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Strain and Plasmid Construction. HEM3 and HEM2/3/12 over-
expression plasmids were provided by L. Liu (Chalmers Institute
of Technology, Gothenburg, Sweden). In the plasmid-based
overexpression assays, those plasmids were used unchanged. For
the integrations, the constructs were recloned into the pIS385
disintegration vector (1). HEM3 was amplified from the over-
expression plasmid using primers HEM3-FWD andHEM3-REV
and cloned into the EcoRI/AvrII site of pCS1585 (2), acquiring
a TEF promoter and ADH1 terminator. The SacI/KpnI fragment
of this plasmid was then cloned into pIS385 to produce pCS2342.
HEM2 and HEM12 were amplified as a single amplicon from the
overexpression plasmid using primers HEM212-FWD and
HEM212-REV and cloned into the AvrII/XhoI site of HEM3-
pCS1585. The integration plasmid pCS2342 was cut NotI/ClaI
and blunted using T4 DNA polymerase (New England Biolabs)
to remove an unwanted AvrII site. The AvrII/XhoI fragment
from HEM2/3/12-pCS1585 was then cloned into the AvrII/XhoI
site of pCS2342-Blunt to produce pCS2343. Plasmids pCS2342
and pCS2343 were digested with NruI and integrated into the lys2
locus of W303 (1). Rescue of the URA marker produced strains
CSY851 and CSY852, respectively. CTT1 was amplified off the
chromosome of W303 using primers CTT1-FWD and CTT1-
REV and cloned into the SacII/NotI site of pCS782 (3). To move
a caffeine demethylase from either a high-copy plasmid to a low-
copy plasmid or vice versa, the EcoRI/AgeI fragment was cloned
out of the original plasmid and into the desired plasmid (4).

Metabolite Analysis. Supernatant theophylline production was
assayed on an Agilent 1200 series liquid chromatograph using
a Poroshell 120 SB-C18 2.1 × 50 mm, 2.7-μm column (Agilent).
The mobile phase was 0.50 mL/min of 20% methanol/80% water
with 0.1% acetic acid. Theophylline eluted at 0.70 min and was
detected at 274 nm. For each sample, 3 μL was injected onto the
columns. The identity of the theophylline peak was confirmed
with each assay by the use of an authentic standard (Sigma-Al-
drich), and the concentration of theophylline in each sample was
determined by comparison with a series of reference standards.
Supernatant salutaridine production was assayed on anAgilent

1200 series liquid chromatograph using a Zorbax SB-Aq 3.0 ×
50 mm, 1.8-μm column (Agilent). The mobile phase was 0.60 mL/
min of a mixture of water (buffer A) and methanol (buffer B),
both with 0.1% acetic acid. The mobile phase started at 100%
buffer A for 1 min, followed by a gradient to 75% buffer A/25%
buffer B over 3 min, then held at 75% buffer A/25% buffer B for
3 min. After a total of 7 min, there was a further gradient to 100%
buffer B over 1min, then held at 100% buffer B for 4min. Finally,
the mobile phase was switched back to 100% buffer A and re-
equilibrated for 6min. Salutaridine was detected using anAgilent
6320 Ion Trap mass spectrometer, measuring the 265 m/z frag-
ment of the 328 m/z ion.

DNA Microarray Experiments. Each strain for microarray analysis
was grown overnight in appropriate dropout media. Each culture
was diluted to OD 0.05 in 30 mL of fresh media, with four bi-
ological replicates per strain.When the cultures reachedOD0.3–
0.4, they were quenched by decanting into a 50-mL centrifuge
tube filled with ice. The cultures were centrifuged for 3min at 4 °C
and 5,000 × g, washed with 1 mL of water, transferred to a 1.5-mL
centrifuge tube, and centrifuged for 2 min at 4 °C and 8,000 × g.
The resulting cell pellet was frozen in liquid nitrogen and stored
at −80 °C in preparation for analysis.

