))drs.

The term £ is subtracted only to simplify convergence problems
(as adding a constant independent of 4, to L has no effect).

APPENDIX B. THE RELATION OF REAL AND
VIRTUAL PROCESSES

If one has a general formula for all virtual processes he should
be able to find the formulas and states involved in real processes.
That is to say, we should be able to deduce the formulas of Section
9 directly from the formulation (24), (25) (or its generalized
equivalent such as (46), (48)) without having to go all the way
back to the more usual formulation. We discuss this problem here.

That this possibility exists can be seen from the consideration
that what looks like a real process from one point of view may
appear as a virtual process occurring over a more extended time.

For example, if we wish to study a given real process, such as
the scattering of light, we can, if we wish, include in principle the
source, scatterer, and eventual absorber of the scattered light in
our analysis. We may imagine that no photon is present initially,
and that the source then emits light (the energy coming say from
kinetic energy in the source). The light is then scattered and
eventually absorbed (becoming kinetic energy in the absorber).
From this point of view the process is virtual; that is, we start
with no photons and end with none. Thus we can analyze the
process by means of our formula for virtual processes, and obtain
the formulas for real processes by attempting to break the analysis
into parts corresponding to emission, scattering, and absorption.2

To put the problem in a more general way, consider the ampli-
tude for some transition from a state empty of photons far in the
past (time #) to a similar one far in the future (¢=#"). Suppose
the time interval to be split into three regions a, b, ¢ in some
convenient manner, so that region b is an interval ¢,>¢>¢; around
the present time that we wish to study. Region a, (t:>¢>¢),
precedes b, and ¢, (¢/>t>1,), follows b. We want to see how it
comes about that the phenomena during b can be analyzed by a
study of transitions g;;(b) between some initial state 7 at time £,
(which no longer need be photon-free), to some other final state j
at time 5. The states ¢ and j are members of a large class which
we will have to find out how to specify. (The single index ¢ is
used to represent a large number of quantum numbers, so that
different values of ¢ will correspond to having various numbers of
various kinds of photons in the field, etc.) Our problem is to
represent the over-all transition amplitude, g(a, b, ¢), as a sum
over various values of 7, j of a product of three amplitudes,

gla, b, &) =2Z: Z; g0i(0)gii(b)gio(a) ; (1B)
first the amplitude that during the interval ¢ the vacuum state
makes transition to some state 7, then the amplitude that during

b the transition to j is made, and finally in ¢ the amplitude that
the transition from j to some photon-free state 0 is completed.

2 The formulas for real processes deduced in this way are
strictly limited to the case in which the light comes from sources
which are originally dark, and that eventually all light emitted is
absorbed again. We can only extend it to the case for which these
restrictions do not hold by hypothesis, namely, that the details
of the scattering process are independent of these characteristics
of the light source and of the eventual disposition of the scattered
light. The argument of the text gives a method for discovering
formulas for real processes when no more than the formula for
virtual processes is at hand. But with this method belief in the
general validity of the resulting formulas must rest on the physical
reasonableness of the above-mentioned hypothesis.
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The mathematical problem of splitting g(a, b, ¢) is made definite
by the further condition that g;;() for given 7, j must not involve
the coordinates of the particles for times corresponding to regions
a or ¢, gio(e) must involve those only in region ¢, and go;j(c) only
in c.

To become acquainted with what is involved, suppose first that
we do not have a problem involving virtual photons, but just the
transition of a one-dimensional Schrodinger particle going in a
long time interval from, say, the origin o to the origin o, and ask
what states ¢ we shall need for intermediary time intervals. We
must solve the problem (1B) where g(a, b, ¢) is the sum over all
trajectories going from o at ¢’ to o at ¢’ of expiS where S= fLds.
The integral may be split into three parts §=S,4Ss+S. corre-
sponding to the three ranges of time. Then exp(iS)=exp(iS.)
-exp(iSs) -exp(2Sa.) and the separation (1B) is accomplished by
taking for gio(a) the sum over all trajectories lying in ¢ from o to
some end point x;, of exp(zS.), for g;;(b) the sum over trajectories
in b of exp(iSs) between end points x;, and xi,, and for go;(c) the
sum of exp(zS.) over the section of the trajectory lying in ¢ and
going from x;, to 0. Then the sum on ¢ and j can be taken to be
the integrals on x,, x, respectively. Hence the various states ¢
can be taken to correspond to particles being at various coordi-
nates x. (Of course any other representation of the states in the
sense of Dirac’s transformation theory could be used equally well.
Which one, whether coordinate, momentum, or energy level
representation, is of course just a matter of convenience and we
cannot determine that simply from (1B).)

