
Mon. Not. R. Astron. Soc. 427, 2711–2722 (2012) doi:10.1111/j.1365-2966.2012.21622.x

Measurement and calibration of noise bias in weak lensing galaxy
shape estimation

Tomasz Kacprzak,1� Joe Zuntz,1,2,3 Barnaby Rowe,1,4,5 Sarah Bridle,1

Alexandre Refregier,6 Adam Amara,6 Lisa Voigt1 and Michael Hirsch1,7

1Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT
2Astrophysics Group, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH
3Oxford Martin School, University of Oxford, Old Indian Institute, 34 Broad Street, Oxford OX1 3BD
4Jet Propulsion Laboratory, California Institute of Technology,† 4800 Oak Grove Drive, Pasadena, CA 91109, USA
5California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
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ABSTRACT
Weak gravitational lensing has the potential to constrain cosmological parameters to high
precision. However, as shown by the Shear Testing Programmes and Gravitational lensing
Accuracy Testing challenges, measuring galaxy shears is a non-trivial task: various methods
introduce different systematic biases which have to be accounted for. We investigate how
pixel noise on the image affects the bias on shear estimates from a maximum likelihood
forward model-fitting approach using a sum of co-elliptical Sérsic profiles, in complement
to the theoretical approach of an associated paper. We evaluate the bias using a simple but
realistic galaxy model and find that the effects of noise alone can cause biases of the order of
1–10 per cent on measured shears, which is significant for current and future lensing surveys.
We evaluate a simulation-based calibration method to create a bias model as a function of
galaxy properties and observing conditions. This model is then used to correct the simulated
measurements. We demonstrate that, for the simple case in which the correct range of galaxy
models is used in the fit, the calibration method can reduce noise bias to the level required for
estimating cosmic shear in upcoming lensing surveys.

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical –
techniques: image processing – cosmology: observations.

1 IN T RO D U C T I O N

Weak gravitational lensing is an important cosmological probe,
which has the greatest potential to discover the cause of the acceler-
ated cosmic expansion (e.g. Albrecht et al. 2006, 2009; Peacock &
Schneider 2006). In the standard cosmological model dark energy
affects both the expansion history of the Universe and the rate of
gravitational collapse of large-scale structure. The rate of this col-
lapse can be studied by observing the spatial distribution of dark
matter at different times in the history of the Universe. Gravitational
lensing occurs when the path of light from distant galaxies is per-
turbed while passing through intervening matter. This phenomenon
causes the images of galaxies to be distorted. The primary observ-
able distortion is called gravitational shear, and typically causes the

�E-mail: tomasz.kacprzak.09@ucl.ac.uk
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galaxy images to be stretched by a few per cent. The scale of this
effect is related to the amount of matter between the source and
the observer, and to their relative geometry. Thus, cosmic shear can
provide a valuable data set for testing cosmology models (Kaiser
1992; Hu 1999).

Several upcoming imaging surveys plan to observe cosmic
shear, including the KIlo-Degree Survey (KIDS), the Dark En-
ergy Survey (DES),1 the Hyper Suprime-Cam (HSC) survey,2

the Large Synoptic Survey Telescope (LSST),3 Euclid4 and
Wide Field Infrared Survey Telescope (WFIRST).5 For these
surveys, it is crucial that the systematics introduced by data
analysis pipelines are understood and accounted for. The most

1 http://www.darkenergysurvey.org
2 http://www.naoj.org/Projects/HSC/HSCProject.html
3 http://www.lsst.org
4 http://sci.esa.int/euclid
5 http://exep.jpl.nasa.gov/programElements/wfirst/
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significant systematic errors are introduced by (i) the measurements
of the distance to the observed galaxies using photometric redshifts,
(ii) intrinsic alignments of galaxies, (iii) modelling of the clustering
of matter on the small scales in the presence of baryons and (iv)
measurement of lensed galaxy shapes from imperfect images. In
this paper, we focus on the latter.