For each strain, three cell pellets representing three biological
replicates were lysed using the RNeasy kit (Qiagen) following the
manufacturer’s instructions. cDNA synthesis followed by amplified
(a)RNA synthesis and fragmentation were performed using the 3′
IVT Express kit (Affymetrix) following the manufacturer’s in-
structions. aRNA synthesis and fragmentation were monitored us-
ing anAgilent 2100Bioanalyzer andRNA6000Nanochips (Agilent
Technologies). Fragmented aRNA was hybridized to Yeast Ge-
nome 2.0 DNA chips and scanned using a GeneChip 3000 7G
Scanner (Affymetrix), according to the manufacturer’s instructions.
Microarray data were analyzed using the BioConductor suite in

R. Principal components analysis, treating the samples as the
variables and gene expression data as observations (5), was used to
identify genes with consistent patterns of expression between the
different strains. Before PCA, the microarray data were nor-
malized to correct for the steady state expression level (6). The
∼400 genes with the highest magnitude scores for PC1 were used
as input to Reporter Features (7) to identify transcription factors
whose targets were overrepresented.

Proteasomal Activity Measurements. Proteasomal activity was mea-
sured using the Proteasome-Glo kit (Promega), according to the
manufacturer’s directions. Cultures were grown to midlog phase
(OD 0.2–0.4) and then diluted in fresh media to OD 0.1, 0.05,
and 0.02 (corresponding to ∼100,000–20,000 cells per 100 μL,
respectively). A total of 100 μL of the resulting cell suspension
was mixed with 100 μL of the assay reagent, prepared according
to the manufacturer’s directions, and agitated on a Kuhner LT-X
plate shaker at 480 rpm for 2 min. After a 10-min incubation at
room temperature, the luminescence was measured on a Wallac
1420 Victor3 microplate reader (PerkinElmer).

Heme Measurements. For each sample, a 25-mL culture was grown
to OD 0.4 and then centrifuged at 4 °C and 5,000 × g for 5 min.
The pellet was washed with water, transferred to an amber cen-
trifuge tube, and centrifuged again at 4 °C and 8,000 × g for 5min.
The pellet was then resuspended in 500 μL of 20 mM oxalic acid
(Sigma-Aldrich) and stored at 4 °C in the dark for 16 h. After the
acid extraction, 500 μL of 2 M oxalic acid was added to each tube.
Half of the resulting suspensionwas transferred to a new centrifuge
tube. The original centrifuge tube was heated to 95 °C for 30 min,
removing the iron from nonfluorescent heme and producing
a fluorescent porphyrin ring. Two replicate 200-μL aliquots of each
sample (heated and unheated) were measured in a microplate
reader (Safire; Tecan), exciting at 400 nm and measuring emission
at 620 nm. A standard curve was constructed using variable con-
centrations of hemin (Sigma-Aldrich).

Quantitative Western Blots. Yeast strains harboring the appropriate
enzymeexpression constructswere grownovernight in 5mLofuracil
dropout media. Protein extraction was carried out using 0.1 M
NaOH (8), followed by lysis in protein loading buffer (Invitrogen).
Samples and ladder (P7711S;New England Biolabs) were resolved
on 4–12% Bis-Tris SDS/PAGE gels in 1× Mops (Invitrogen). Pro-
tein was transferred to a nitrocellulose membrane using semidry
transfer (Bio-Rad) in 2×NuPAGE transfer buffer (Invitrogen) plus
10% MeOH. After transfer, the membrane was cut in half at ∼55
kDa. Both membrane halves were blocked in 5% BSA for 1 h. The
membranewith higher-molecular-mass proteins was blotted with an
anti-V5HRP antibody according to the manufacturer’s instructions
(Invitrogen). The membrane with lower-molecular-mass proteins
was blotted with a mouse anti-actin antibody (8224; Abcam) and
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a rabbit anti-mouse HRP (6728; Abcam) according to the manu-
facturer’s instructions. Both HRP antibodies were detected by
chemiluminescence, following the manufacturer’s instructions,
(Pierce) using a Chemi-Doc XRS imager (Bio-Rad). Blots were
analyzed using the QuantityOne analysis software (Bio-Rad).