We can consider next the problem including virtual photons.
That is, g(a, b, ¢) now contains an additional factor exp(iR)
where R involves a double integral J°f over all time. Those
parts of the index ¢ which correspond to the particle states can
be taken in the same way as though R were absent. We study
now the extra complexities in the states produced by splitting
the R. Let us first (solely for simplicity of the argument) take
the case that there are only two regions a, ¢ separated by time
% and try to expand

g(a, ©) =Z; goi(c)gio(a).

The factor exp(zR) involves R as a double integral which can be
split into three parts Sof s+ S S ct+S oS c for the first of
which both ¢, s are in a, for the second both are in ¢, for the third
one is in @ the other in ¢. Writing exp(iR) as exp(¢R.c) - exp(tRqq)

exp(iR.c) shows that the factors R.. and Ra. produce no new
problems for they can be taken bodily into ge(c) and gio(a)
respectively. However, we must disentangle the variables which
are mixed up in exp(7Rac).

The expression for Rg. is just twice (24) but with the integral
on s extending over the range ¢ and that for ¢ extending over c.
Thus exp(iR,.) contains the variables for times in ¢ and in ¢ in
a quite complicated mixture. Our problem is to write exp(¢R,.)
as a sum over possibly a vast class of states 7 of the product of
two parts, like #;'(c):(a), each of which involves the coordinates
in one interval alone.

This separation may be made in many different ways, corre-
sponding to various possible representations of the state of the
electromagnetic field. We choose a particular one. First we can
expand the exponential, exp(iR.), in a power series, as
2. i*(n!)"(Rsc)™ The states 7 can therefore be subdivided into
subclasses corresponding to an integer # which we can interpret
as the number of quanta in the field at time #,. The amplitude
for the case n=0 clearly just involves exp(iR,s) and exp(iR..) in
the way that it should if we interpret these as the amplitudes for
regions @ and ¢, respectively, of making a transition between a
state of zero photons and another state of zero photons.

Next consider the case n=1. This implies an additional factor
in the transitional element; the factor R,.. The variables are still
mixed up. But an easy way to perform the separation suggests
itself. Namely, expand the 5, ((t—s)2— (X,(f) —Xn(s))?) in Rgc as
a Fourier integral as

i [ exp(—ik[t—s1) exp(—iK- (xa(t) = xn(s))d*K /47,
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For the exponential can be written immediately as a product of
exp+i(K-xx(s)), a function only of coordinates for times s in @
(suppose s<?), and exp—iK-x,(¢) (a function only of coordinates
during interval ¢). The integral on d3K can be symbolized as a
sum over states ¢ characterized by the value of K. Thus the
state with =1 must be further characterized by specifying a
vector K, interpreted as the momentum of the photon. Finally
the factor (1—x",(f) -x"»(s)) in R, is simply the sum of four parts
each of which is already split (namely 1, and each of the three
components in the vector scalar product). Hence each photon of
momentum K must still be characterized by specifying it as one
of four varieties; that is, there are four polarizations.?* Thus in
trying to represent the effect of the past @ on the future ¢ we are
lead to invent photons of four polarizations and characterized by
a propagation vector K.

The term for a given polarization and value of K (for n=1)
is clearly just —pBB.* where the 8, is defined in (59) but with the
time integral extending just over region ¢, while S, is the same
expression with the integration over region ¢. Hence the amplitude
for transition during interval ¢ from a state with no quanta to a
state with one in a given state of polarization and momentum is
calculated by inclusion of an extra factor 78,* in the transition
element. Absorption in region ¢ corresponds to a factor 78..

