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Themodulation of spontaneous light emission of active centers through elastic waves in Si ∕SiO2 multilayer phoxo-
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modulation of the spontaneous emission can be achieved through an enhanced acousto-optic interaction when
light and elastic energy are simultaneously localized in the same region. © 2012 Optical Society of America
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1. INTRODUCTION
It has long been recognized that the spontaneous emission of
an excited atom is not an inherent property of the atom but
also depends on its environment, since the latter can drasti-
cally alter the vacuum fields that drive the excited atom to
its ground state. It was first suggested by Purcell [1] that
the spontaneous emission rate associated to nuclear magnetic
moment transitions at radio frequencies can be increased by
many orders of magnitude if the system is coupled to an elec-
tromagnetic (EM) resonator. In this respect, enhanced spon-
taneous emission has been demonstrated inside dielectric
multilayer microcavities [2–7], slabs [8], dielectric particles
[9], and waveguides [10,11].

The theory of spontaneous emission in photonic structures
has been elaborated by many authors in both classical [12]
and quantum [13,14] regimes. In the classical regime of weak
coupling between the EM field and the emitter, the sponta-
neous emission rate can be evaluated using classical electro-
dynamics, in conjunction with Fermi golden rule, and turns
out to be proportional to the photonic projected local density
of states. In this context, light emission in one-dimensional
dielectric layered structures can be described theoretically
by means of simple transfer-matrix calculations [6]. A detailed
classical and quantum mechanical analysis of spontaneous
emission in lossless multilayer dielectric structures was re-
cently reported for dipole emitters in silicon waveguides and
simple silicon/air structures [13]. Moreover, similar theoreti-
cal studies in silicon slot waveguides [15] provide evidence
for strong spontaneous emission enhancement over a broad
frequency range in appropriately designed structures.

The influence of a time-varying environment on light emis-
sion has lately drawn increasing attention due to the develop-
ment of advanced experimental techniques. Electro-optic [16]
and thermo-optic [17] tuning have already been demonstrated.
In addition, dynamic tuning of light emission from a single

quantum dot inside a nanocavity in a photonic crystal was also
recently reported [18]. In that study, coherent acoustic pho-
nons with frequencies of a few gigahertz, formed by a surface
acoustic wave, were used to trigger mechanical vibrations and
modify the geometry of the cavity. These vibrations cause a
periodic modulation of the photonic cavity, which influences
fluorescence. Moreover, Brüggemann et al. [19] studied the
influence of strain pulses on the photoluminescence spectra
of InGaAs quantum dots in a λ-cavity of a GaAs layer sand-
wiched between two GaAs/AlAs Bragg mirrors and found that
a strain pulse can enhance the light emission intensity from a
random distribution of quantum dots, since shaking brings
nominally off resonant quantum dots into the frequency win-
dow appropriate for coupling to the cavity mode. Similarly,
there are attempts to control light emission with elastic and
surface acoustic waves [20–23] by taking advantage of the in-
fluence of an elastic field on the dynamics of excitons in multi-
layer semiconductor cavities or quantum dots through the
effect of strain on the electronic band structure.

Recently, there is a growing interest on dynamic photonic
structures, controlled by elastic waves, and consequent phe-
nomena [24–32]. Elastic waves can change the geometry and
refractive index of a photonic cavity, and thus modify its op-
tical properties. The interplay between optical and elastic
waves is exploited in the emerging field of cavity optomecha-
nics, where the optical pressure of localized light in a cavity
produces an elastic wave through mechanical deformation
[28–30]. Additionally, it has been shown that appropriately de-
signed cavities that support simultaneously photonic and pho-
nonic localized resonant modes, so-called phoxonic cavities,
allow for strong nonlinear acousto-optic (AO) interactions,
which can lead to enhanced modulation of light by acoustic
waves through multiphonon exchange mechanisms [31,32].

In this paper, we report a thorough investigation of spon-
taneous emission in multilayer phoxonic cavities and focus on
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the influence of an elastic wave, which resonantly vibrates the
cavity region, on the emission rates, based on rigorous full
electrodynamic and elastodynamic calculations. Our descrip-
tion is valid for light–matter interaction in the weak coupling
regime. For systems with quantum wells or quantum dots, it
has been reported that elastic waves influence the quantum
efficiency by modulating the electron band structure and
the exciton wavefunctions of the emitter [19,33]. However,
here, we shall be concerned only with the influence of the
photonic environment, modulated by an elastic wave, ignoring
modifications of the electron states due to pressure variations.
Therefore, we consider fast emitters and elastic waves of
frequency much smaller than the spontaneous emission rate,
in which case the effect of the elastic wave occurs, mainly,
through the modulation of the refractive index and the inter-
faces of the photonic environment. Our approach is a first step
towards the description of a dynamically tuned elastic-wave-
driven light emission.