To evaluate the performance of shear measurement methods,
simulated data sets have been created and released in the form
of blind challenges. The Shear TEsting Programme 1 (STEP1;
Heymans et al. 2006) was the first in this series, followed by
STEP2 (Massey et al. 2007a). Both challenges aimed to test end-to-
end shear pipelines and simulated galaxy images containing many
physical effects including those stemming from telescope optics
and atmospheric turbulence. A modified approach was taken in
the GRavitational lEnsing Accuracy Testing 08 (GREAT08; Bridle
et al. 2009, 2010) and GREAT10 (Kitching et al. 2010) challenges,
which sought to isolate independent parts of the data analysis pro-
cess. They explored the impact of different true galaxy and image
parameters on the shear measurement, by varying them one at a time
among various simulation realizations. These parameters included
signal-to-noise ratio (SNR), galaxy size, galaxy model, point spread
function (PSF) characteristics and others. The results showed that
the shear measurement problem is intricate and complex. Existing
methods proved to be sufficient for current surveys, but there is
room for improvement for the future.

For a well-resolved, blur-free, noise-free image, the galaxy el-
lipticity can be calculated by taking the moments of the image
(Bonnet & Mellier 1995). However, a typical galaxy image used
in weak lensing is highly affected by the observation process. The
image degrading effects are (i) convolution with the PSF of the
telescope, (ii) pixelization of the image by the light buckets of the
detector, (iii) pixel noise on the image due to the finite number of
photons from the source and atmosphere (roughly Poisson) and de-
tector noise (often assumed Gaussian) and (iv) galaxy colours being
different from the stars used to map the PSF (Cypriano et al. 2010)
and a function of position on the galaxy (Voigt et al. 2012).

Moment-based methods such as KSB (Kaiser, Squires & Broad-
hurst 1995), and most recently Deconvolution in Moment Space
(DEIMOS) (Melchior et al. 2011), and Fourier Domain Null Test-
ing (FDNT) (Bernstein 2010) measure the quadrupole moment of
the image, using a masking function (often Gaussian) to counter
the effects of noise, and then correct for the PSF. Decomposition
methods, e.g. shapelets or a Gauss–Laguerre expansion (Bernstein
& Jarvis 2002; Refregier 2003; Nakajima & Bernstein 2007), use
an orthogonal image basis set which can be easily convolved with
the PSF. Noise is accounted for by regularization of the coeffi-
cient matrix and truncating the basis set to a finite number of ele-
ments. Simple model-fitting methods based on sums of Gaussians
(Kuijken 1999; Bridle et al. 2002), Sérsic profiles (Peng et al. 2002;
Miller et al. 2007), create an ellipticity estimator from a likelihood
function. Stacking methods (Hosseini & Bethge 2009; Lewis 2009),
which have been demonstrated for constant shear fields, average a
function of the image pixels to increase the SNR and then decon-
volve the PSF.

All these methods introduce some level of systematic error, com-
ing from different, method-specific sources. Bias on the shear can
result from inaccurate centroiding of the galaxy, for example see
Lewis (2009). Another source, model bias, results from using a
galaxy model which does not span the true range of galaxy shapes.
Voigt & Bridle (2010) quantified the shear measurement bias from
using an elliptical isophote galaxy model on a galaxy with a more
complicated morphological structure in the presence of a PSF (see

Lewis 2009 for a general proof). Melchior et al. (2010) investigated
the effectiveness of shapelets at representing more realistic galaxies.
Viola, Melchior & Bartelmann (2011) and Bartelmann et al. (2011)
quantified biases on the KSB method and investigated possibilities
to correct for it.

Pixel noise bias arises from the fact that ellipticity is not a lin-
ear function of pixel intensities in the presence of noise and PSF.
Hirata et al. (2004) showed its effects on second-order moment
measurements from convolved Gaussian galaxy images. The bias
due to pixel noise on parameters fitted using maximum likelihood
estimators (MLEs) for elliptical shapes was demonstrated by Re-
fregier et al. (2012, hereafter R12), for the case when the noise is
Gaussian and the correct galaxy model is known. It presented a
general expression for the dependence of the bias on the SNR. It
also demonstrated the consistency of analytical and simulated re-
sults for the bias on the width for a one-parameter Gaussian galaxy
model. Although R12 and this paper discuss biases that arise from
maximum likelihood (ML) forward fitting methods, we suspect that
noise bias will play a role in every non-linear parameter estima-
tion method. For example, in moment-based methods, ellipticity is
often defined as a ratio of moments of pixel intensities, and thus
introduces non-linearity (Melchior & Viola 2012).