We next turn to the case n=2. This requires analysis of R,
The 6 can be expanded again as a Fourier integral, but for each
of the two 8, in 3R,.2 we have a value of K which may be different.
Thus we say, we have two photons, one of momentum K and one
momentum K’ and we sum over all values of K and K’. (Similarly
each photon is characterized by its own independent polarization
index.) The factor § can be taken into account neatly by asserting
that we count each possible pair of photons as constituting just
one state at time #o. Then the } arises for the sum over all K, K’
(and polarizations) counts each pair twice. On the other hand, for
the terms representing two identical photons (K=K') of like
polarization, the § cannot be so interpreted. Instead we invent
the rule that a state of two like photons has statistical weight }
as great as that calculated as though the photons were different.
This, generalized to # identical photons, is the rule of Bose
statistics.

The higher values of % offer no problem. The 1/n!is interpreted
combinatorially for different photons, and as a statistical factor
when some are identical. For example, for all » identical one
obtains a factor (n!)~}(—pB.8,*)" so that (n!)~4(i8,*)" can be
interpreted as the amplitude for emission (from no initial photons)
of n identical photons, in complete agreement with (61) for Guo.

To obtain the amplitude for transitions in which neither the
initial nor the final state is empty of photons we must consider
the more general case of the division into three time regions (1B).
This time we see that the factor which involves the coordinates
in an entangled manner is expi(Rap+Ryc+Rae). It is to be
expanded in the form Z; Z; k" (¢c)hij/(b)hj(a). Again the expan-
sion in power series and development in Fourier series with a
polarization sum will solve the problem. Thus the exponential is
Zr 211 21y (iRac)"(iRas) (iR pe) 21y 1) 7112 ) (1) ™. Now the R are
written as Fourier series, one of the terms containing l;+/;+7
variables K. Since ;47 involve a, l;+r involve ¢ and li+1,
involve b, this term will give the amplitude that /;4» photons
are emitted during the interval e, of those /; are absorbed during
b but the remaining r, along with /> new ones emitted during b go
on to be absorbed during the interval ¢. We have therefore
n=I[,+r photons in the state at time ¢, when b begins, and m =1+~
at ¢ when b is over. They each are characterized by momentum
vectors and polarizations. When these are different the factors
()71 1(r!1) 1 are absorbed combinatorially. When some are
equal we must invoke the rule of the statistical weights. For

2 Usually only two polarizations transverse to the propagation
vector K are used. This can be accomplished by a further re-
arrangement of terms corresponding to the reverse of the steps
leading from (17) to (19). We omit the details here as it is well-
known that either formulation gives the same results. See II,
Section 8.
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example, suppose all /j+l,+r photons are identical. Then
Ras=1B88B*, Roc=1B8:85*, Rac=1B8.* so that our sum is

21 Z1s Zy (sl ) 71(EB) ¥ (185) 1 (185¥) 12(iBa*) 1.
Putting m=Il,+r, n=I,+7, this is the sum on # and m of

(B (m ) Zr (mm ) ((m—71) W (n—r) Ir)?

X (#B5*)™ (i) () ~H(EB*) "
The last factor we have seen is the amplitude for emission of »
photons during interval ¢, while the first factor is the amplitude
for absorption of m during ¢. The sum is therefore the factor for
transition from # to m identical photons, in accordance with (57).
We see the significance of the simple generating function (56).

We have therefore found rules for real photons in terms of
those for virtual. The real photons are a way of representing and
keeping track of those aspects of the past behavior which may
influence the future.

If one starts from a theory involving an arbitrary modification
of the direct interaction &, (or in more general situations) it is
possible in this way to discover what kinds of states and physical
entities will be involved if one tries to represent in the present all
the information needed to predict the future. With the Hamil-
tonian method, which begins by assuming such a representation,
it is difficult to suggest modifications of a general kind, for one
cannot formulate the problem without having a complete repre-
sentation of the characteristics of the intermediate states, the
particles involved in interaction, etc. It is quite possible (in the
author’s opinion, it is very likely) that we may discover that in
nature the relation of past and future is so intimate for short
durations that no simple representation of a present may exist.
In such a case a theory could not find expression in Hamiltonian
form.

