PHYSICAL REVIEW D

VOLUME 2,

NUMBER 8 15 OCTOBER 1970

Conjectured Set of Exact Bootstrap Equations*

Suu-Yuan Cuu anp P. Kaus
University of California, Riverside, California 92501

AND

F. ZACHARIASEN
California Institute of Technology, Pasadena, California 91109
(Received 12 December 1969)

A set of exact bootstrop equations is conjectured, consisting of two coupled homogeneous equations for
the vertex function and the propagator from which any z-legged amplitude can be constructed. One equation
is analogous to the vanishing of vertex renormalization constants (Z=0); the second equation expresses
“duality”. All graphs can be reduced to the simple tree diagram. Amplitudes, if solutions exist, will be
crossing symmetric and will have at least all the necessary singularities making unitarity plausible but not

proved.

I. INTRODUCTION

N the continuing search for a well-defined statement
of the bootstrap hypothesis, for a set of “equations”
encompassing the bootstrap theory, two primary ap-
proaches have been used. These may conveniently be
called the “Regge-pole formulation”! and the “Z=0
formulation.”? They are, presumably, equivalent ways
of saying the same thing.?

Both of the formulations provide us with valuable
insights into what we mean by the bootstrap hypothesis.
The Regge-pole formulation (together, of course, with
experimental input) has made us understand that we
have rising trajectories, and daughter trajectories which
perhaps have real particles on them, so that we must
expect to deal with families containing infinite numbers
of particles (albeit most are unstable) in any true
bootstrap theory. It has also led us to the concept of
“duality,” which, simply stated, is just the idea that
one must be careful in phrasing a bootstrap theory to
avoid double counting.* Finally, we have learned from
the Regge formulation how to cope with composite
particles of high spin, and how to avoid the divergences
which would, in field theory, be associated with such
particles.

From the Z=0 or field-theoretic formulation, on the
other hand, we have learned the value of diagrams in
describing a bootstrap theory. We can phrase the boot-
strap in a manifestly crossing-symmetric way, so that it
is clear that the bootstrap conditions in different
channels are compatible.® This formulation also allows

* Work supported in part by the U. S. Atomic Energy Com-
mission. Prepared under Contract No. AT (11-1)-68 for the San
Francisco Operations Office, U. S. Atomic Energy Commission.

1 G. F. Chew and S. Frautschi, Phys. Rev. Letters 7, 394 (1961).

2 A. Salam, Nuovo Cimento 25, 224 (1962); P. Kaus and F.
Zachariasen, Phys. Rev. 171, 1597 (1968).
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4 This is not to be confused with approximate and often false
statements of duality which equate s-channel resonances with
a single leading ¢-channel Regge-pole contribution “on the aver-
age,” at energies all the way down to threshold.

5 To be specific, the number of constraints Z=0 exactly equals
the number of coupling constants plus the number of masses,
regardless of the number of channels involved (see Ref. 2).
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us to invoke many of the well-known approximations of
conventional field theory in the bootstrap. In addition,
it permits us to write down, formally at least, exact
equations which contain the whole of the bootstrap
theory.?

Both the Regge bootstrap theory and the Z=0 boot-
strap theory are, however, really unsatisfactory. The
Regge approach (which, incidentally, is sometimes
glorified with the title “S-matrix theory”) is woefully
incomplete in that its assumptions cannot be made
explicit in other than rather simple cases. The Z theory
is also sadly lacking because it is incapable of dealing
with particles of high spin. It is, therefore, a worthwhile
occupation to look for other, more satisfactory, ways of
phrasing the bootstrap theory; ways which may, hope-
fully, permit us for the first time to write down exact,
explicit, and well-defined equations encompassing the
bootstrap assumption.

We should like to combine here the ideas proceeding
from both of these older formulations into a new and
remarkably simple way of setting up the bootstrap
theory, one which consists simply of a set of coupled
integral equations, which can be written down explicitly
and in closed form, and a rule which permits the direct
calculation of any (on- or off-shell) scattering or pro-
duction amplitude in terms of these functions.