CatalaseActivityAssays.Cells containing the catalase-overexpression
construct, as well as various heme-overexpression constructs, were
grown to saturation overnight. The cultures were diluted 20× into
50 mL of fresh dropout media and regrown to midlog (OD, ∼0.4).
Five-milliliter samples were taken to measure heme content as
described previously. The remaining culture volume was centri-
fuged at 4 °C and 6,000 × g for 5 min, washed once with 1 mL of
resuspension buffer (0.1 M potassium phosphate, 0.5 mM EDTA),
and centrifuged again. The pellet was then resuspended in 1 mL of
resuspension buffer plus protease inhibitor (HALT; Pierce) and
transferred to a tube containing 500 mg of acid washed glass beads
(Sigma). The samples were lysed by five cycles of 1-min vortexing,
followed by 1 min on ice. After vortexing, the crude lysate was
centrifuged at 4 °C and 16,000 × g for 5 min, and the supernatant
was transferred to a new tube. The total protein concentration was
measured using a Bradford reagent (Bio-Rad) according to the
manufacturer’s instructions, using 160 μL of sample dilutions and
40 μL in a microwell plate. Absorbance was assayed using a Tecan
Safire microplate reader. Sample values were compared with
a standard curve was constructed using BSA to determine the total
protein concentration.
Next, the catalase activity of each samplewasmeasured. Samples

were diluted to ∼10 μg/mL. A total of 40 μL of protein was mixed
with 160 μL of 250 μM H2O2. Aliquots were taken at 30, 60, and
120 s and quenched in 200 μL of Peroxide Assay Reagent (Pierce),
according to the manufacturer’s instructions. Absorbance was
measured on a Tecan Safire microplate reader. Residual peroxide
was calculated by comparison with a standard curve of H2O2 di-
lutions. One unit of catalase activity was calculated as the amount
of active protein necessary to degrade 1 mM H2O2 in 1 min.

qRT-PCR Measurements. Cells containing various combinations of
heme- and P450-overexpression plasmids were grown to saturation
overnight. They were then diluted in triplicate 30 mL cultures and
regrown to midexponential phase (OD600, ∼0.5). A total of 10 mL
of each culture was centrifuged for 5 min at 6,000 × g and 4 °C,

washed with 1 mL of water, and repelleted for 5 min at 8,000 × g
and 4 °C. The supernatant was removed and the cells were frozen
in liquid nitrogen and stored at −80 °C.
The cell pellets were resuspended in 500 μL of buffer AE (50

mM NaOAc, 10 mM EDTA) with 1.5% (wt/vol) SDS. A total of
500 μL of acid phenol was added to each suspension, and the
mixture was heated at 65 °C for 10 min with regular vortexing.
The tubes were cooled on ice for 5 min and then centrifuged for
12 min at 10,000 × g and 4 °C. The supernatant was transferred
to a new tube and mixed with an equal volume of chloroform.
The tubes were again centrifuged, and the supernatant was
transferred to a new tube. Nucleic acids were precipitated with 1/
10th volume NaOAc and 2 volumes 100% ethanol. Tubes were
stored at −20 °C for 30 min and then centrifuged for 30 min at
16,000× g and 4 °C. The supernatant was removed, the pellets were
washed with 500 μL of 70% ethanol, and the tubes centrifuged
again for 20 min at 16,000 × g and 4 °C. The supernatant was re-
moved, and the pellets were allowed to air dry. The pellets were
then resuspended in 20 μL of water. A total of 2 μL of DNaseI
buffer and 1 μL of DNaseI (New England Biolabs) was added to
each tube. The tubes were incubated at 37 °C for 10 min. Next,
EDTA was added to a final concentration of 5 mM, and the tubes
were incubated at 75 °C for 10 min. Finally, the ethanol pre-
cipitation procedure was repeated to remove the EDTA.
The RNA was quantified using a Nano-Drop spectrophotom-