Two different cases are elaborated in detail: (i) a cavity
structure where optical and elastic energy is localized in a
defect layer between two Bragg mirrors and allows for an
enhanced AO modulation of light that escapes the cavity,
and (ii) an appropriately engineered surface that sustains si-
multaneously surface-localized states for both optical and
elastic waves and allows for a strong modulation of light that
couples to guided modes trapped in the multilayer. Our calcu-
lations are based on the layer-multiple-scattering method,
which is well documented for both electrodynamics and elas-
todynamics [34–36]. This method constitutes a powerful tool
for an accurate description of the optical and the acoustic re-
sponse of composite structures comprised of a number of dif-
ferent layers having the same two-dimensional periodicity in
the x-y plane (parallel to the layers). For each layer, the meth-
od calculates the appropriate transmission and reflection ma-
trices QI and QIII, respectively, for a plane wave of given
angular frequency,ω, incident on the layer with given x-y com-
ponent of the wave vector, q∥, from z → −∞, as well as the
corresponding matrices QIV and QII for incidence from
z → �∞. Explicit expressions for these Q matrices can be
found elsewhere [34,36]. The transmission and reflection ma-
trices of the composite structure are calculated from those of
the constituent layers. We note that, in the cases considered
here, we deal with the simple situation where all layers are
homogeneous.

2. A DEFECT LAYER BETWEEN TWO
SI ∕SIO2 MULTILAYER BRAGG MIRRORS
Before going into the resonant elastic-wave-modulated emis-
sion, to facilitate the understanding of the different cases pre-
sented below, we briefly discuss light emission of an active
center implanted into an unperturbed multilayer structure.
We consider a SiO2 defect layer, sandwiched between two
multilayer Bragg mirrors, embedded in a SiO2 matrix. Each
Bragg mirror consists of five periods of alternating Si and
SiO2 layers, of thickness a ∕ 3 and 2a ∕ 3, respectively. The struc-
ture is schematically presented in Fig. 1(a). A constant refrac-
tive index is assumed for both SiO2 (nSiO2

� 1.46) and Si
(nSi � 3.46). The two Bragg mirrors on the left and right of
the defect layer cause localization of optical modes. The qual-
ity factor of this cavity can be increased by using Bragg mir-
rors with more Si ∕ SiO2 periods and is only limited by possible

fabrication imperfections and absorption losses. In Figs. 1(b)
and 1(c), we show the calculated dispersion diagram of the
photonic modes of the given multilayer slab, together with
the normalized emitted power by a radiating dipole placed
in the middle of the defect layer, with a random orientation
of its dipole moment. This is calculated by integrating over
two planes on the left and right of the multilayer structure
(see appendix).

Generally, in multilayer structures, because of their invar-
iance parallel to the layers, the modes of the EM field can be
classified into transverse electric (TE), if the electric field os-
cillates parallel to the interfaces, and transverse magnetic
(TM), if the magnetic field oscillates parallel to the interfaces.
Above the light line, defined by q∥ � nSiO2

ω ∕ c, the modes are
propagating in the SiO2 host and can be excited by an exter-
nally incident plane wave of the appropriate polarization (s or
p for the TE or TMmodes, respectively) and corresponding q∥.
The gray-shaded areas in Fig. 1(b) correspond to high optical
transmission, and the white areas denote negligibly small
transmission. The cavity induces a sharp resonance in the
transmittance inside the forbidden frequency region created
by the Bragg mirrors. This cavity mode, for q∥ � 0 where
the TE and TM modes are degenerate, has a quality factor
Q � 1750 and appears at a ∕ λ � 0.19287, which corresponds
to a wavelength λ � 1.55 μm by choosing a � 300 nm. For
q∥ ≠ 0, the TE–TM degeneracy is lifted and the TE modes
are slightly below the TM modes. The cavity eigenfrequencies
move higher with increasing q∥ and are merged into the con-
tinuous spectrum of the system eigenmodes. The cavity
modes have a relatively strong field intensity in the central
SiO2 region with a peak in the middle of the defect layer.
Below the light line, all modes are guided and decay exponen-
tially outside the multilayer slab, on either side of it. These