Let us begin with the idea, taken from the Z=0
formulation, that the bootstrap theory can be described
with graphs. At this stage, we will not try to be very
specific about what a graph means; we need to make
explicit only the following three remarks.

(1) First, graphs are to be constructed by conventional
Feynman rules out of vertex functions and propagators.
These are, as usual, functions of the 4-momenta as-
sociated with each line in a graph, and they are in
addition labeled by a set of indices for each line. The
indices are to reflect the input from the Regge formula-
tion, that we must expect to have to deal with infinite
numbers of particles. Thus, among the indices are
channel labels, that is, a total spin J, projection M, and
whatever conserved internal quantum numbers may

1535



1536 CHU, KAUS,
Fre. 1. Direct and exchange
. graphs which must not be
added to avoid double count-
ing.
(a) {©

exist. But we must not expect channel indices alone to
suffice. If we anticipate the existence of daughter tra-
jectories, we must allow for the possibility of many
particles in each channel® so that the indices will, in
general, include more than J, M, and internal quantum
numbers. Exactly what this extra index (or set of
indices) is, we do not know; for the moment, it suffices
to say that it exists. Evidently, in any graph with an
internal line, the indices associated with that line are to
be summed over.

We thus have a set of vertex functions, and a set of
propagators, labeled by 4-momenta and indices, and in
terms of which we can write down any graph. Particles
appear as poles (on the real axis if stable; on some sheet
or other if not) in the propagator functions. The
quantum numbers of the particle determines which
channel, and hence which propagator, it appears in.

(i) The next question to be answered is what is the
rule by which we construct scattering amplitudes, and
this leads us to our second remark.

From the Regge theory, we have the concept of
duality. In terms of our graphs, this means that we
cannot blindly add graphs like those of Figs. 1(a) and
1(b) without danger of double counting. But by the
same token, we must be careful not to add graphs like
Figs. 2(a) and 2(b) because this, as we have learned
from the Z=0 formulation, will also involve double
counting.

In contrast to a field theory with elementary particles,
then, in a bootstrap theory one cannot calculate an
amplitude simply by adding all graphs; rather we must
select a subset of all graphs. Exactly which subset is to
be included will, of course, depend on just what the
vertex functions and propagators are. Whatever equa-
tions we require these to satisfy will determine which
graphs comprise a physical amplitude.

The simplest and most appealing choice, to anticipate
the content of the rest of this article, is to choose the
vertex and propagator so that they satisfy exactly the
two equations described graphically in Figs. 3(a) and
3(b). As will be discussed more fully later, from these
equations one deduces the important result that all

=

T16. 2. Vertex graphs which
must not be added to avoid
double counting.

6 We hasten to emphasize, however, that we do nof attempt to
make a one-to-one correspondence between lines in graphs and
(stable or unstable) particles. One propagator (corresponding to
one line) may have several poles (corresponding to several par-
ticles) or no poles (corresponding to no particles).
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graphs with the same number of external legs are equal,
irrespective of their internal structure. The consequent
rule (which avoids double counting) for constructing
amplitudes, is then clearly that an n-legged amplitude is
equal to any single n-legged graph. Since all graphs are
equal, any one of these suffices to give the entire ampli-
tude. This means, in particular, that not only poles in
the cross channel, but in fact all multibody singularities
of the amplitude as well, will be produced at least in
part by the divergence of the sums over the infinite set
of indices associated with the internal lines of a given
diagram. For some diagrams, indeed, a// singularities in
some channels will come about through the divergence
of these sums.

(ili) This brings us to our third remark. As we have
said, the lines in our graphs do not strictly correspond
to particles; nevertheless, it is convenient to think of
them as doing so. Roughly speaking, then, our lines
stand for the infinite set of composite particles contained
in the bootstrap theory, and of this infinite set, almost
all are unstable. In the usual field theory, on the other
hand, a line in a Feynman graph stands for the stable
elementary particles which are the input into the theory.
In our case, furthermore, an amplitude is represented
by a single graph, while in the normal language it is
given as the sum of an infinite number of graphs.

