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Thermal Resistivity of Mercury in the
Intermediate State
J. K. HuLm

Institute for the Study of Metals, University of Chicago, Chicago, Illinois
(Received April 20, 1953)

HE thermal resistivity along the axis of a 5.2-mm diameter
cylinder of approximately 99.99 percent pure mercury was
measured as a function of transverse magnetic field at various
temperatures between 4.2° and 1.3°K. At temperatures above
about 2.1°K, the resistivity in the intermediate state (0.5<7<1,
where 7 is the reduced field H/H.) was quite well represented by

we)n+ 2ws—wn), (1)

where w, and w, are the resistivities in the pure superconducting
and pure normal states, respectively. This result might have been
anticipated for a specimen composed of alternate superconducting
and normal laminas perpendicular to the axis of the cylinder,
which is probably a good first approximation to the structure in
the intermediate state.!

Below 2.1°K, however, departures from Eq. (1) were observed
corresponding to an additional component of resistivity w,(n)
on the right-hand side, similar in character to that observed in
pure lead by Webber and Spobhr? and in pure tin and indium by
Detweiler and Fairbank.? For mercury, w, vanished at =0.5
and 1.0 and passed through a maximum at an intermediate value
of 7 which seemed to decrease somewhat with decreasing temper-
ature, but which always lay between 0.74 and 0.70. As shown
by Fig. 1, the maximum value of wa was in good agreement with
the empmcal formula

(Wa) max=1.3X107%5 watt™ cm deg,

w=2(w,—

where ¢ is the reduced temperature T/7T.. The results of Detweiler
and Fairbank3 for two tin specimens of nearly the same diameter
and impurity content also yield (%¢)max values proportional to
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F1G. 1. Maximum additional thermal resistivity versus reduced temperature
to the power —35, mercury.
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¢85 with a coefficient 7.9 10~* watt™! cm deg, which suggests
that this type of behavior may be fairly general.

It is worth noting that for the mercury specimen in the normal
state the mean free path of electrons Z, at 2°K was about 4X 10~
cm. While this is small compared to the probable thickness of the
normal laminas! for =0.72, roughly 1072 cm, it is greater than
the estimated width of the superconducting-normal boundary
layer,! about 5X1075 cm. On the two-fluid model these figures
seem to imply that as one crosses the boundary from a normal to
a superconducting region, the equilibrium population of normal
electrons decreases by a factor # in a distance small compared to
Iy, If it is assumed that a similar population decrease occurs for
normal electrons actually crossing the boundary, a fraction
(1—#) of these electrons being in some way prevented from
taking part in the heat transfer process, then a higher thermal
resistivity w,¢™* should occur in a normal layer of approximate
thickness /, in contact with the boundary. Although the reason
for the existence of such a layer is not clear, it is interesting that
for the specimen as a whole this assumption gives rise to an
additional resistivity of the form

waN(wnclnc/Z)t_S; 3)

where w,, and I, are the values of w, and /, for =1, and Z is
the combined thickness of one superconducting and one normal
lamina. Taking Z as about 102 cm, one obtains w,~5X 1035
watt™ cm deg, which is comparable with the observed (w,)max.

I am grateful to Mr. R. J. Sladek for his cooperation in this
experiment.

1D. Shoenberg, Superconductivity (Cambridge University Press, Cam-
bndge, 1952)

T. Webber and D. A. Spohr, Phys. Rev. 84, 384 (1951).
3D P Detweiler and H. A. Fairbank, Phys. Rev 88, 1049 (1952).

The A-Transition in Liquid Helium
R. P. FEYNMAN

California Institute of Technology, Pasadena, California
(Received April 29, 1953)

E show why the interatomic potential does not alter the
existence of an Einstein-Bose condensation! in Het.