Fig. 1. (Color online) (a) Schematic view of a one-dimensional
Si ∕ SiO2 multilayer cavity. A dipole emitter is placed in a SiO2 defect
layer, of thickness 2a. Five periods of alternating Si (thickness a ∕ 3)
and SiO2 (thickness 2a ∕ 3) layers, on both sides of the defect, act as
Bragg mirrors for both photons and phonons and create a phoxonic
cavity. (b) Photonic dispersion diagram of the structure of (a). The
thick straight line is the light line in SiO2. Above the light line, white
areas indicate gap regions over which transmission is vanishingly
small, and gray regions correspond to finite transmission, while a
transmittance close to unity is calculated for the cavity modes. Below
the light line, we display the dispersion diagram of the slab eigen-
modes. (c) Average normalized power emitted away from the multi-
layer slab shown in (a) in the SiO2 host, for a dipole emitter placed at
the center of the defect layer (black line) and at a distance Δz � a ∕ 2
away from the center (gray line).
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modes cannot be excited by an externally incident wave
because they cannot match continuously a propagating mode
of the EM field outside the slab; momentum and energy can-
not be conserved simultaneously. The TE modes are mainly
concentrated in the high-refractive-index Si regions, and this
is consistent with the lower group velocity of these modes,
which approach the Si light line for larger q∥ values.

Strong light localization in the defect layer with efficient
coupling to light travelling outside the multilayer slab is
achieved by the cavity mode. Our calculations show a sharp
increase of the emitted power at the bottom of the defect
band, for q∥ � 0, where the flatness of the band indicates a
high density of states. This increase does not depend critically
on the exact position of the dipole. Placing for example the
dipole at Δz � a ∕ 2 from the center of the defect layer causes
only a reduction of the peak of the emitted power, as shown in
Fig. 1(c). Therefore, for any distribution of randomly oriented
dipoles inside the defect layer, a sharp increase of the emitted
power is expected at the onset of the defect band. Our results
show that the abrupt increase of the emitted power at the on-
set of the defect band is due to dipoles oscillating parallel to
the interfaces, while the outgoing light is strongly suppressed
for a dipole oscillating normal to the slab interfaces since, in
this case, ê2 · p̂d � 0 and the emitted light couples only to TM
modes [see Eq. (A6) in the appendix].

The effect of an elastic wave on the optical response of a
multilayer cavity was studied previously [31,32]. The main
conclusion was that the AO interaction between simulta-
neously resonant optical and elastic fields could be enhanced
by an order of magnitude compared to a nonresonant elastic
excitation. This increases the probability for multiphonon ex-
change mechanisms and leads to larger amplitude modulation
of the optical spectra. The effect should be clearly observable
for high-Q optical resonances. An elastic wave with submic-
rometer wavelength can be generated by heating a thin metal-
lic film on the one side of the sample with a femtosecond laser
pulse. As a consequence, a broadband elastic wave is gener-
ated following the thermal expansion of the metal. For exam-
ple, using Au films, waves with frequencies up to few tens of
gigahertz can be produced [19].

The elastic transmission spectrum for a compressional
wave incident normally on the multilayer structure of Fig. 1(a)
is displayed in Fig. 2(a). In the calculations, we used a mass
density ρ � 2.20�2.33� g ∕ cm3 and a longitudinal sound velo-
city cl � 5970�8430� m ∕ s for SiO2 (Si). By choosing the lattice
constant of the Bragg mirrors a � 300 nm, a gap appears for
compressional elastic waves between 9.5 and 12.5 GHz, while
elastic energy is localized inside the SiO2 defect layer at a fre-
quency Ω ∕ 2π � 10.98 GHz. The displacement amplitude pro-
file, associated with this defect mode, is depicted in Fig. 2(b),
together with the corresponding strain field [Fig. 2(c)]. At the
acoustic resonance frequency and for an input strain level of
about 10−3, we obtain a strain level inside the cavity that does
not exceed 6 · 10−3. We note that similar values for the strain in
multilayers are reported in recent experiments [19]. It is worth
noting that elastic waves cannot be strongly localized in cav-
ities without significant absorption and high-Q factors are not
easily achieved.

We follow the approach, described in [31], to calculate the
influence of a compressional elastic wave on the spontaneous
emission in the structure under consideration. We assume

an isotropic AO coefficient, p � 0.22, for SiO2 and ignore
the AO coefficient of Si, which is rather small. The layers
are subdivided into a large number of elementary sublayers
and a uniform refractive index change is calculated for each
sublayer, due to the compressional elastic wave, by Δni �
−1 ∕ 2pin3

i Si, where ni and Si are the average refractive index
and strain in sublayer i. Both the material-dependent, so-
called bulk, AO effect as well as the influence of the moving
interfaces (so-called interface AO effect) are included in the
calculations. The choice of a resonant elastic perturbation has
been made because it induces a more pronounced dynamic
modulation of the optical parameters of the structure, through
an enhanced AO interaction, compared to the nonresonant
case. The overall spectral features of the photonic dispersion
diagram do not change much as time evolves, whereas the po-
sition of the optical cavity modes oscillates with an amplitude
Δω ∕ω � 10−3 at the driving frequency of the resonant elastic
excitation. This effect can be understood as follows. Assum-
ing that the elastic wave does not affect drastically the struc-
ture under study so that both photonic band gap and cavity
modes are maintained, the induced periodic variation of the
refractive index and thickness of the defect layer results in
a periodic oscillation of the position of the optical cavity
modes in the gap with the same period. If both optical and
acoustic cavity modes are involved, their interaction is en-
hanced because of the simultaneous concentration of the re-
spective fields for a long time period in the defect region. In
the wave picture, this is manifested as a large-amplitude