In this paper, we show the significance of this bias for weak
lensing measurements using more realistic galaxy images. We find
that the bias as a function of true input parameters is consistent with
the theoretical framework derived in R12. Furthermore, we present
a method to effectively remove this noise bias for realistic galaxy
images. Using the IM3SHAPE shear measurement framework and code
(Zuntz et al., in preparation), we use a forward model fitting, ML
approach for parameter estimation. We create a model of the bias as
a function of galaxy and PSF parameters by determining their bias
from various simulations that sample parameter space. We apply
this model to the noisy MLEs and demonstrate that this procedure
successfully removes the noise bias to the accuracy required by
upcoming galaxy surveys. By performing a calibration that depends
on the specific statistics of every recorded galaxy, this method is
independent of the overall galaxy and PSF parameter distributions.

This paper is organized as follows. Section 2 summarizes the
equations governing the cosmic shear measurement problem and
describes methods to quantify the biases on estimated parameters.
We also discuss the requirements on those biases for lensing surveys,
followed by a summary of the cause of bias arising from image
noise. In Section 3, we show the results of bias measurements. A
method for correcting the noise bias based on numerical simulations
is presented in Section 4. We conclude and briefly discuss this
approach and alternatives in Section 5. In the appendices, we detail
the method used for measuring the multiplicative and additive bias
and tabulate our results and fit parameters.

2 SH E A R M E A S U R E M E N T B I A S E S
I N M O D E L FI T T I N G

We first discuss the parametrization of shear measurement biases
and present an overview of the model-fitting approach. We summa-
rize recent work on noise bias in a simple case and then describe
our shear measurement procedure and simulation parameters.

2.1 Quantifying systematic biases in shear estimation

In weak gravitational lensing the galaxy image is distorted by
a Jacobian matrix (see Bartelmann & Schneider 2001; Bernstein
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Table 1. Summary of the requirements for
the bias on the shear for current, upcoming
and far future surveys.

Survey mi ci

Current 0.02 0.001
Upcoming future 0.004 0.0006
Far future 0.001 0.0003

& Jarvis 2002; Hoekstra & Jain 2008 for reviews),

M =
[

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

]
, (1)

where κ is the convergence and γ = γ1 + iγ2 is the complex
gravitational shear.

For a galaxy with elliptical isophotes we can define the complex
ellipticity e as

e = a − b

a + b
e2iφ, (2)

where b/a is the galaxy minor to major axis ratio and φ is the
orientation of the major axis anticlockwise from the positive x-
axis. The post-shear lensed ellipticity el is related to the intrinsic
ellipticity ei by

el = ei + g

1 + g∗ei
(3)

for |g| ≤ 1 (Seitz & Schneider 1997), where g = γ /(1 − κ) is
the reduced shear. In the weak lensing regime κ � 1, γ � 1 and
g ≈ γ . We assume κ � 1 throughout this paper.

Galaxies have intrinsic ellipticities which are typically an order
of magnitude larger than the shear. If the ellipticity is defined as
in equation (2), then the average ellipticity is an unbiased shear
estimator (e.g. Seitz & Schneider 1997). In practice el is averaged
over a finite number of galaxies and the error on the shear estimate
(referred to as ‘shape noise’) depends on the distribution of galaxy
intrinsic ellipticities and the number of galaxies analysed.