The partition function Q=2 exp(—BE,), with B=1/%T, is
the trace of the operator exp(—BH). A coordinate representation
of exp(—itH/h) may be expressed in terms of an integral over
trajectories.? An analogous situation applies to exp(—gH). For a
system of IV atoms of mass 7 interacting in pairs with a mutual
potential V' (R) the partition function becomes

QB_(NI)“ldeztf exp[ f{2h2 (dx’)
+2 V(xi—xi)}du] DV, (). (1)

The integral ;- must be taken over all trajectories x;(x), for
i=1 to N, of the atoms such that initially they are in the same
configuration z; as finally, i.e., x;(0)=2; and x;(8)=2z; [for we
want the diagonal element of exp(—pBH)]. Also an integral is
taken over all such configurations z; (to obtain the trace). This
Qs is for atoms which obey Boltzmann statistics, and the (N !)—!
is added, as is conventional. Actually He* obeys Bose statistics,
the sum on states must only be over symmetrical states. This
has the effect that the true Q for Het is

S
+ Z V(x:—x;) }du] D¥x%;(u), (2)

where in this case the integral JZ,P is taken over all trajectories
for which x;(0) =z; and x;(B) = Pz;.
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That is, the final configuration may find the atoms permuted
from the initial positions (signified by Pz;), and we are to sum
over all such permutations P.

The main effect of the potential is to limit the important
trajectories and configurations z; to those in which the atoms
never overlap (radius of repulsion 2.6A).

In this note we will go into no further detail than is necessary
to determine the reason for and character (order) of the transition.
These features are not affected by smooth functions of the
temperature. We assume Qp would show no transition. Then we
can write Q=¢Qp and -argue that the transition is contained in
the factor ¢ by which Q differs from Qg.

Since for a free particle,?

f exp(— Jo‘ B%mh—%?du Dx(u)
= (2nh?8/m)~% exp[ — 3m (x(0) —x(8))*/BH*]
holds, a displacement by distance x(0) —x(8) =d results in a factor
y=exp(—jmd*/Bh?) 3)

relative to the case of a return to the original pasition [#(8) = x(0) ].

For He at the temperature of the transition (2.2°K), this factor
is 1/e for d=3.4A. Hence, near the transition, displacements
beyond nearest neighbors do not contribute effectively to Q. Only
those permutations are important in which the atoms are either
left in their original positions or moved to a neighboring atom.
A permutation in which 7 goes to j’s site must move j to, say,
k’s site, etc., until the rth atom in the cycle is adjacent to ¢’s
original position and moves over to occupy it. Such a cycle, or
ring, of 7 adjacent atoms each moved to the position of the next
contributes a factor y* to ¢, if we use in (3) some mean atomic
spacing for d.

The atoms are not free particles. But the potentials will not
drastically alter the possibility of moving over to a nearest
neighbor. At any rate we can expect such a factor y increasing
with decreasing temperature, even though the exact temperature
dependence may not be given correctly by? (3). The important
configurations z; in (2) (those with nonoverlapping atoms) are
very much like the configurations for a classical fluid. Each
permutation cycle corresponds to a ring or, if we consider lines
joining atomic centers, to a polygon on this configuration. There-
fore, roughly,

q=2Zrg(L)y", @

where g(L) is the total number of ways that polygons can be
drawn on the configuration so that the total number of sides of
all the polygons together is L. The polygons must not cross.

A single large polygon of 7 sides contributes a very small amount
9" (y<1). But a large polygon can be drawn in more ways than a
small one. Increasing the length 7 by one increases the number of
polygons available by a factor, say s (perhaps 3 or 4), although the
contribution of each is multiplied by y. Thus if sy<1 (high T)
large polygons are unimportant. As 7 falls, suddenly when sy=1
the contributions from very large polygons (limited by the size
of the container) begin to be important. This produces a transition
in the behavior of ¢. .

The theoretical determination of the order of the N-transition in
helium therefore can be reduced to o definite mathematical problem;
namely, the behavior of the sum (4) as a function of y for a cubic
lattice. For the character of the transition probably does not
depend upon the long-range disorder of the actual configuration.