Fig. 2. (a) Transmission spectrum of a compressional elastic wave
incident normally on the multilayer structure of Fig. 1(a). (b) Displa-
cement amplitude profile, normalized to the input displacement level,
at the resonance frequency Ωon � 3.466cl;SiO2

∕ a (solid line) and at an
off-resonance frequency Ωoff � 2.857cl;SiO2

∕ a (dotted line), indicated
by the arrows in (a). (c) A snapshot of the corresponding strain fields.
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oscillation of the position of the optical resonance [31]. The
corresponding emitted power outside the multilayer slab
for an emitter implanted in the middle of the defect layer, aver-
aged over all dipole orientations, is displayed in Fig. 3(a) for
two different acoustic frequencies, one on- and one off-reso-
nance. Here, it can be seen that the resonant AO interaction
strongly modulates, also, the emitted light power outside the
slab so that, for example, at a ∕ λ � 0.19287, we periodically
switch from enhanced to reduced spontaneous emission. This
switching is not possible for elastic excitations off-resonance
where only a small modulation is predicted. The temporal var-
iation (within one period of the resonant elastic wave) of the
emitted light power for parallel dipoles at different positions
in the central SiO2 defect layer is shown in Fig. 3(b). The
emitted power is maximum for a dipole in the middle of
the defect layer and is reduced as we approach its surfaces.
The amplitude of the AO modulation is also maximum in the
middle of the defect layer [see Fig. 2(c)), but also dipoles away
from the center emit in phase as shown in Fig. 3(b). It is also to
be noted that, for dipoles close to the SiO2 cavity surfaces,
light emission is small and is almost insensitive to the elastic
wave.

3. SI ∕SIO2 ∕SI SLOT WAVEGUIDE ON TOP
OF A BRAGG MIRROR
In the multilayer structure considered in the previous section,
the cavity mode does not influence appreciably the light that
couples to slab eigenmodes and is guided parallel to the slab.
By design, at the resonance frequency, the cavity allows more
light to escape the structure and suppresses emission into slab
modes. In general, light emission can be tailored by adjusting
the coupling of the emitted light to different modes of the
structure. For example, by reducing the thickness of the
SiO2 defect layer, it is possible to funnel the emitted power
into slab-guided modes so that the power escaping the multi-
layer slab is minimized. If the SiO2 defect layer becomes very
thin, the electric field associated with the cavity mode shows a
minimum in the middle of the structure and maxima in the Si

layers closer to the defect layer. This leads to efficient cou-
pling of the emitted power of a normal dipole to slab-guided
modes. Such Si ∕ SiO2 ∕ Si slot waveguides have been studied
previously by Jun et al. [15], and our results confirm the main
conclusions of that work, namely a strong broadband en-
hancement of the power coupled to guided modes of the slab.
To achieve efficient AO modulation, however, optical and
elastic fields should be made resonant, simultaneously, in
the same region in space. For this purpose, we consider
the multilayer stack shown in Fig. 4(a), which consists of a
Si�a ∕ 12� ∕ SiO2�a ∕ 60� ∕ Si�a ∕ 12� ∕ SiO2�a� ∕ Si�a ∕ 3� slot wave-
guide structure (the respective layer thickness is given in par-
enthesis) on top of a nine-period SiO2�2a ∕ 3� ∕ Si�a ∕ 3� Bragg
mirror on a SiO2 substrate. The structure is designed to simul-
taneously support an optical surface state and a longitudinal
elastic mode localized close to the surface, which, if driven
simultaneously on-resonance, should induce strong, resonant
AO interaction.