The accuracy of a shape measurement method can be tested on a
finite number of images in the absence of shape noise by performing
a ‘ring test’ (Nakajima & Bernstein 2007). In the ring test, the shear
estimate is obtained by averaging the measured eo estimates from
a finite number of instances of a galaxy rotated through angles
distributed uniformly from 0◦ to 180◦. If êl is the measured lensed
ellipticity, then the shear estimate is γ̂ = 〈êl〉 and the bias on the
shear is

b[γ̂ ] = 〈êl〉 − γ t, (4)

where γ t is the true shear. This bias on the shear is usually quantified
in terms of multiplicative and additive errors mi and ci for both shear
components i = 1, 2 such that

γ̂i = (1 + mi)γ
t
i + ci, (5)

assuming that γ̂1 does not depend on γ t
2 and vice versa (Heymans

et al. 2006). The requirements on the level of systematic errors for
current and future galaxy surveys are expressed in terms of mi, ci in
Amara & Réfrégier (2008) and are summarized in Table 1.

2.2 Galaxy shear from model fitting

A simple approach to measuring ellipticity is to use a parametric
model. For galaxy fitting, models such as sums of Gaussians (Kui-
jken 1999; Bridle et al. 2002), Sérsic profiles (Miller et al. 2007)

and Gauss–Laguerre polynomials (shapelets) (Bernstein & Jarvis
2002; Refregier 2003; Nakajima & Bernstein 2007) were used.

In general, model-fitting methods are based on a likelihood func-
tion. Under uncorrelated Gaussian noise, this function is

L = p(θ |I ,M) (6)

logL = χ2 = 1

2

N∑
i=1

[Mi(θ ) − Ii]
2/σ 2

i , (7)

where θ is a set of variable model parameters, I is the observed
galaxy image, M is a model function, M(θ ) is the model image
created with parameters θ and N is the number of pixels in images I
and M. These equations assume a known noise level on each pixel
σ i, which is often assumed to be constant σ i = σ noise. Sometimes a
prior on the parameters is used to create a posterior function.

Usually an ellipticity estimator is derived from this likelihood
function; so far MLEs (e.g. IM3SHAPE, Shapelets), mean likelihood
(IM2SHAPE) and mean posterior (e.g. LENSFIT) have been used. We
use the MLE in this paper.

Parametric models based on elliptical profiles typically use the
following galaxy parameters: centroid, ellipticity, size, flux and a
galaxy light profile parameter. Often a combination of two Sérsic
profiles (Sérsic 1963) is used to represent the galaxy bulge and disc
components, with identical centroids and ellipticities.

The model also contains information about other effects influ-
encing the creation of the image. These image parameters are
not often a subject of optimization: noise level σ noise, PSF ker-
nel and the pixel integration kernel. SNR is often defined as

SNR =
√∑N

i=1 I 2
i /σnoise and this definition will be used through-

out this paper. This definition of SNR is the same as in GREAT08,
but different to GREAT10: SNR = 20 here corresponds to SNR =
10 in GREAT10.

2.3 Noise bias

The bias of parameter estimation for MLEs in the context of galaxy
fitting was first studied by R12. The authors derived general ex-
pressions for the covariance and bias of the MLE of a 2D Gaussian
galaxy model convolved with a Gaussian PSF. For a non-linear
model, in the Taylor expansion of χ2 (equation 7) the terms in even
power of the noise standard deviation are found to contribute to the
estimator bias. The analytical results were confirmed by simulations
using a single-parameter toy model. It was also noted that the bias is
sensitive to the chosen parametrization, especially if the parameter
space is bounded.

2.4 IM3SHAPE pipeline

The analyses in this paper were performed using the IM3SHAPE shear
measurement framework and code. Here we outline the system,
which will be described in more detail in Zuntz et al. (in prepara-
tion).

Each simulated galaxy is fitted with a model containing two co-
centric, co-elliptical Sérsic components, one de Vaucouleurs bulge
(Sérsic index = 4) and one exponential disc (Sérsic index = 1).
The amplitudes of the bulge and disc were free but the ratio of the
half light radii was fixed to 1.0. They are convolved with the true
Moffat PSF model to produce a model image. Since there is high
resolution structure in de Vaucouleurs bulges we made the models at
a higher resolution than the final images. We use a resolution three
times higher in the outer regions and 45 times higher in the central

C© 2012 The Authors, MNRAS 427, 2711–2722
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



2714 T. Kacprzak et al.

3 × 3 pixels of the final image. Since very highly elliptical images
are hard to simulate accurately we restrict the allowed space of
models to those with |e| < 0.95.