eter. Total RNA was reverse-transcribed using SuperScript III
(Invitrogen) and gene-specific primers for HEM13 and ACT1,
according to the manufacturer’s instructions. Approximately 1.5
μg of total RNA was loaded into each reverse-transcription
reaction. Following reverse transcription, qPCR was performed
according to the manufacturer’s instructions using the iQ SYBR
Green Supermix (Bio-Rad) and 3 μL of cDNA in a 20-μL reac-
tion. The qPCR reactions were monitored on a Bio-Rad iCycler.
For each biological replicate, three technical replicates were
performed for each of the gene-specific primers. A dilution series
was conducted for one sample, using both primer pairs, to mea-
sure the cycle efficiency. For each biological replicate, the tech-
nical replicates were averaged, and the measured HEM13 level
was normalized to theACT1 level. The normalized expression was
then averaged for the three biological replicates.
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Fig. S1. (A) Heat map showing mRNA expression profiles of the genes most highly associated with PC1. Strains are shown along the horizontal axis, where
a label of “1-High A” represents the first sample of yCDM1 expressed from a high-copy plasmid. Clustering strains by expression profile recapitulates the
ordering of the PC1 loadings. (B) Expression profiles of representative iron- and heme-regulated genes. FIT2 produces a cell wall mannoprotein that facilitates
iron-siderophore binding. Its expression is regulated by iron. HEM13 is involved in the biosynthesis of heme. Its transcription is repressed by heme. ARN2 is an
iron-siderophore transporter whose expression is iron-dependent.
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Fig. S2. Heme synthesis and use must both be elevated to produce large changes in heme content. (A) Heme biosynthetic pathway in yeast. Genes over-
expressed in this study are labeled in blue. The first committed substrate, ALA, is also labeled in blue. HEM13, labeled in red, is transcriptionally regulated by
the intracellular heme level. (B) Cells containing various combinations of heme synthesis constructs and heme-binding enzyme constructs were tested for total
heme content. Increasing heme synthesis and heme use both led to higher cellular heme content. SDs, calculated from three biological replicates, are given in
Table S3. (C) In contrast to the heme levels, porphyrin levels increase as more flux is routed through heme biosynthesis and decreases as heme is bound by the
P450. SDs, calculated from three biological replicates, are given in Table S3. (D) HEM13 mRNA levels, as measured by qRT-PCR, increase as the P450 expression
increases, responding to a decrease in the amount of free heme. The levels then decrease when the upstream portion of the heme biosynthetic pathway is
overexpressed, demonstrating that the free-heme levels have recovered and the cell is now restricting heme biosynthesis at HEM13 and accumulating por-
phyrins. The error bars show ±1 SD, calculated from three biological replicates.
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Fig. S3. Growth curves for cells overexpressing the heme biosynthetic pathway. (A) Cells expressing yCDM8 from a high-copy plasmid, as well as heme-over-
expression constructs from a second high-copy plasmid, were grown in appropriate dropout media. Overexpression of HEM3 led to a decrease in growth rate,
although additional overexpression or HEM2 and HEM12, even in combination with ALA, did not further slow growth. (B) The final demethylase yCDM8 was
expressed from a high-copy plasmid in a wild-type strain (blue), a HEM3 overexpression strain (black and purple), or a HEM2/3/12 overexpression strain (green
and red). Integrated expression of HEM3 did not affect growth, although simultaneous overexpression of HEM2/3/12 produced a severe growth defect. Addition
of ALA did not change the growth rate. (C) Iron and porphyrin levels were measured for cells containing yCDM8 expressed from a high-copy plasmid and in-
tegrated heme-overexpression constructs. HEM2/3/12 produced enormous concentrations of porphyrin and heme, perhaps explaining the slow growth rate.
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Fig. S4. Integrated overexpression of HEM3 decreases HEM13 mRNA levels, decreases proteasomal activity, and increases P450 expression. (A) yCDM8 was
expressed from a high-copy plasmid either in a wild-type strain or a strain overexpressing HEM3. HEM3 expression led to a decrease in HEM13 mRNA levels,
reflecting an increase in the amount of free heme. (B) As in the dual-plasmid system, overexpression of yCDM8 increases the proteasomal activity. However,
combining enzyme and heme overexpression returns the proteasomal activity to background levels. Three biological replicates were assayed at each of three
dilutions. Each data point represents a single measurement, and the lines are a linear fit to the data. (C) HEM3 overexpression leads to an increase in P450
expression. yCDM8 was tagged with a V5 epitope and expressed from a high-copy plasmid either in a wild-type strain or a HEM3-overexpression strain. HEM3
overexpression led to an increase in total P450 accumulation. Two biological replicates are shown for each condition. Note that this assay cannot distinguish
between holo- and apoenzyme forms and that the increase in total P450 expression is larger than the increase in theophylline accumulation.
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Fig. S5. Heme overexpression increases the activity of soluble, but not membrane-associated, hemoproteins. (A) Cells expressing membrane-associated
CYP2D6 from a high-copy plasmid were cotransformed with high-copy heme-overexpression plasmids. Cultures were grown in the presence of norlaudano-
soline and varying amounts of iron and ALA. After 48 h, the salutaridine concentration was measured in the supernatant, and the cell pellets were assayed for
heme content. Each point represents the average of three biological replicates with error bars showing ±1 SD. (B) Cells expressing CTT1 from a high-copy
plasmid were cotransformed with heme-overexpression plasmids. Cultures were grown to midexponential phase (OD, ∼0.4) and lysed with glass beads.
Catalase activity was determined by monitoring the degradation of H2O2 in vitro. Heme content was measured as described previously. Each point represents
a single biological replicate, and the error bars show ±1 SD calculated from technical replicates.
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Fig. S6. Catalase time courses. The yeast cytosolic catalase CTT1 was overexpressed in cells containing various heme-overexpression constructs. Cultures were
grown midexponential phase and lysed with glass beads. After measuring the total protein concentration, similar amounts of total protein (375, 349, 380, and
417 ng, respectively) were loaded into reactions containing 200 μM H2O2. Samples were taken after 30, 60, and 120 s and assayed for residual peroxide. A
representative time course is shown. The activity of a lysate is calculated based on the H2O2 degraded by the 2-min time point. Error bars show ±1 SD, cal-
culated from three technical replicates.
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Table S1. Plasmids and strains used in this study