The dispersion diagram of the guided optical modes of the
structure are presented in Fig. 4(b). Because of the different
terminations (air and SiO2), only modes that are below the
SiO2 light line are trapped in the multilayer. Terminating
the Si ∕ SiO2 periodic structure with the Si slot waveguide re-
sults in an optical guided mode that appears close to the light
line above a ∕ λ � 0.43035. Our analysis shows that this mode
is localized close to the surface in the slot waveguide and for a
significant q∥ range it is the only state available below the
light line in this frequency region. For a dipole inside the thin
SiO2 layer of the Si slot waveguide, oscillating normal to the
multilayer interfaces, the existence of this surface-localized
state leads to a sharp rise of the emitted light that couples
to the slab modes as shown in Fig. 4(c). Contrary to the case
of the cavity between two Bragg mirrors studied in the pre-
vious section, here, the parallel dipoles have low emission,
with very small variation in the spectral region of the surface
state. The photonic environment of the slot waveguide favors
more efficient emission from normal dipoles. It is worth not-

Fig. 3. (a) Modulation of the average normalized power, emitted
away from the multilayer slab of Fig. 1(a) in the SiO2 host by a dipole
emitter placed at the center of the defect layer, under elastic excita-
tion at two different frequencies. The dotted line corresponds to the
static case and is a zoom of Fig. 1(c), while the solid lines correspond
to snapshots under the influence of the elastic field at which maxi-
mum changes are obtained. Black line: elastic wave at resonance.
Gray line: elastic wave off-resonance (see Fig. 2). (b) Temporal var-
iation of the emitted light power at a ∕ λ � 0.19287 over a period of the
resonant elastic excitation for a randomly oriented dipole at three
different positions in the SiO2 defect layer: at the center (solid line),
at a distance Δz � a ∕ 2 from the center (dashed line), and at a dis-
tance Δz � a from the center, i.e., at the defect layer surface
(short-dash line).

Fig. 4. (Color online) (a) Schematic view of a Si ∕ SiO2 multilayer slab
with a slot waveguide structure on top of a nine-period Bragg mirror
(for the geometrical parameters see text) on a SiO2 substrate.
(b) Photonic dispersion diagram of the structure of (a). The thick
straight line is the light line in SiO2. The TM surface state is indicated
with the green color. (c) Normalized power emitted away from the
multilayer slab of (a) in the SiO2 host and air (gray dotted line) and
trapped into the slot waveguide (black line), for a normal dipole emit-
ter placed at the center of the thin SiO2 layer in the slot waveguide.
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ing that the emission enhancement to guided modes increases
as we move to higher frequencies above the mode cutoff (not
shown here). We have actually reproduced the results of pre-
vious studies [15], where it was demonstrated that a greater
than tenfold enhancement in the spontaneous emission can be
achieved.

Elastically the structure behaves as a cavity with the Bragg
mirror on one side and an almost total reflector on the other
due to the large elastic impedance mismatch between air and
the solid material. This geometry supports surface resonances
that can be excited by a compressional elastic wave incident
from the homogeneous SiO2 substrate. In Fig. 5, we depict the
displacement amplitude profile and strain field for two acous-
tic frequencies, one on- and one off-resonance. The resonance
frequency is inside the elastic band gap of the Si ∕ SiO2 periodic
structure [see Fig. 2(a)]. At this frequency, displacement and
strain are maximized as we move closer to the free surface.
Strain is significant in the Si regions but, due to the zero
AO coefficient assumed for Si, the AO effect is here mainly
due to the presence of the free surface that allows for larger
amplitude modulation of the interfaces.

The influence of the elastic wave on the optical power
emitted to slab modes for frequencies close to the optical sur-
face state is shown in Fig. 6. In the time domain, the emission
spectra oscillate in frequency and we depict snapshots of the

time-varying emitted power that yield the maximum changes.
These changes of course depend on the frequency of the elas-
tic wave. For the resonant elastic excitation, we find a much
larger shift of the emitted power compared with an elastic
excitation off resonance.

Similar to the cavity structure studied in the previous sec-
tion, resonant AO interaction could achieve a modulated emis-
sion using moderate and experimentally accessible input
strains. Moreover, the modulation amplitude achieved with
the surface-localized waves is an order of magnitude larger
compared to that in the cavity in the bulk structure, discussed
in the previous section, for the same input strain. However, it
should be noted that, in the present case, the optical mode
involved appears at higher frequencies and, in order for our
assumption of nSi � 3.46 to be valid, the photon energy must
be smaller than the Si band gap, which implies a Bragg stack
period a larger than about 500 nm. Alternative materials, such
as silicon nitride or TiO2, could be used in the place of Si to
engineer tunable emission also in the visible range.

4. CONCLUSIONS
In summary, we presented a theoretical study of light emis-
sion, in the weak light–matter interaction regime, in Si ∕ SiO2

multilayer structures that support localized resonant modes
for both optical and elastic waves. Our results provide evi-
dence for strong dynamic modulation of spontaneous emis-
sion about the sharp edge of the optical resonant mode,
under the influence of an external elastic wave that excites
the elastic resonant mode and induces an enhanced AO inter-
action. We have considered structures that modulate both
light coupled to slab-guided modes and light that escapes
the multilayer. Our work is a first step towards the under-
standing of light emission in time-varying photonic environ-
ments and, more specifically, in phoxonic cavities where,
because of the resonant character of the fields, strong AO
effects take place.