An exactly similar analysis can be made just as easily starting
with the general forms (46), (48). Also a coordinate representation
of the photons could have been used instead of the familiar
momentum one. One can deduce the rules (60), (61). Nothing
essentially different is involved physically, however, so we shall
not pursue the subject further here. Since they imply*® all the
rules for real photons, Egs. (46), (47), (48) constitute a compact
statement of all the laws of quantum electrodynamics. But they
give divergent results. Can the result affer charge and mass
renormalization also be expressed to all orders in €2//c¢ in a simple
way?

APPENDIX C. DIFFERENTIAL EQUATION FOR
ELECTRON PROPAGATION

An attempt has been made to find a differential wave equation
for the propagation of an electron interacting with itself, analogous
to the Dirac equation, but containing terms representing the
self-action. Neglecting all effects of closed loops, one such equation
has been found, but not much has been done with it. It is reported
here for whatever value it may have.

An electron acting upon itself is, from one point of view, a
complex system of a particle and a field of an indefinite number
of photons. To find a differential law of propagation of such a
system we must ask first what quantities known at one instant
will permit the calculation of these same quantities an instant
later. Clearly, a knowledge of the position of the particle is not
enough. We should need to specify: (1) the amplitude that the
electron is at x and there are no photons in the field, (2) the
amplitude the electron is at x and there is one photon of such
and such a kind in the field, (3) the amplitude there are two
photons, etc. That is, a series of functions of ever increasing
numbers of variables. Following this view, we shall be led to
the wave equation of the theory of second quantization.

We may also take a different view. Suppose we know a quantity
®.2[ B, x], a spinor function of ,, and functional of B, (1), defined
as the amplitude that an electron arrives at x, with no photon in
the field when it moves in an arbitrary external unquantized
potential B,(1). We allow the electron also to interact with itself,
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but &.2 is the amplitude at a given instant that there happens
to be no photons present. As we have seen, a complete knowledge
of this functional will also tell us the amplitude that the electron
arrives at x and there is just one photon, of form A4,P#(1) present.
It is, from (60), JS"(5®.2[ B, x1/8B,(1)) A, LH(1)dr).

Higher numbers of photons correspond to higher functional
derivatives of ®.2. Therefore, ®.2[ B, x] contains all the informa-
tion requisite for describing the state of the electron-photon
system, and we may expect to find a differential equation for it.
Actually it satisfies (V=",8/0x,, B=v,B,),

(iv—m)®.2[B, x]=B(x)®.2[ B, x]

tiety, [[54(5:2) (602[B, x1/B,(1)dry (1)
as may be seen from a physical argument.? The operator (iV—m)
operating on the x coordinate of ®.2 should equal, from Dirac’s
equation, the changes in ®.2 as we go from one position x to a
neighboring position due to the action of vector potentials. The
term B(x)®.2 is the effect of the external potential. But ®.2 may

25 [ts general validity can also be demonstrated mathematically
from (45). The amplitude for arriving at x with no photons in the
field with virtual photon coupling ¢€? is a transition amplitude.
It must, therefore, satisfy (45) with T .2[B]=®.2[ B, x] for any .
Hence show that the quantity

Ce2[B, x]=(iv—m—B(x))®.2[B, x]
f 54 (s1%) (60,2[ B, x1/8B,(1))dr:

also satisfies Eq. (45) by substituting C.2[B, x] for T.2[B] in
(45) and using the fact that ®.2[B, x] satisfies (45). Hence if
Co[B, x]=0 then C.2[ B, x]=0 for all ¢¢. But C.2[ B, x]=0 means
that ®.2[ B, x] satisfies (1C). Therefore, that solution ®2[B, x]
of (45) which also satisfies (iv— m— B(x))®o[ B, x]=0 (the propa-
gation of a free electron without virtual photons) is a solution of
(1C) as we wished to show. Equation (1C) may be more con-
venient than (45) for some purposes for it does not involve
differentiation with respect to the coupling constant, and is more
analogous to a wave equation.