This idealized mathematical problem has not been solved. The
difficulty is that the polygons must not intersect. A rough way
of taking this into account is to assume that, when drawing
polygons, if K sides are already drawn, the next atom site has a
chance of (N—K)/N of being unoccupied. This yields a third-
order transition like the ideal Bose gas (for which, indeed, the
above assumption is valid).

A solution of the idealized problem which more rigorously
describes the geometrical correlations might well give a transition
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of a different order. (The experimental transition appears to be
second order).
This work resulted from conversations with M. Kac.

1F. London, Phys. Rev. 54, 947 (1938).

2 R. P. Feynman, Revs. Modern Phys. 20, 367 (1948).

3 Actually (3) is essentially correct. Even for large displacements of a
given atom ¢, the atoms which might hinder the motion can temporarily
readjust their positions x(#) to permit ¢ to pass more easily. The effect is
just to change m to a somewhat higher effective mass. A more detailed
account is being prepared.

Heat Pulses in Helium II between 0.1°K
and 1.0°K

H. C. KraMERS, F. A, W. vAN DEN BuUrG, anDp C. J. GORTER
Kamerlingh Onnes Laboratory, Leiden, Holland
(Received April 27, 1953)

HE propagation of heat pulses in helium II has been investi-
gated at temperatures between 0.1°K and 1.0°K by the
standard method of Pellam! and Atkins and Osborne? The
lengths of the cavities were 3 cm and 6 cm, and their diameter was
0.4 cm. The pulse duration was usually 20 microseconds. Special
care was taken to ensure a good thermal contact between cooling
agent and liquid. The warming-up times were of the order of
one hour.

At the lowest temperatures the sharp start of the heat pulse
was found to propagate with a velocity of 230 m/sec. In the 6-cm
cavity this velocity decreased, the start becoming unsharp, from
about 0.2°K. In the 3-cm cavity that did not occur until about
0.35°K. Between those temperatures and about 0.8°K the ap-
parent velocity of the pulse decreased rapidly, being smaller in
the 6-cm than in the 3-cm cavity.

The usual second sound was found above about 0.8°K. The
velocities were the same for the two cavities and agreed with those
reported by De Klerk, Pellam, and Hudson? and by Herlin.¢ The
velocities of the start increase somewhat with rising heat input.2

The results suggest that the mean free path of the phonons
traveling at the speed of normal sound is several centimeters at
the lowest temperatures used and decreases to a few millimeters
at most at the highest temperatures.5 ¢ At temperatures of about
0.5°K the behavior of the pulse is rather similar to that of a heat
pulse in a normal medium.?

Details will be published in Physica and the Communications
from the Kamerlingh Onnes Laboratory.

1J. R. Pellam, Phys. Rev. 75, 1183 (1949).

2 D. V. Osborne, Nature 162, 213 (1948); Proc. Phys. Soc. (London)
A64, 114 (1951); K. R. Atkins and D. V. Osborne, Phil. Mag. 41, 1048
(1?§i%)klerk, Hudson, and Pellam, Phys. Rev. 89, 326 (1953).

4 R. D. Maurer and M. A. Herlin, Phys. Rev. 76, 948 (1949).

5 C. J. Gorter, Phys. Rev. 88, 681 (1952).

6L. D. Landau and I. M. Khalatnikov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 19, 637, 709 (1949).

Fountain Effect in Helium II below 1°K

G. J. C. Bots aND C. J. GORTER
Kamerlingh Onnes Laboratory, Leiden, Holland
(Received April 27, 1953)

HE fountain effect in helium IT was investigated below 1°K.

A long vertical glass capillary, kept at a constant temper-

ture of about 1.1°K, was connected by a tube filled with very

fine Fe,O3 powder to a thermally insulated vessel which could be

cooled down by adiabatic demagnetization. The vessel and the

capillary were partly filled with helium II, and in the capillary
fountain effects between 20 cm and 40 cm could be observed.

Below 0.8°K the observed fountain effect was smaller than is

predicted by London’s formula,!

dp/dT=ps,
where pS is the entropy per unit volume.
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