APPENDIX A: CALCULATION OF
SPONTANEOUS EMISSION RATES IN
MULTILAYERS
In this appendix, we present in some detail the theoretical
method for the calculation of spontaneous emission rates
of an elementary emitter in a multilayer structure, in the fra-
mework of classical electrodynamics. We consider a sequence
of different homogeneous layers, stacked along the z direc-
tion, and an elementary emitter located at point rd inside
the multilayer stack. Because of the invariance of the system
parallel to the layers, the x-y component, q∥, of the wave vec-
tor q of a plane EM wave propagating through this structure
remains constant. The response of each layer to a plane EM
wave incident with given q∥ and angular frequency ω is de-
scribed by appropriate 2 × 2 transmission and reflection ma-
trices [37]. In conformity with the layer-multiple-scattering
method [34,35], we denote these matrices, respectively, by
QI and QIII for incidence from the left (z → −∞) and QII

and QIV for incidence from the right (z → ∞). These matrices
are diagonal in the basis of linear-polarization modes where
the electric field oscillates in the plane of incidence (p polar-
ization) and normal to this plane, i.e., parallel to the layers
(s polarization). We denote the corresponding polarization
vectors by ê1�q� and ê2�q�, which are the polar and azimuthal

Fig. 6. Modulation of the normalized power, trapped by the surface
mode [Pnr

⊥
: second term of Eq. (A11)] of the multilayer slab of Fig. 4(a)

for a normal dipole emitter at the center of the thin SiO2 layer, under
elastic excitation at two different frequencies. The dotted line corre-
sponds to the static case and is a zoom of Fig. 4(c), while the solid
lines correspond to snapshots under the influence of the elastic field
at which maximum changes are obtained. Black line: elastic wave at
resonance. Gray line: elastic wave off-resonance (see Fig. 5).

Fig. 5. A compressional elastic wave is incident normal to the multi-
layer structure of Fig. 4(a) from the SiO2 substrate. (a) Displacement
amplitude profile, normalized to the input displacement level, at the
resonance frequency Ωon � 4.005cl;SiO2

∕ a (solid line) and at an off-
resonance, frequency Ωoff � 1.878cl;SiO2

∕ a (dotted line). (b) A snap-
shot of the corresponding strain fields.
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unit vectors, respectively, associated with the given direction
of propagation q and are perpendicular to q. The transmission
and reflection matrices of a multilayer stack can be evaluated
from those of the constituent layers in the spirit of the layer-
multiple-scattering method [34,35] and retain their diagonal
form in the given basis: Qpp0 � Qpδpp0 , p, p0 � 1, 2.

Let us first consider what happens if the system under con-
sideration is illuminated by a monochromatic EM wave of an-
gular frequency ω with electric-field component given by
E�r; t� � Re�E�r� exp�−iωt��. In the long-wavelength approxi-
mation (the optical and infrared wavelengths are typically
three orders of magnitude larger than the dimensions of
the emitter), the interaction between the emitter and the ex-
ternal field is described by the Hamiltonian Ĥ int � −p̂d · Ê, i.e.,
a coupling term between the electric dipole moment of the
emitter and the external electric field. According to Fermi
golden rule, the excitation rate is proportional to the squared
magnitude of the matrix element of Ĥ int between the initial
and the final states. In the absence of any objects in the en-
vironment, the emitter is excited by the incident radiation field
Ein. Scattering by the structured environment gives rise to a
secondary wave, so that the total field E is composed by the
primary plus the secondary field. We assume that the environ-
ment affects the local exciting field and the emitted radiation
but not the molecular transitions. The emitter is treated as a
classical electric dipole at point rd with electric dipole mo-
ment pd. In the regime below saturation, the excitation rate
is enhanced by a factor ηexc � jpd · E�rd�j2 ∕ jpd · Ein�rd�j2. With
the help of the Q matrices of the individual layers, one can
obtain the EM field at any point and thus evaluate ηexc for
a given excitation frequency and orientation of the elementary
dipole.