We find the peak of the likelihood using the Levenberg–Marquadt
method (Lourakis 2004) using numerical gradients of each image
pixel in the likelihood. We tested the performance of the optimizer
for a variety of input galaxy and image parameters to ensure that
the optimizer always converges to a local minimum by evaluating
the likelihood in the neighbourhood of the found best-fitting point
for multiple test noise realizations. In this non-linear optimization
problem multiple likelihood modes are possible. However, for our
simple model, we found that usually there was only one local mini-
mum (i.e. the bias results did not depend on the starting parameters
given to the minimizer). We will discuss this further in Zuntz et al.
(in preparation).

2.5 Simulation parameters

The galaxies used for this study were created using a two-component
model: a Sérsic profile of index 4 for the bulge and a Sérsic profile
of index 1 for the disc. Both components have the same centroid,
ellipticity and scale radius. The galaxy model used for fitting en-
compassed the one used to create the true galaxy image; therefore,
we isolate the noise bias effect from the model bias effect in this
study. The PSF was modelled as a Moffat profile with a full width
at half-maximum (FWHM) of 2.85 pixels and Moffat β parameter
of 3 (see, e.g., Bridle et al. 2010 for a definition of the Moffat and
the notation adopted here). We use the same PSF in the fit as in the
simulated images to prevent any bias effects caused by incorrect
modelling of the PSF. We fit a total of seven parameters: galaxy
centroid x, y; galaxy ellipticity e1, e2; galaxy size r; bulge flux Fb

and disc flux Fd.
We expect variation in the following physical parameters to have

the most significant influence on the noise bias, and therefore the
bias will be evaluated as a function of these parameters.

(i) SNR,
(ii) intrinsic galaxy ellipticity,
(iii) PSF ellipticity,
(iv) size of the galaxy compared to the size of the PSF, expressed

as Rgp/Rp, which is the ratio of the FWHM of the convolved observed
object and the FWHM of the PSF. Note that this is not the same as
the parameter we fit. This is because the noise bias strongly depends
on the PSF parameters, and the galaxy radius parameter alone would
not fully capture this dependence.

(v) Light profile of the galaxy, described by the flux ratio
Fb/(Fb + Fd), which is the flux of the bulge component divided
by the total flux of the galaxy. For a purely bulge galaxy, Fb/(Fb +
Fd) = 1 and for a disc galaxy Fb/(Fb + Fd) = 0. In our model, we
allow the amplitudes of the components to be negative, so the flux
ratio can take both values Fb/(Fb + Fd) > 1 and Fb/(Fb + Fd) <

0. Therefore, for Fb/(Fb + Fd) > 1, the galaxy has a negative disc
component, which results in the galaxy being less ‘peaky’ than a
galaxy with Fb/(Fb + Fd) = 1, and the galaxy model image may
even be more similar to a galaxy with Fb/(Fb + Fd) < 1. An alter-
native might be to use a more flexible radial profile, for example a
larger number of Sérsic components, or allowing the Sérsic indices
to be free parameters in the fit.

These parameters will be used to create a model for the noise
bias. We expect these physical parameters to best encapsulate the
main dependences of the bias, although we are aware that there may
exist other statistics that better capture bias variation.

Table 2. Summary of parameters used
for simulations. For D3 two different
parametrizations are shown for clarity.

Parameter Fiducial Deviations

D1 SNR 20 40, 200
D2 Rgp/Rp 1.62 1.41, 1.82
D3 Fb/(Fb + Fd) 0.5 0, 1
D4 ePSF

1 −0.05 0, −0.1

We do not show the effect of the galaxy centroid on the bias,
as no significant dependence on this parameter was found in our
experiments. We measured the noise bias for a simulated galaxy
image with identical model parameters, once located in the middle
of a pixel and once on the edge of a pixel. We found no difference
in ellipticity bias to our desired precision.

