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The linear stability of pure-fluid Rayleigh-Bénard convection in a finite cell of arbitrary geometry can
be formulated as a self-adjoint eigenvalue problem. This, when coupled with perturbation theory, allows
one to deduce how the sidewalls affect its stability. In particular, it is shown that for almost all boundary
conditions the difference between the onset Rayleigh number and its infinite-cell limit scales like L ~? as
the cell dimension L tends to o, and near the sidewall the temperature and velocity are of order L ~!
compared to their bulk values. The validity of replacing the true thermal boundary condition by a fre-
quently used mathematically simpler homogeneous one is also demonstrated.

PACS number(s): 47.25.Qv, 44.25.+f, 47.20.Bp

In recent years Rayleigh-Bénard convection has at-
tracted many researchers because it has provided us with
a system that is experimentally well controllable and has
rich dynamics and pattern formation that are not only in-
teresting in themselves but also seem to be shared by oth-
er systems such as chemical reaction-diffusion systems.
Although progress in theoretical description of this sys-
tem has been steady, relatively few analytical results con-
cerning the effects of the sidewalls have been obtained.
Because the influence of a confining wall can be very
complex for a convection cell with complications from
impurity or rotation, I have decided to investigate the
boundary effects for the simplest system—pure-fluid
convection—as a first step towards an analytical under-
standing of this problem. It should be pointed out that
the results derived here are quite general in the sense that
the geometry of the convection cell is not restricted, and
the boundary conditions considered are realistic.

The study of the convective instability of pure fluid is
easier because the problem has a variational character. A
variational formulation of the linear stability of pure-fluid
Rayleigh-Bénard convection in a laterally infinite cell was
developed by Pellew and Southwell [1] and discussed by
Chandrasekhar [2]. A revised version that applies to
finite-cell convection was proposed by Sorokin [3,4], and
used extensively to investigate the influence of sidewalls
on the stability by Chen [5]. However, in order to simpli-
fy the analysis, the dimensionless temperature 6 of the
fluid was assumed to satisfy the surrogate boundary con-
dition (SBC) 36/dn +B6=0 on the sidewall, with d/0n
and B representing the directional derivative along the
outward normal n and the effective thermal conductivity
of the wall, respectively. Although this assumption has
been quite common in this field, and it does capture the
basic physics involved and can be realized in some
simplified cases, it still is desirable to incorporate the
sidewalls directly into the analysis to make the predic-
tions completely general. It is the purpose of this paper
to show that the inclusion of the sidewalls still leads to a
variational formalism that is equivalent to solving a self-
adjoint eigenvalue problem. Several results concerning
the effects of the sidewalls are then derived via the com-
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bination of this formalism and perturbation theory. Fi-
nally I turn to the question of comparing the true system
with a surrogate one and show that in a mathematically
well-defined sense the real system’s stability always lies in
between that of two surrogate systems, thus justifying the
use of the SBC in simulating the sidewall.

Let «, v, and v, respectively, stand for the thermal
diffusivity, kinematic viscosity, and coefficient of thermal
expansion of a layer Q of pure fluid uniformly heated
from below by a temperature difference AT across two
horizontal plates separated by a distance d. The sidewall
is denoted by ,. Define the Rayleigh number
R =ygd®AT /(kv), the Prandtl number o=v/k, and
scale the length, time, and temperature, respectively, by
d, d?/k, and kvygd*V'R /o; then the linearized Navier-
Stokes equation under the Oberbeck-Boussinesq approxi-
mation and the linearized heat-transfer equation describ-
ing the deviation from the purely conducting state read
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where D’and 4 are 5X5 matrices defined in an obvious
way, and
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Here u, p, and 0 are the dimensionless velocity, pressure,
and temperature of the fluid, respectively, while 8,, is the
sidewall temperature. Also, «,, stands for the dimension-
less thermal diffusivity of the sidewall. If we denote the
ratio of the heat capacity per unit volume of the sidewall
and the fluid by r, then across the interface S of () and
Q,, the boundary conditions for ¥ are