Since in fluorescence there is no coherence between exci-
tation and emission, we can treat these two processes inde-
pendently. In the spontaneous emission process, which will
concern us here, the excited molecule is considered as a clas-
sical electric dipole and constitutes the source. An electric di-
pole moment pd at point rd in a homogeneous medium with
(relative) permittivity and permeability ϵ and μ, respectively,
oscillating with an angular frequency ω that is different in
general from the excitation frequency, induces an external
polarization field P�r; t� � Re�pdδ�r − rd� exp�−iωt��. The EM
field produced by this oscillating dipole has the same fre-
quency ω, and its spatial component is obtained from Maxwell
equations

c2

ϵμ
∇ ×∇ × Ed�r� − ω2Ed�r� �

ω2

ϵϵ0
pdδ�r − rd�

Hd�r� �
−i

ωμμ0
∇ × Ed�r�; (A1)

where ϵ0, μ0 are the vacuum permittivity and permeability, re-
spectively, and c≡ 1 ∕

���������
ϵ0μ0

p
is the velocity of light. The first of

Eqs. (A1) is an inhomogeneous differential equation and can
be readily solved by the Green’s function method. We obtain

Ed�r� � −
ω2

ϵϵ0
G�r; rd�pd; (A2)

where G is the dyadic Green’s function of the homogeneous
host medium [37], which satisfies the equation

c2

ϵμ
∇ ×∇ ×G�r; r0� − ω2G�r; r0� � −Iδ�r − r0�; (A3)

I being the 2 × 2 unit matrix. G can be expanded into vector
plane waves of wave number q � ω

�����
ϵμ

p
∕ c as follows [37]:

G�r; r0� � −
iϵμ

8π2c2

Z
d2q∥

eiq
�·�r−r0����������������
q2 − q2∥

q X2
p�1

êp�q��êp�q��; (A4)

where q� ≡ q∥ �
���������������
q2 − q2∥

q
êz corresponds to z > z0 (plus sign)

and z < z0 (minus sign). The above expansion of the dyadic
Green’s function involves plane waves of any q∥. However
only waves with q∥ < q constitute propagating waves. When
q∥ > q, we have evanescent waves and the corresponding unit
vectors ê1, ê2 become complex, but they are still orthonormal:
êp · êp0 � δpp0 , p, p0 � 1, 2.

According to Eqs. (A2) and (A4), the electric field produced
by the dipole emitter can be expanded into vector plane waves
propagating or decaying along the positive z direction for
z > zd, i.e., on the right of the dipole, and vector plane waves
propagating or decaying along the negative z direction for
z < zd, i.e., on the left of the dipole, as follows:

Ed�r� �
Z

d2q∥
�2πq�2 e

iq� ·�r−rd�
X2
p�1

E�
d;pêp�q��; (A5)

where the plus (minus) sign holds for z > zd (z < zd) and

E�
d;p � iq4pd

2ϵϵ0
���������������
q2 − q2∥

q êp�q�� · p̂d: (A6)

Scattering by the multilayer slabs on both sides of the dipole
gives rise to a secondary field, so that the total field is given by
the primary field produced by the oscillating dipole plus the
secondary field. Using the Q matrices of the multilayer slabs
on the right (R) and left (L) of the dipole, one can take into
account all multiple-scattering events and write the compo-
nents of the total field that propagate or decay along the
positive (�) and negative (−) z direction, in the layer where
the dipole is implanted in, as follows:

E�
R;p � E�

d;p � QII
L;pQ

III
R;pE

�
d;p � QII

L;pQ
III
R;pQ

II
L;pQ

III
R;pE

�
d;p � � � �

� QII
L;pE

−
d;p � QII

L;pQ
III
R;pQ

II
L;pE

−
d;p

� QII
L;pQ

III
R;pQ

II
L;pQ

III
R;pQ

II
L;pE

−
d;p � � � �

� �1 − QII
L;pQ

III
R;p�−1�E�

d;p � QII
L;pE

−
d;p�; (A7)

E−
R;p � QIII

R;pE
�
R;p (A8)

on the right side of the dipole and

E−
L;p � E−

d;p � QIII
R;pQ

II
L;pE

−
d;p � QIII

R;pQ
II
L;pQ

III
R;pQ

II
L;pE

−
d;p � � � �

� QIII
R;pE

�
d;p � QIII

R;pQ
II
L;pQ

III
R;pE

�
d;p

� QIII
R;pQ

II
L;pQ

III
R;pQ

II
L;pQ

III
R;pE

�
d;p � � � �

� �1 − QIII
R;pQ

II
L;p�−1�E−

d;p � QIII
R;pE

�
d;p�; (A9)

2572 J. Opt. Soc. Am. B / Vol. 29, No. 9 / September 2012 Almpanis et al.



E�
L;p � QII

L;pE
−
L;p (A10)

on the left side of the dipole. It should be noted that in
the above equations all Q matrices refer to plane waves in the
region of the dipole that are expanded with respect to the
same point rd.