We note that centroiding errors in the case of model fitting
may impact ellipticity estimates differently when compared with
moment-based and stacking methods (e.g. Melchior & Viola 2012).
For model-fitting approaches, the centroid is just another param-
eter in the fitted model. In the simulations, the galaxy centroid is
randomized. Should there be any dependence of the ellipticity bias
on the galaxy centroid, uniform randomization of the true galaxy
positions within one pixel allows this potential source of bias to be
included fairly in our simulations.

The values for the simulation parameters are summarized in
Table 2. Their choice is based on galaxies used in GREAT08. We
define a fiducial parameter set and make departures D1 to D4 in
one parameter at a time using the values given in the table. We
restrict our analysis to SNR values of 20 and greater because we
find that convergence of the minimizer does not pass our quality
tests at lower values.

However, the SNR values of most interest for upcoming surveys
are low, and therefore we use the lowest SNR we can use with confi-
dence by default for all simulations. We investigate an SNR value of
200 which matches that of the GREAT08 LowNoise simulation set,
plus an intermediate value of 40 which is also used in GREAT08.
By default, we use a galaxy with half the flux in a bulge and half
in a disc. The two perturbations we consider are to pure bulge and
pure disc. Finally, we explore the dependence of the noise bias on
the PSF ellipticity, spanning the range from 0 to 10 per cent.

For the minimization parameters used in this paper, IM3SHAPE

takes around 1 s per galaxy, which is typical for model-fitting meth-
ods. To obtain our desired accuracy on noise bias we needed to
simulate 2.5 million galaxies for each set of simulation parameters
shown in Table 2. Therefore, the computations shown in this paper
took of the order of 1 yr of CPU time. This computational burden
limited the number of points we could show on the figures to three
per varied parameter.

3 E VA L UAT I O N O F T H E N O I S E B I A S E F F E C T

In this section, we evaluate the noise bias as a function of galaxy
and image parameters. We define the noise bias on an ellipticity
measurement as

b[ê] = 〈ê〉 − etrue. (8)

We calculate the bias using the following procedure: we create
a galaxy image with some true ellipticity, add a noise map and
measure the MLE of the ellipticity. Then, we repeat this procedure
with different noise realizations which results in a distribution of
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noisy MLE ellipticities. The difference between the mean of this
distribution and the true galaxy ellipticity is the bias on ellipticity.

The histograms of ML estimates for 300 000 noise realizations
are plotted in Fig. 1 to illustrate the nature of the noise bias. The
galaxy and image had default parameters described in Section 2.5
and intrinsic ellipticities of e1 = 0.3, e2 = 0 and e1 = 0.7, e2 = 0 in
the left and right upper and middle panels, respectively. The spread
of values comes from the Gaussian noise added to the images to
approximate the finite number of photons arriving on the detector.
As discussed in Section 2.5, we assume a default SNR value of 20.

Two effects contribute significantly to the bias on ellipticity for
the left-hand panels in which the true ellipticity is e1 = 0.3, e2 =
0. The ellipticity distribution is slightly skewed away from being
a Gaussian. There is a larger tail to high ellipticity values than to
negative ellipticity values. The peak is shifted to lower elliptici-
ties, which is also visible in the 2D histogram in the middle-left
panel of Fig. 1. Overall there is a net positive bias to larger el-
lipticity values, as shown by the vertical solid line which is to be
compared with the vertical dashed line placed at the true value.
Although this net positive bias is hard to see by eye, it is sig-
nificant at the level of shear measurement accuracy required from
future observations. This is discussed in more detail in the following
sections.