Now we may think of attempting to reexpress our
graphs, with the infinite number of particles in each
line, in terms of a new set of graphs in which only the
subset of stable particles appears in the lines. Evidently,
a single graph of the first type will generate an infinite
number of graphs of the second type.

Thus, we anticipate a kind of reciprocity between the
usual Feynman graphs and our graphs: Our graphs
amount to replacing an infinite set of graphs with a
finite number of kinds of lines by a finite set of graphs
with an infinite number of kinds of lines.

Having made these remarks, let us attempt to sum-
marize what we hope to do in the body of this paper.

We wish to set up, first, equations by which vertex
functions and propagators can be determined, second,
rules for the calculation of graphs in terms of these
functions, and third, rules for the calculation of physical
amplitudes in terms of graphs.

Further, the theory so defined will be analytic, cross-
ing symmetric, and (we hope) unitary, and it will have
no double counting of either of the two types described
above, so that it will truly be a bootstrap theory.

The theory we shall present is incomplete in two
ways. In the first place, the “index” referred to above
which distinguishes the different lines in the graphs

T16. 3. Graphical representation of bootstrap equations.
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I'16. 4. “Vertex” bootstrap graph.

cannot be completely defined a priori. What it is must
be determined by the equations we write down for the
vertex functions and propagators. This will be greatly
elaborated on later.

In the second place, the theory is incomplete in that
we have not been able to demonstrate that the ampli-
tudes calculated by our rules are unitary. Two possi-
ilities exist. One is that, with any solution (or solutions)
of the integral equations for the vertex functions and
propagators, the resulting amplitudes are unitary. The
other is that these equations necessarily have many
solutions, but only one, or a limited class, of them gives
a unitary theory.” In this case unitarity would be an
extra condition, in addition to the equations for the
vertex and propagator, to be imposed on the theory.

In at least a trivial sense, the second of these possi-
bilities is the one which applies. Since our equations for
the vertex and propagator are homogeneous, there is
evidently a freedom to change the scale in the solutions.
That is, an arbitrary constant multiple of a solution for
the vertex with a related constant multiple of the
solution for the propagator is also a solution. We thus
have at least a continuously infinite class of solutions
(if we have one). However, since the unitarity relation
is nonlinear, only one (at most) of this class of solutions
can be unitary. Thus unitarity must be used at least to
determine the scale of the theory.

Whether or not this somewhat trivial lack of unique-
ness is the only one which exists we do not know; we
suspect not. If it is, we would hope that the equations
themselves guarantee unitarity. If it is not, we would
hope that unitarity is compatible with the equations
and that it can be imposed as an additional constraint
on the solutions.

II. PROPOSAL
Definitions

Since much of this proposal will be based on manipu-
lating diagrams, it is necessary to define what we mean
by the various quantities appearing in them. In analogy
with usual Feynman rules, we assume a graph to be

7 For the sake of completeness and honesty, we must add that
a third possibility also exists, namely, that our equations are in-
compatible with unitarity.
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I16. 5. “Duality” bootstrap graph.

constructed from ‘“‘vertex functions” I', which we will
take to join three lines at a point, and “propagators” A,
which will be represented as lines joining one vertex
with another.

First, what is meant by a line? A line symbolizes a
four momentum and a set of indices which label the
states (not, by any means, necessarily single particle
states) in the theory. As mentioned above, the precise
nature of the set of indices will have to be determined
by the solution to the equations of the theory. We will
come back to discuss various possibilities after the
equations have been defined.

Next, we write the expressions for the basic quantities
in the theory: (a) Vertex functions are written

I‘Jl;lll,JgMg,J;.'\/“(PI,I)%PS; Xl,Xz,Xs)
= Piligia(l)lyl)2y1)3); (1)
(b) propagators are written

AJM(P; Xl:XQ): Ailiz(])) . (2)

The index 7, then, stands for the channel indices
Jn, Mn, and something else which we call X,. For
convenience we will not distinguish between continuous
and discrete contributions to X, when writing summa-
tions over i,, but we note that we have not assumed
that the propagator is diagonal in all contributions to
X, though it doubtless will contain some conserved
quantities, in particular, internal conserved quantum
numbers. Also for convenience we have not included
the 4-momentum P, in the index .