The rate at which the emitting dipole loses its energy is de-
fined as the net outflow of energy from two infinite surfaces,
parallel to the x-y plane, in the layer where the dipole is im-
planted in: one on the right and one on the left of the dipole.
Integrating the normal component of the Poynting vector over
these surfaces, we obtain for the power flow to the right of the
dipole

PR � 1
8π2q5

��������
ϵϵ0
μμ0

r Z
d2q∥

X2
p�1

�∣E�
R;p∣

2 − ∣E−
R;p∣

2�

× Re
���������������
q2 − q2∥

q
− 2 Im�E�

R;pE
−	
R;p�Im

���������������
q2 − q2∥

q
(A11)

and a similar expression for the power flow to the left of the
dipole PL, which can be obtained from Eq. (A11) by replacing
E�
R;p by E−

L;p and E−
R;p by E�

L;p. We note that positive (negative)
sign of PR�L� means energy flow directed away from (towards)
the dipole. The first term in Eq. (A11) involves only propagat-
ing waves (q > q∥) and is clearly related to the transfer of
energy by way of the far field of the dipole, while the last term
involves only evanescent waves (q > q∥) and represents
energy transfer through the near field.

A certain fraction of the power emitted by the dipole is dis-
sipated as Joule heating in the surrounding absorbing layers
(nonradiative decay process). The rest of the power is ra-
diated away in the outer host medium or transferred to pos-
sible guided modes of the multilayer slabs on both sides of the
dipole. The total energy flow radiated in the outer host med-
ium is evaluated by integrating the normal component of
the Poynting vector over two infinite x-y planes: one on the
right and one on the left of the whole multilayer structure.
We obtain

Pout
R � 1

8π2q5

��������
ϵϵ0
μμ0

r Z
d2q∥

X2
p�1

∣Eout
R;p∣

2Re
���������������
q2 − q2∥

q
(A12)

and a similar expression for Pout
L with Eout

L;p in place of Eout
R;p,

where Eout
R;p � QI

R;pE
�
R;p and Eout

L;p � QIV
L;pE

−
L;p. Energy conserva-

tion implies that the power transferred into possible guided
modes and Joule heating of the multilayer slabs on the right
and left of the dipole is given by PR�L� − Pout

R�L�.
As pointed out in [15], for lossless dielectric layers, the in-

tegrands in Eq. (A11) have poles at the eigenmodes of the mul-
tilayer slab. To overcome this problem, we included a small
imaginary part (10−4) to the dielectric function, excluding
the regions of the emitter, which ensures fast convergence
of the integrals involved and accurate results [15]. This ap-
proach is simple to implement and, using an adaptive grid
method, we obtain rapid convergence. At the same time,
the method can be generalized in a straightforward manner
to layered structures where the component layers are not
homogeneous but have the same two-dimensional periodicity
[34,35].

In the absence of any object in the homogeneous host med-
ium, the radiation power emitted by the dipole can be calcu-
lated directly from Eq. (A11) noting that, in this case, there is
no secondary field. After some straightforward algebra, we
recover the well-known result

P0r �
cq4p2d

12πϵϵ0
�����
ϵμ

p : (A13)

The total decay rate of the emitter in the host medium, in
absence of the multilayer structure, is the sum of the radiative
and nonradiative decay rates, Γ0r (� P0r ∕ℏω) and Γ0nr,
respectively. The latter accounts for intrinsic nonradiative
decay mechanisms of the molecule, such as multiphoton
processes, direct electron-transfer processes, etc., and does
not depend on the environment. The intrinsic quantum yield
of the emitter is defined as q0 � Γ0r ∕ �Γ0r � Γ0nr�. The pre-
sence of the multilayer structure introduces additional
decay channels through absorptive losses and excitation of
guided modes, and thus the quantum yield takes the form
q � Γout ∕ �Γ� Γ0nr�. Using the definition of q0, this can be
recast as

q � Γout ∕Γ0r

Γ ∕Γ0r � q−10 − 1
� Pout ∕P0r

P ∕P0r � q−10 − 1
; (A14)

where P � PR � PL and Pout � Pout
R � Pout

L and q0 is a given
quantity characteristic of the emitter.

The emitted power of a radiating dipole depends on its
exact position and orientation. For randomly oriented dipole
sources, an average over different dipole orientations has to
be performed. The average emitted power, Pav, is given by
Pav � 2P∥ ∕ 3� P⊥ ∕ 3, where P∥�P⊥� is the emitted power if
the dipole oscillates parallel (normal) to the layers, and is
normalized to the corresponding power emitted in a homoge-
neous environment. By assuming an emitter with a quantum
efficiency equal to unity, the spontaneous emission enhance-
ment is proportional to the normalized emitted power. In the
case of incoherent emission from a distribution of light emit-
ters, it is necessary to sum up the time-averaged power over
the distribution of the elementary dipoles. In the case of co-
herent emission, the total electric field at some point has to be
calculated from the contributions of the individual dipoles
prior to the time-averaged power calculation.
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