Strain Genotype Source

W303 MATα leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15
CSY409 W303 his3::TEF-Ps6OMT, leu2::TEF-PsCNMT, ura3::TEF-Ps4’OMT, trp1::TEF-ATR1 3
CSY492 W303 lys2::PTEF-GFP-L2Bulge8-ADH1T 4
CSY851 W303 lys2::PTEF-HEM3-ADH1T This work
CSY852 W303 lys2::PTEF-HEM3-ADH1T-HEM2-PTEF-PPGK-HEM12-ADH1T This work
pCS782 2μ URA PTEF-yCYP2D6 3
pCS2155 2μ URA PTEF-yCDM1 4
pCS2160 2μ URA PTEF-yCDM3 4
pCS2165 2μ URA PTEF-yCDM5 4
pCS2166 2μ URA PTEF-yCDM6 4
pCS2167 Centromeric URA PTEF-yCDM6 4
pCS2168 Centromeric URA PTEF-yCDM7 4
pCS2169 Centromeric URA PTEF-yCDM8 4
pCS2170 2μ URA PTEF-yCDM1 (A264H) 4
pCS2334 2μ URA PTEF-CTT1 This work
pCS2335 2μ HIS PTEF-HEM3 Courtesy of L. Liu, Chalmers

Institute of Technology,
Gothenburg, Sweden

pCS2336 2μ HIS PTEF-HEM3, PTEF-HEM2, PPGK-HEM12 Courtesy of L. Liu
pCS2337 Centromeric URA PTEF-yCDM1 This work
pCS2338 Centromeric URA PTEF-yCDM3 This work
pCS2339 Centromeric URA PTEF-yCDM5 This work
pCS2340 2μ URA PTEF-yCDM7 This work
pCS2341 2μ URA PTEF-yCDM8 This work
pCS2342 pIS385 + PTEF-HEM3 This work
pCS2343 pIS385 + PTEF-HEM3, PTEF-HEM2, PPGK-HEM12 This work
CSY821 CSY492+pCS2155 4
CSY853 CSY492+pCS2337 This work
CSY822 CSY492+pCS2160 4
CSY854 CSY492+pCS2338 This work
CSY823 CSY492+pCS2165 4
CSY855 CSY492+pCS2339 This work
CSY824 CSY492+pCS2166 4
CSY825 CSY492+pCS2167 4
CSY856 CSY492+pCS2340 This work
CSY826 CSY492+pCS2168 4
CSY857 CSY492+pCS2341 This work
CSY827 CSY492+pCS2169 4
CSY828 CSY492+pCS2170 4
CSY830 CSY492+pCS4 (empty centromeric plasmid) 4
CSY831 CSY492+pCS31 (empty 2μ plasmid) 4
CSY847 CSY3 + pCS9 (empty 2μ HIS plasmid) + pCS2334 This work
CSY848 CSY3 + pCS2335 + pCS2334 This work
CSY849 CSY3 + pCS2336 + pCS2334 This work
CSY858 CSY3 + pCS9 (empty 2μ HIS plasmid) + pCS31 (empty 2μ URA plasmid) This work
CSY859 CSY3 + pCS2335 + pCS31 (empty 2μ URA plasmid) This work