We now write the equations which, we propose, define
I' and A. Graphically, as mentioned in the Introduction,
they are very simple.

First, the vertex condition may be represented as in
Fig. 4. Second, the expression for duality is shown
graphically in Fig. 5. All internal lines are to be summed

<

(a) (b) (c)

I'16. 6. Reduction of the box diagram.
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(c) (d)

F16. 7. Reduction of a nonplanar graph.

or integrated over all indices consistent with conserva-
tion laws.?

Specifically, the graphical equations shown in Figs. 4
and 5 mean

Pz‘lizia(Pl,Pz,Ps)

I
™

a*P P1’9£1i4(_P1—P7 Pl; P)A«'m(]’)

14,25,16,27,18,79

X Ligigis(— P, Pa, —Ps+P)Ag5;,(—Po+P)
4 X Tiizis(Pa—P, P3, P1+P)Asi(P1+P) (3)
an

z Pilizis(Pl; P2; "PI—P2)A1’515('_P1_P2)

5,16
Xrteiaiq(P1+P2; P37 P4)
=2 Tauis(P1, Pay P—1—Py)Ayyi(—P1—14)
5,16
szei'zfa(l)l_*_])d; 1)27 ])3) . (4>

An important property of our vertex functions is that
the order in which the indices appear is immaterial.
This is crucial in reducing nonplanar diagrams. In
formulations of amplitudes based on the Veneziano
representation,® this basic property of vertex functions
is violated and the consequent classification of graphs
becomes very complicated.

III. CONSEQUENCES

From Egs. (3) and (4) we can see that all diagrams
with 7 external legs are equivalent. Take the box
diagram [Fig. 6(a)] as an example. Duality [Eq. (4)]
tells us that this is equal to any planar four-legged
diagram with one loop, in particular, to the one in
Fig. 6(b). The vertex condition [Eq. (3)] then reduces
this to the simple exchange diagram shown in Fig. 6(c).

0

8Tt is not clear at this point exactly which conservation laws
will be input and which are to be bootstrapped. Hopefully, all
internal symmetries, at least, can be derived from the bootstrap
assumption.

9 K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184,
1701 (1969); K. Klkkawa S. Klein, B. Sakita, and M. A. Vlrasoro
Phys. Rev. D1 3258 (1970)

F16. 8. Unnecessary kind
of duality.

AND ZACHARIASEN 2

116, 9. Necessary kinds of duality.

Nonplanar graphs can also be reduced in a similar
way. Take as an example the special case where the
index X includes (conserved) baryon number which can
take on only two values, namely 0, indicated by a
dashed line, and 1, indicated by a solid line. (The arrow
here is used to distinguish baryon from antibaryon, not
to indicate the sign of the momentum as in previous
graphs.)

Consider now the diagram in Fig. 7(a). Applying
duality to the external legs 1 and 4, we obtain Fig. 7(b).
Then, applying duality to 1 and 3 gives Fig. 7(c), and
finally the vertex condition applied to 2 and 4 gives
Fig. 7(d). Note the important observation that at no
stage was it necessary to assume the existence of a
baryon-number 2 line. In other words, it is zof implied
here that duality of the type shown in Fig. 8 exists.
There may or may not be such a dibaryon vertex,
depending on whether or not the equations have a
solution without it, but it is not needed for our re-
duction. We do require, on the other hand, that the
types of duality expressed in Fig. 9 exist.

It is worth mentioning, incidentally, that excluding
lines with exotic quantum numbers from our diagrams
never forces us to say any scattering amplitude is
exactly zero. There is always, for every process, at least
one diagram without loops in which all lines are
nonexotic.

It is fairly obvious now that all #-legged graphs are
equivalent. In particular, then, the general n-legged
graph may be reduced to a simple tree diagram, for
example, that shown in Fig. 10.

We now make the following assumption: The n-legged
off-shell amplitude T, is equal to any n-legged graph. The
on-shell amplitude is, of course, as usual constructed
from the off-shell amplitude simply by setting the
squares of the external 4-momenta equal to the squared
masses of whichever particles we wish to have as the
external legs, and choosing the external leg channel
indices to correspond to those same particles.