u,=u-n=0, 4)
du, _
—87 +au“—0 N (5)
6=6, ,

(6)
36 _ a6,

=rk
on ¥ dn ’

where u and du;/dn are the shorthand notations for the
projection of u and du/9dxn onto the boundary, respective-
ly, and a is a conveniently introduced non-negative con-
stant that can differ on either the horizontal plate or the
sidewall. (The physically admissible no-slip condition
corresponds to taking a= o). I will assume the outer
surface S, of the sidewall is insulated and 6=86,=0 on
both top and bottom plates. The two horizontal plates
are assumed rigid (see Fig. 1).

After integration by parts it is easy to show that the
operator .L is self-adjoint, provided we define the inner
product between ¥’ and ¥ by

(w'|w>zfﬂ¢'*-¢+ fn re'*-6, , @)

where the dagger indicates the complex conjugate of the
transposition of a vector. Thus, the eigenvalues of L are
real; and to determine the onset Rayleigh number one
can simply set ¥ /3t =0. Associated with .£ is a varia-
tional principle whose restricted version is discussed in
detail in Ref. [5]. In this paper I will work directly with
the properties of the critical Rayleigh number R, instead.

Absorbing Vo into u, one sees from Eq. (1) that \/RC
is a generalized eigenvalue of

Vp

RY=—VW+ |0 |=AAV. (8)

FIG. 1. Geometry of a convection cell and its sidewall.

Let D be a 5X 5 diagonal matrix whose diagonal elements
are 1,1,1,1 and rk,, respectively. Then A is an invertible
operator because DR is positive definite in the inner
product defined above. If we now define a second inner
product

<w'lw>2z<vw'|ﬁ|vw>+faﬂau'*-u ,

then after integration by parts it is straightforward to
show that the operator R~'4 is self-adjoint under the
second inner product, and the eigenfunctions can be
chosen to be real, as will be done from now on. In fact,
for a given eigenstate ¥ one finds

1_(vIRT'Aw),
A (¥|w),
2fﬂu29
J |vulP+Ivel+ [ alul’+ fﬂwmwlvewtz

=J[¥], 9)

a result that is trivially true in view of Eq. (8). Therefore,
solving for R, is equivalent to solving a self-adjoint eigen-
value problem (1/A)¥ =R"14V, and the existence and
completeness of the eigenstates (under the second inner
product) follow standard arguments in the literature [6].
It is apparent that the problem is also equivalent to the
following variational principle: for any trial function ¥
that satisfies the incompressibility condition Eq. (2), the
boundary conditions (BC’s) Egs. (4) and (6), and
6=0,=0 on the top and bottom plates, the functional
J[ W] takes a stationary value if and only if ¥ is an eigen-
function of Eq. (8) that satisfies all the prescribed BC’s
and R, is associated with the largest positive eigenvalue.
I will call the eigenstate associated with R, the “ground
state.” This variational characterization of R, enables
one to deduce the monotonic dependence of it on the pa-
rameters in the problem. For instance, if we denote the
ground-state wave function corresponding to two slightly
different a and o’ by ¥ and V', respectively, then

R7V2=R7 'V =J'[¥']—J[¥]
=J'[V]=J([¥Y)+J'[¥]=J[¥))
=0((a'—a)2)+—ai(a'—a), (10)

da

where the first term is of second order in a—a’ by the
variational principle, and the states were assumed nonde-
generate for simplicity. Because 9J/da is nonpositive
when J is maximized, we see the system is more stable,
i.e., R, increases, if we make the boundary more rigid.
Similarly, larger thermal diffusivity «,, renders higher sta-
bility. Note that for a thin wall with thickness 7 much
less than 1 and the radius of curvature of the interface S
we can approximate the temperature inside the wall by a
quadratic in the (outward) radial coordinate £ that is zero
on S by definition:

_ 2
9w=—5—:—2§1v§9+9, (11)
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where 6 is the fluid temperature at £=0 and V3% is the
two-dimensional Laplacian on S. Equation (6) then be-
comes

%=erTV§0 . (12)
When V% can be replaced by a negative number, as is the
case if one considers a particular Fourier mode, then the
SBC 906/0n +B6=0 is recovered. This suggests the sur-
rogate system must be closely related to the real system.
The variational principle for a system subject to the SBC
is still given by Eq. (9), with [ wawlvewiz replaced by
[ ¢B6*. 1 will denote the variational functional associat-
ed with the SBC by JSBC[¢].