Furthermore, the ellipticity parameter space is theoretically
bounded at an ellipticity modulus of unity. This is exacerbated by
any realistic measurement method which will break down just short
of unity. The consequence of this effect is visible for a galaxy with
true intrinsic ellipticity of |e| = 0.7, shown in the upper-right and
middle-right panels. For this example, it counteracts the noise bias
effect by reducing the amount of overestimation. For more noisy or
smaller galaxies, which will have larger variance in the ellipticity
MLEs, this effect will be stronger and may even cause the ellipticity
to be underestimated, see Appendix A1 for an illustration of this.

No skew of the ê2 distribution is visible in the middle panel of
Fig. 1. In fact, when e

galaxy
2 = ePSF

2 = 0, then b[ê2] is consistent with
zero to our accuracy.

Distributions of other fitted parameters are also biased and
skewed, as discussed in R12. We show histograms of fitted galaxy
size and galaxy light profile in the bottom two panels of Fig. 1. The
convolved galaxy to PSF size ratio peaks at lower values than the
ones that are used in the input simulation but there is a tail to larger
values. Overall the mean is biased low by around 2 per cent. The
flux ratio is skewed to larger values and overestimated by around 8
per cent. Moreover, this distribution has two modes, one close to the
truth and one close to Fb/(Fb + Fd) = 1.5. This kind of bimodality
is not unexpected in non-linear problems. Here it may be related
to the characteristics of the Fb/(Fb + Fd) parameter; one of the
components in models with Fb/(Fb + Fd) = 1.5 can have a negative
flux and the corresponding image can in fact be more similar to the
one with Fb/(Fb + Fd) = 0.5.

The shear measurement biases thus depend on the galaxy intrinsic
ellipticity in a non-trivial way. However, this can be converted into
the shear measurement bias for a population of galaxies at different
orientations using the ring test. This is discussed in greater detail in
Appendix A. We effectively perform a ring test to obtain the shear
calibration metrics described in Section 2.1.

For the default galaxy and image parameters we find a multi-
plicative shear measurement bias of a few per cent. For an intrinsic
galaxy ellipticity of 0.3 we find m = 0.02 which is an order of
magnitude larger than the requirement for upcoming surveys. The
additive shear measurement bias is around c = 2 × 10−3 which
is larger than the requirement for upcoming surveys, and around

an order of magnitude larger than the requirement for far-future
surveys.

The multiplicative and additive shear measurement bias is shown
as a function of galaxy and image parameters in Fig. 2. Data points
for those plots are listed in Table B1, and the functions we fitted are
given in equations in Table B2, both in Appendix B.

The upper panels show the dependence on the image SNR. This
demonstrates clearly that the bias we observe is truly a noise bias,
since the biases tend to zero at high SNR. Indeed for an SNR of
200 the biases are well below the requirement even for far-future
surveys. The dependence on SNR is well described by a quadratic
function, shown as a fitted line, as discussed anecdotally (Bernstein,
private communication) and as expected from the derivations in
Hirata et al. (2004) and R12.

The upper-middle panels of Fig. 2 show the dependence on the
ratio of the convolved galaxy to PSF size, as defined in Section 2.5.
The derivations in R12 showed that for Gaussian functions, the bias
on the size parameter increases with the size of the PSF (equation
17). In our simulations the bias on the shear has a similar trend, as
we observe an increased bias with decreased galaxy size relative
to the PSF. The bias is reduced by a factor of almost 3 when the
convolved galaxy to PSF size increases from 1.41 to the default
value of 1.62. We modelled this dependence using inverse power
expansion with terms in (Rgp/Rp − 1)−2 and (Rgp/Rp − 1)−3.

The lower-middle panels of Fig. 2 show the bias as a function
of the flux ratio. Both multiplicative and additive bias change signs
when the galaxy light profile changes from bulge to disc. Bulges are
underestimated and discs are overestimated. This peculiar behaviour
of the bias demonstrates the complexity of this problem. We use a
straight line to fit the points, and this works reasonably well.