Since one of the diagrams representing 7, is the tree
diagram, Fig. 10, 7', can be written entirely as a product
of n—2 vertex functions I';;(P;P;Px) and #—3 pro-
pagators A;;(P) with the appropriate summations or
integrations implied. The problem then reduces entirely

N |/
/ \

F1c. 10. Graph representing a production amplitude.
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I'16. 11. Bootstrap equation in quark model.
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to solving Eqgs. (3) and (4). These, of course, are very
complicated and we do not know at this point whether
solutions exist, or whether solutions, if they exist, are
unique.

That Egs. (3) and (4) are not unique at least as to
scale can be seen directly. Clearly if a solution exists
for the functions I';;z and Ay, every I' can be multiplied
by a constant 4%, as long as every Ais multiplied by 472
The n-legged amplitude will then be multiplied by 4™.
If this is the only type of nonuniqueness, unitarity
would then, presumably, determine the scale 4, as
mentioned in the Introduction.

We now turn to a discussion of the indices 7,. Let us
convince ourselves first that these cannot be too trivial.
One extreme would be that the I'’s and A’s have no
indices at all. Then to satisfy (4), TAT must not depend
on the 4-momentum of A. Looking at (3) then, we see
that the integrand would be independent of the loop
momentum p and the integral would diverge.

The other extreme may be to think of Ty, as
Tyiary,7005,0505 and independent of the 4-momenta.
In that case, the couplings are 3—j symbols
(Clebsch-Gordan coefficients), and consequently Eq.
(3) reduces to the requirement that the sum
D sursis W(IWJuJ 2T 55 J3Js), where W is the Racah
coefficient, must be independent of Jy, J5, and J;. Since
the Racah coefficients do not in fact satisfy such a
relation, this is not a solution either.

A combination of these two extremes are the
Cutkosky relations.’® Cutkosky showed that if a set of
n vector mesons of equal mass bootstrapped themselves,
then their mutual coupling constants were the structure
factors of a Lie group, and this result has been genera-

F16. 12. Bootstrap equation in quark model.

1 R. E. Cutkosky, Phys. Rev. 131, 1888 (1963.)
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I'16. 13. Bootstrap equation in quark model,

lized to other types of particles. We would obtain
Cutkosky’s relations exactly if we assumed that
Tiji(P1,Ps,Ps) is given by gsnl (P1,Ps,Ps), where T is a
universal function independent of the indices, while g;;
is independent of momenta. In this case, the argument
about Racah and Clebsch-Gordan coefficients no longer
applies because of multiplication by the function 7.!!
However, the argument that the integral equation for
I must diverge is the same as in the subscriptless case
discussed above. Thus this simple world cannot really
satisfy our equations either. Nevertheless, the Cutkosky
relations may provide a reasonably useful approxima-
tion for nearly degenerate multiplets.

The index 7 in I';;y;, and Ay, then stands for J, M,
and a set of indices X as discussed before. This set X
may be a discrete index, which could label, for example,
all the different single-particle states in a given channel.
In the case of infinitely rising trajectories, it might be
identified with a daughter index. On the other hand, X
may be as complicated as the field-theoretical indices
which label all the states in Hilbert space. In this event,
X would contain a label indicating the number of the
stable particles of the field theory contained in the line,
as well as momenta, spins, and whatever else is neces-
sary to specify their configuration. A single line in our
diagrams, then, will stand for varying number of lines
in the conventional Feynman graphs. Our vertices with
three of our lines will, for varying values of the indices,
become amplitudes containing all possible numbers of
field-theoretic external lines. Our Eqgs. (3) and (4) will
become a set of equations connecting all these field-
theoretic amplitudes, and altogether, it is likely that
everything is so complicated that our approach has
provided little, if any, simplification.