— i€ty
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also change for at the first position x we may have had a photon
present (amplitude that it was emitted at another point 1 is
5®.2/8B,(1)) which was absorbed at x (amplitude photon released
at 1 gets to x is 8..(s;12) where s,? is the squared invariant distance
from 1 to x) acting as a vector potential there (factor v,). Effects
of vacuum polarization are left out.

Expansion of the solution of (1C) in a power series in B and ¢
starting from a free particle solution for a single electron, produces
a series of terms which agree with the rules of II for action of
potentials and virtual photons to various orders. It is another
matter to use such an equation for the practical solution of a
problem to all orders in ¢2. It might be possible to represent the
self-energy problem as the variational problem for m, stemming
from (1C). The 6, will first have to be modified to obtain a
convergent result.

We are not in need of the general solution of (1C). (In fact,
we have it in (46), (48) in terms of the solution To[ B]=%.[B, x]
of the ordinary Dirac equation (iV—m)®[B, x]=B®[B, x].
The general solution is too complicated, for complete knowledge
of the motion of a self-acting electron in an arbitrary potential is
essentially all of electrodynamics (because of the kind of relation
of real and virtual processes discussed for photons in Appendix B,
extended also to real and virtual pairs). Furthermore, it is easy
to see that other quantities also satisfy (1C). Consider a system
of many electrons, and single out some one for consideration,
supposing all the others go from some definite initial state ¢ to
some definite final state f. Let ®.2[B, x] be the amplitude that
the special electron arrives at x, there are no photons present,
and the other electrons go from 7 to f when there is an external
potential B, present (which B, also acts on the other electrons).
Then &,.2 also satisfies (1C). Likewise the amplitude with closed
loops (all other electrons go vacuum to vacuum) also satisfies
(1C) including all vacuum polarization effects. The various
problems correspond to different assumptions as to the dependence
of ®.2[B, x] on By in the limit of zero ¢2. The Eq. (1C) without
further boundary conditions is probably too general to be useful.
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It is shown with the Heisenberg model that in general the Curie temperature of antiferromagnetism
depends on the external field. It is also predicted that when an antiferromagnetic crystal with face-centered
cubic or close-packed hexagonal magnetic lattice is kept at sufficiently low temperatures, its neutron dif-
fraction pattern should show a transition from that due to an order of the afS-type to that of the aBs-type
as the applied field is greatly increased. When the Ising model is assumed, a quasichemical statistical theory
shows that a latent heat and sudden disappearance of the neutron diffraction pattern should be observed in
the antiferromagnetic transition of a face-centered cubic magnetic lattice. However, this cannot be predicted

with assurance, since the Ising model is not reliable.

HE effect of antiferromagnetism! was recently
shown by Shull and Smart? using the new tech-
nique of neutron diffraction in the same manner as the
x-ray diffraction pattern of alloys revealing the order-
disorder effect. The physical characteristics of the
antiferromagnetic effect and of the atomic ordering
effect in alloys are so closely parallel® that we shall be
1 See the review article J. H. Van Vleck, Rev. Mod. Phys. 17,
45 (1945).
2 C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).
3 Peierls first pointed out the close analogy between ferromag-

netism and the order-disorder groblem of adsorption. See R.
Peierls, Proc. Camb. Phil. Soc. 32, 477 (1936).

able to say much concerning the former effect by
drawing an analogy with the well-developed theory of
the latter. In treating either problem we may consider
the lattice structure* as made up of two or more sets of

4 In this paper the term lattice spoken of in connection with the
antiferromagnetic effect usually does not mean the crystal lattice.
Shull and Smart proved by the neutron diffraction method that
in MnO only Mn atoms take part in the spin ordering effect. This
should be a common feature for antiferromagnetic salts. The
face-centered cubic lattice of Mn** in MnO is what we must
consider, though MnO crystallizes in a simple cubic structure of
NaCl type. The lattice of the antiferromagnets in a crystal will
be referred as magnetic lattice.