Notice that thickening the wall (not necessarily uni-
formly) by moving the outer boundary S, outward while
keeping everything else fixed also increases the stability.
This is because we can construct a trial function V¥ for the
smaller system from the ground state ¥’ of the larger sys-
tem by defining W=W' in their common domain of
definition, and

VR=1/7[%]1=01/J[¥])+8,= VR, . (13)

Here, 8, is a non-negative number that is proportional to
the integral of k,,|V6,,|? in the newly created wall region.
On the other hand, the stability is independent of the wall
thickness when «,, is O or « because the sidewall temper-
ature is completely driven by the self-governed convec-
tion cell alone. In either case we can analyze the effects
of the shape or size of the cell on the stability without
reference to the sidewall. It can be shown that for the
no-slip perfectly conducting case R, is strictly decreasing
when one enlarges the cell [5].

Because 6, is coupled to the convection cell solely
through the cell-wall interface S, it is also possible to
eliminate it in favor of fluid variables alone when one is
considering the onset configuration. Let g, (r,r’) be the
Green’s function for —V? inside the wall with vanishing
dg,/0n’ on S, and g, on the remainder of dQ,. Then
0w=fs(ag1/8n’)9', where n is the outward normal to
the cell and primed quantities are dummy variables in
differentiation or integration. This allows us to rewrite
the variational principle [Eq. (9)] in terms of fluid vari-
ables alone when 6, is substituted by the expression de-
rived above. We can also use another Green’s function
g, which satisfies the same BC’s as g, except dg,/dn'=0
on S to yield 6,= —K;‘fsgz(ae'/an'). The variational
principle that explicitly incorporates g, is convenient for
the case when «,, is small while for large k,, it is more ap-
propriate to use g,.

In the following I will first describe how one can use
perturbation theory to derive the large-cell scaling prop-
erty for the critical Rayleigh number R SB€ when the con-
vection cell is subject to the SBC, and then I will show
that this knowledge together with a simple application of
the variational principle derived above immediately im-
plies that the critical Rayleigh number for a cell sur-
rounded by a real sidewall necessarily obeys the same
scaling law. The argument hinges upon a key inequality
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[Eq. (16)], which itself suggests the possibility of estab-
lishing a similar inequality [Eq. (20)] that is later shown
to be true by virtue of the variational principle. These
two inequalities then provide us with a transparent way
of viewing the true BC as something that is midway be-
tween two SBC’s, thus verifying our intuition that the
SBC does capture the basic physics intrinsic to the case
when a real sidewall is present.

At first sight, it seems that one must find out the expli-
cit analytic expression of RSBC for a cell of arbitrary
geometry from Eq. (8) before one can extract its large-cell
scaling property. But it is also obvious that this task is
quite hopeless in general. To compromise, one might
wish to try the standard trick of the method of separation
of variables, hoping that under some suitable (yet possi-
bly artificial) boundary conditions the method would
work, thus allowing one to achieve the original goal. As
it turns out, this indeed is the case for the problem at
hand. This being done, the case with the physically more
relevant BC’s can then be handled by perturbation
theory, and useful information about this system extract-
ed. This is the approach I will adopt in the following
derivation.