A most attractive possibility is that the unknown
part of the index will turn out to be connected to the
quark model. This may go along the following lines: The
index carries the quark information and a solution
implies that a line must be either three quarks or quark
and antiquark. A graph then implies that every quark
or antiquark line coming from an external leg has to go
to another external leg. We could then rewrite Egs. (3)

3 2 3

(a) (b) (c)
I'r6. 14. Vertex graphs in FLD (Feynman-like diagram) case.

" C. Goebel, Lectures in Theoretical Physics, Boulder, Colorado,
1967 (Gordon and Breach, New York, 1967), Vol. 9B.
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16, 15. Z =0 bootstrap graphs.

and (4) diagramatically, as shown in Figs. 11-13. In
other words, X would do the job of keeping track of
whether a line is a three-quark or a quark-antiquark line
and stand for all that is necessary to define the line in
terms of its quark content. The equations then say that
the external quark lines can be connected in any manner
as long as internal lines can be represented as quark-
antiquark or three-quark lines, and also that internal
quark loops can be added without altering the result.
Note also that any selection rule satisfied by the lowest-
order graphs is a fortiori also a selection rule of the
entire amplitude; it is not necessary to argue that
certain higher-order corrections are “small” in order to
avoid violating such rules.!?

To summarze, all we can say is that oversimplified
assumptions for X will not be consistent with Egs. (3)
and (4); but whether there is a set X which is consistent
with them and whether it is unique, we do not yet know.

The reader will by now have noticed some similarities
to recent attempts® to construct, with so-called Feyn-
man-like diagrams (FLD), unitary theories based on
the Veneziano representation. A few remarks on the
connection between these attempts and the approach
under discussion here are appropriate at this point.

First, the FLD approach, just because it is based on
the Veneziano representation, and because the
Veneziano representation has only s-¢ and not s-» or t-u
duality, must either accept the existence of resonances
in exotic channels or else it must distinguish between
planar and nonplanar diagrams. This is equivalent in
our language to distinguishing between the order of
indices in a vertex function: FLD must say that
I'y257 T'se. In terms of diagrams, FLD must say that
the vertices shown in Figs. 14(a) and 14(b) are different.
Evidently, such a distinction is entirely outside the
spirit of conventional Feynman diagrams, and there-
fore, outside the spirit of what we are attempting to
accomplish here.

In our approach, we must maintain the equality of
the two vertices in Fig. 14; by the same token, our rules
for calculation of a graph apply equally well to non-

F16. 16. Connection between duality and Z=0.

2P, G. O. Freund and R. J. Rivers, Phys. Letters 29B, 510
(1969).
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I'16. 17. Graph illustrating n-particle intermediate-state
contributions to unitarity relation.

planar as well as to planar graphs. Nevertheless, as we
have already illustrated, we do not have to assume
duality with exotic channels in order to reduce even
nonplanar graphs to the simple lowest-order form, and
the reason we can avoid this is precisely because our
diagrams do #not stand for simple Veneziano-like func-
tions. The price we pay for this is, of course, that the
FLD approach deals with explicit, known, functions as
its input, while we do not know what our I' and A are;
indeed, we do not know if they exist.

IV. DISCUSSION

Why is this theory attractive? First of all, it has a
strong similarity to the field-theoretic formulation of
the bootstrap hypothesis? based on the vanishing of
well-defined renormalization constants Z. In fact, if we
represent the conditions Z; — 0 and Z; — 0 pictorially
by Figs. 15(a) and 15(b), then it follows that by putting
15(b) into 15(a) we obtain Fig. 16. Comparing the part
of the diagrams inside the dashed rectangles, we see
that duality results from the two Z-— 0 conditions.

This remark is not to be interpreted rigorously.
Duality clearly depends on the nonconvergence of the
perturbation series and therefore on the existence of an
infinite series of particles of higher and higher spin. It
is precisely for high-spin fields that we do not know how
to define the field theory and the renormalization con-
stants Z. We have, therefore, been unable to obtain our
theory as the rigorous Z — 0 limit of a Lagrangian (and
therefore unitary) field theory. We can, at this stage,
only point out the resemblance.