CSY860 CSY3 + pCS2336 + pCS31 (empty 2μ URA plasmid) This work
CSY861 CSY3 + pCS9 (empty 2μ HIS plasmid) + pCS2169 This work
CSY862 CSY3 + pCS2335 + pCS2169 This work
CSY863 CSY3 + pCS2336 + pCS2169 This work
CSY864 CSY3 + pCS9 (empty 2μ HIS plasmid) + pCS2341 This work
CSY865 CSY3 + pCS2335 + pCS2341 This work
CSY866 CSY3 + pCS2336 + pCS2341 This work
CSY867 CSY851 + pCS2169 This work
CSY868 CSY851 + pCS2341 This work
CSY869 CSY852 + pCS2341 This work
CSY870 CSY3 + pCS2169 This work
CSY871 CSY3 + pCS2341 This work
CSY872 CSY409 + pCS782 + pCS9 This work
CSY873 CSY409 + pCS782 + pCS2335 This work
CSY874 CSY409 + pCS782 + pCS2336 This work
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Table S3. Heme-overexpression data

Enzyme expression Heme overexpression Relative total heme level Relative total porphyrin level

No enzyme Empty plasmid 1.00 ± 0.14 1.00 ± 0.14
No enzyme HEM2/3/12 1.20 ± 0.20 3.91 ± 0.52
No enzyme HEM2/3/12 + ALA 1.19 ± 0.33 13.81 ± 1.09
Low-copy P450 Empty plasmid 1.44 ± 0.14 0.89 ± 0.04
Low-copy P450 HEM2/3/12 2.44 ± 0.14 2.58 ± 0.26
Low-copy P450 HEM2/3/12 + ALA 3.35 ± 0.13 6.87 ± 0.15
High-copy P450 Empty plasmid 1.90 ± 0.11 0.62 ± 0.04
High-copy P450 HEM2/3/12 3.97 ± 0.17 1.37 ± 0.17
High-copy P450 HEM2/3/12 + ALA 9.54 ± 0.94 3.41 ± 0.71

Table S2. Primers used in this study

Primer name Primer sequence

ACT1-FWD 5′-CGGTGAAGGTGAAGGTGATGCTACT-3′
ACT1-REV 5′-GCTCTGGTCTTGTAGTTACCGTCATCTTTG-3′
HEM13-FWD 5′-GTCTCCGTTGTTTATGGTCAATTGAGCC-3′
HEM13-REV 5′-CAGTCTTTGGATCTTCTGGTAGACGCAG-3′
CTT1-FWD 5′-TAATCCGCGGAATTAATAAATGAACGTGTTCGGTAAAAAAGAAG-3′
CTT1-REV 5′-TAATGCGGCCGCTTAATTGGCACTTGCAATGGACCAAG-3′
HEM3-FWD 5′-TATAGAATTCGATATCAAGCTTGGAGATCTAAAAGAAAACAATGGGCCCTGAAACTCTAC-3′
HEM3-REV 5′-TATACCTAGGAGTCATTTGATTCTGTCTAAATTAATTTC-3′
HEM212-FWD 5′-TATACGCCAAACGACCTAGGAATTGG-3′
HEM212-REV 5′-TATACTCGAGTTACTTCGAACCAATTCTGTGGCAC-3′
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