In order to solve the fluid equations by the method of
separation of variables, it turns out that the sidewall
should be perfectly insulating and the vertical vorticity @
must vanish [5,7]. For the marginally stable state we
have V20=0. After multiplying this equation by w and
integrating over () one finds w is identically zero when
the fluid is irrotational at the sides and the two horizontal
plates satisfy Egs. (4) and (5). (This “rotation-free” con-
dition is different from Eq. (5) by an extra term, which in-
volves the curvature of the sidewall. The technical detail
of this point is discussed in Ref. [5].) Therefore, Eq. (8)
can be solved by separation of variables if the sidewall is
a “rotation-free” perfect insulator, and the eigenfunction
is of the form

dadp | _dud

Uy = » Uy d ’ uz=.u'l7¢’

dz dx z Ay (14)
g4 p— |dE_ du
0=60¢, p= 5 P ¢,

where # and 8 are functions of z to be determined by the
fluid equations and the BC’s at z=0,1, and ¢ is any non-
constant Neumann eigenfunction of the two-dimensional
Laplacian on the horizontal cross section of the cell:
V2¢=—pé. Treating R, as a function of u, one finds
that its minimum R, corresponds to some finite u,. Be-
cause u scales in size L like L ~%, we see that different p’s
will pass through p. sequentially to render R, minimum
as we increase L. The R, vs L curve I',, therefore, looks
like the bottom curve in Fig. 2. The positions of the
cusps in this figure can be determined analytically, and
they fall on a monotonically decreasing curve I' which
behaves like R, —R,, <L ~2 for large L. If we tune the
a and/or «,, of the sidewall to any positive value or even
infinity, the cusps will only be perturbed by an amount of
order L ~3. However, the oscillations of I', are immedi-
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FIG. 2. Critical Rayleigh number R, vs (dimensionless) cell
size L for a two-dimensional free-slip box whose sidewall thick-
ness 7<< 1. Sidewall parameters are (from bottom curve to top)
a=rk,rm=0,0.2, 1, and 100, respectively.

ately destroyed upon perturbation for all large enough L
so that the full curve will not only never dip to R, again
but will almost coincide with T for all L greater than
some crossover length Loq. This crossover size depends
inversely on the strength of the perturbation: the weaker
the perturbation, the larger Lo becomes (Fig. 2). For a
system subject to the SBC, this feature can be derived on
the following basis [5]. For a cylindrical cell we can con-
sider eigenstates of the same azimuthal quantum number
m. From perturbation theory one discovers that near the
sidewall one of the two perturbed eigenstates at the cusp
is O(L ~!) smaller than its bulk value. This in turn im-
plies its corresponding eigenvalue is perturbed by an
amount O(L ~') smaller than that for systems whose
sizes are not “right.” (The size is “right” if a cusp is
present.) Because the total perturbation in R, for sys-
tems of any (large enough) size can only be of O(L ~?)
[5], we see these ‘“‘anchored” states only change by
O(L ~3) under perturbation. Now consider a cell with a
rigid, perfectly conducting sidewall. Its monotonic
dependence of R, on L and the previous conclusion im-
plies that the R, vs L curve I'_ for this case must coin-
cide with T [correct to O(L ~?)]. Perturbing from this
most stable state apparently will not change this charac-
teristic for all large enough L, and the claims are verified.
(This prediction is actually quite clear from the numerical
work done by Charlson and Sani [8], though they did not
explicitly discuss the origin of this feature. I have also
verified that their data do confirm the prediction of the
L2 scaling law [5].) For a large cell with other
geometry, we can smoothly deform a cylindrical cell to
the desired shape and show that the claims still hold, pro-
vided the radius of curvature of the sides is no smaller
than O(L). For a cell surrounded by a real sidewall, in-
stead of being subject to the SBC, one can arrive at the
same conclusions by similar reasoning. But there is
another way of looking at this matter which allows us to
see the connection between the SBC and the real BC
more closely.
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Let ¥ be the ground state for a cell with a real
sidewall; then

Jo IV6LI? | [ Ve, * || [.6

J.e fﬂwei, fﬂwefu

>t >, (15)
) Vite,

—1

for some constants ¢, ¢,, and ¢, where { stands for the
expression inside the first pair of parentheses, which is
> 72, and the BC 6=0, and an inequality bounding the
second pair of parentheses by V'¢ are exploited [5]. If we
define B=crk, for a given k, and denote the restriction
of ¥ on Q by ¢, then