In any event, whether or not we can eventually make
the connection with Z=0 precise, we have a theory
which can be discussed on its own merits. The theory is
evidently crossing symmetric, analytic, and is a boot-
strap theory in the sense that there are no (obvious) free
parameters. The only basic property which is not
clearly present is unitarity. Intuitively, one can see that
unitarity is plausible. All graphs are, after all, in a
sense included; thus all the necessary multiparticle
singularities in any amplitude are present. To be more
specific, look at the amplitude for the two external
particles to go into two other external particles. This
can, as we have shown, be represented by an particular
four-legged diagram; suppose we choose that shown in
Fig. 17. Among the s-channel singularities of this dia-
gram are those obtained by explicitly cutting the =
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internal lines. Clearly the contribution of this par-
ticular singularity to the s-channel absorptive part is
T9onX Trnoo; that is, precisely the z-body intermediate
state contribution to the unitarity relation.

Thus it seems that the required singularities are
present; what we cannot yet show is that only these are
present.

Finally, if the situation regarding unitarity can be
satisfactorily cleared up, we have defined a theory with
all the desired properties of a true bootstrap theory. We
have a well-defined set of equations, (3) and (4), for a
set of vertex functions and propagators. They incor-
porate crossing and analyticity, and if they have solu-

PHYSICAL REVIEW D VOLUME
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tions we have a prescription for calculating any n-legged
amplitude. We then have here a set of exact bootstrap
equations written in closed form, with which one can
study questions of existence and uniqueness of solu-
tions, and which present a basis for systematic

approximations.
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We use scalar-field perturbation theory as a laboratory to study broken scale invariance. We pay particular
attention to scaling laws (Ward identities for the scale current) and find that they have unusual anomalies
whose presence might have been guessed from renormalization-group arguments. The scaling laws also
appear to provide a relatively simple way of computing the renormalized amplitudes of the theory, which

sidesteps the overlapping-divergence problem.

INTRODUCTION

HE perturbation theory of a self-interacting scalar
field is about the simplest available model field
theory, and a convenient laboratory for testing new
ideas in strong-interaction physics. In this paper we
shall be concerned with studying the concept of broken
scale invariance within such a framework. We shall
find that the model calls for some unexpected modi-
fications of our ideas on broken scale invariance. At the
same time, the approach suggested by broken scale
invariance leads to an interesting, and simple, new
approach to renormalization. We hope that this mutual
illumination of two interesting questions justifies yet
another paper on scalar field theory.

In Sec. I we shall review the general properties of
scale invariance as a broken symmetry, leading up to
the idea of a scaling law (the analog for scale invariance
of PCAC low-energy theorems). In Sec. IT we shall see
how the general structure of renormalized perturbation
theory constrains the allowable form of the scaling law
and forces it to differ from naive expectations. In Sec.
III we shall show how the existence of the scaling law

* Work supported in part by the U. S. Atomic Energy Commis-
sion under Contract No. AT (11-1)-68 and by the U. S. Air Force
Office of Scientific Research under Contract No. AFOSR 70-1866.

1 Alfred P. Sloan Foundation Fellow.

leads to a simple prescription for computing the re-
normalized Green’s functions of the theory. Finally,
in Sec. IV, we shall demonstrate an interesting connec-
tion between the scaling law and the predictions of the
renormalization group.

I. BROKEN SCALE INVARIANCE

In simple canonical field theories it is possible to
introduce an acceptable energy-momentum tensor!:?
©,, having the following properties: (a) @=0,* is
proportional to those terms in the Lagrangian having
dimensional coupling constants (such as mass terms);
(b) the charge, D= fd3x .S, formed from the current
S.= 0,2”, acts as the generator of scale transformations,

[D(x0) (%) ]= —i(d+=-0)o(2) ¢y

where d is the dimension of the field; (c) the current .S,
satisfies 9%5,= 0 so that it is conserved when there are
no dimensional coupling constants in the Lagrangian.
With the help of the current .S, and its equal-time com-
mutation relations with fields, given above, one is able

1C. G. Callan, Jr., S. Coleman, and R. Jackiw, Ann. Phys.
(N. Y.) 59, 42 (1970).

2 M. Gell-Mann, University of Hawaii Summer School lectures,
1969 (unpublished).