RSB 2 sBC w2 J[W]=R 2, (16)

4

i.e., the critical Rayleigh number for the real system is
bounded below by that for a surrogate system with
B=crk,, irrespective of whatever non-negative value k,,
takes. This immediately implies R, —R,,=O(L %) if
the thickness of the sidewall remains about the same
when one increases L. In fact, we can also bound R,
from above by another surrogate system with f=c'rk,
for some constant ¢’. I shall show that actually this is
true for a cell with an infinitely extended sidewall. Then
the statement is certainly true for a cell with a finite
sidewall because I showed its R, is even smaller. Let ¢
be the ground state of the surrogate cell. Define a coordi-
nate system £—7 in the wall region such that § is the arc
length of the ‘“radial coordinate” that is orthogonal to S
and vanishes on S, whereas 7 is the coordinate on the
two-dimensional surface S’ defined by £=const. I will
assume the coordinates are chosen so that the angle be-
tween the £ curve and the surface normal to S’ is bound-
ed away from 7 /2. Construct a trial function ¥ for the
real system with a laterally infinite sidewall by extending
the definition of ¥ into the wall region so that

130

rk, on

6+

fi|f2

where f, is a function of £ that satisfies f3(0)=0,
f,(0)=1, and decays sufficiently fast to zero as § tends to
o, while f; =& except when £ is greater than some
prescribed number 8, in which case we define f,=8.
Also, 6 is the fluid temperature on S whose definition can
be trivially extended into the whole wall region by
6(&,m)=6(n)|s. Then
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where h), is the maximum of 4, and a is some constant
depending on the geometry of the cell and the coordi-
nates we choose. In the above, 8, is a number that is pro-
portional to V'8 when § is very small. Also, Vg is the
gradient operator on the interface S. But we observe that
for the ground state it is possible to find a constant b such
that

J Jvser<p? [ & (18)

for all B. First of all, this statement is trivially true if it
so happens that 0 is identically zero on S for all B. So we
may consider the case when 6 is identically zero on S
only at some isolated points B, of BE[0, ). (The case
Bo= o0 is included in this argument.) Near each of these
points we can expand 6 in a power series of a small pa-
J

rameter 8. (We can take 8 =B—f, if B, is finite; the case
B,= can be handled by taking 8'=B"') Suppose
0=0,8""+ - - - for some leading power n such that 6, is
not identically zero on S; then clearly Eq. (18) is satisfied
for some b. Also, for B outside the neighborhood cen-
tered at B, we know the left-hand side of Eq. (18) must be
bounded above because the eigenfunction is twice
differentiable, while the right-hand side is bounded away
from zero by construction. And so a constant b certainly
can be found to satisfy Eq. (18). Therefore Eq. (17) can
be further reduced to

fﬂwlvew|2Sa(th+h,‘,+zs,g)2fs492 : (19)

But one easily verifies that

2

c

a™'=2(b+1)8;—V [a"'—2(b +1)8,P—4(b +1)%8?
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is a positive solution to the following equation for ¢ if & is
small enough:

a(bhy +hy +8,62=a(b+1+8,£)>=¢ .

Choose the B for the surrogate system to be c’rk,; then
the previous reasoning immediately implies

2 2
rK,, fﬂwlvewl <gf 6,
which in turn tells us
RCSBC_I/zEJSBC[\I/] SRC—I/Z (20)

by virtue of the variational principles for both systems.
Again, I must emphasize that this inequality holds for all
non-negative k.

In conclusion, the linear stability of pure-fluid convec-
tion with realistic boundary conditions can be analyzed
by the combination of perturbation theory and variation-
al formalism. The theory not only predicts the scaling
behavior for R, but also claims that replacing the
sidewall thermal property by the mathematically simpler
SBC does capture the underlying physics because, as far
as the onset instability is concerned, in a well-defined
sense the real system is sandwiched between two surro-
gate systems.
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