The dependence on PSF ellipticity is shown in the bottom panels
of Fig. 2. As expected, e.g., from Paulin-Henriksson et al. (2008),
the dependence of the additive shear measurement bias is much
greater than that of the multiplicative bias. The additive shear bias
dependence is very close to linear (shown by the fitted lines). Rota-
tional symmetries in the problem, also visible in Fig. A1, indicate
that there is very little dependence on the pixel orientation with
respect to the PSF and galaxy. This essentially means that we can
use results for the PSF aligned with the x-axis for any other PSF
angle, by rotating the coordinate system. Moreover, this indicates
that the size of a pixel with respect to the size of the convolved
object does not play a significant role for the sizes used here (size
of the postage stamp was 39 pixels and that of convolved object
FWHM was 4.5 pixels).

For the fiducial galaxy model we find that the multiplicative bias
on the shear is positive. In contrast, many methods tested on the
STEP and GREAT08/10 simulation sets underestimate the shear
(i.e. report a negative m). We note, however, that the characteristics
of the noise bias will depend not only on the shear measurement
method but also on the distribution of true galaxy surface bright-
ness profiles [as shown by the Fb/(Fb + Fd) dependence in Fig. 2].
Moreover, the results from the STEP and GREAT08/10 challenges
are affected by other types of biases, such as underfitting and cen-
troiding, which are not included here.

4 N O I S E B I A S C A L I B R AT I O N

In this section, we investigate how the bias measurements can be
used to calibrate out the noise bias effect. First, we create a model
of the bias on the ellipticity measurement as a function of four mea-
sured parameters: ê1, ê2, ̂Rgp/Rp, ̂Fb/(Fb + Fd), similar to Fig. A1
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Figure 1. Histograms of ML parameter estimates for the fiducial galaxy model. The top panels show the distribution of measured ellipticity (ê1) parameters
for true intrinsic galaxy ellipticities of 0.3 (left) and 0.7 (right), marked with a green dashed line. The empirical mean of these distributions is marked with a red
solid line. The magenta line shows the Gaussian probability distribution centred on the true ellipticity and with the same variance as the distribution of ê1. The
middle panels show the distribution of the ML estimates for both ellipticity components – for true intrinsic ellipticities of [0.3,0.0] (left) and [0.7,0.0] (right),
marked with a plus sign. The mean of this distribution is marked with a cross sign. The effective boundary on the ellipticity parameter space (|e| = 0.95) is
marked with a black dotted line. The bottom panels show histograms of measured size (Rgp/Rp) and light profile (Fb/(Fb + Fd)) parameters. True values for
these parameters are marked with a red solid line – true Rgp/Rp = 1.6 and true Fb/(Fb + Fd).
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Figure 2. Multiplicative (left-hand column) and additive (right-hand column) bias as a function of galaxy and image parameters at an intrinsic ellipticity of
|e| = 0.3. The first and second ellipticity components are marked with red and blue dashed lines, respectively. Note that on some of the plots the error bars are
too small to be visible. Typical standard error on the multiplicative bias was of the order of (5–10) × 10−4 and on the additive bias of the order of (5–10) ×
10−5. Lines are fits to the measured points, not the theoretical prediction. m1, m2 and c1 as a function of SNR were fitted with the SNR−2 function, and c2

was fitted with a constant. For m1, m2 and c1 versus Rgp/Rp the basis expansion for the fit was {(Rgp/Rp)−2, (Rgp/Rp)−3}, and for c2 a constant. For the other
parameters a linear fit was used. Appendix B contains the data points (Table B1) and equations for fitted functions (Table B2). The grey shaded area corresponds
to requirements for upcoming surveys.
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(note that we do not directly use the functions presented in Fig. 2,
as they show a bias on shear in the form of m and c, instead of the
bias on the ellipticity). We apply an additive correction predicted
by our model directly to the measured ellipticity values. Finally, we
verify the accuracy of this procedure by testing it using a ring test
consisting of 10 million noisy fiducial galaxies.

This approach will not provide a perfect calibration, as our model
of biases is calculated for a set of galaxies with particular true
galaxy and image properties. In practice, we will only know the
measured galaxy parameters, which are noisy, as illustrated in Fig. 1.
Therefore, if we read off the bias values from the measurements of
the noisy measured galaxy parameters, they will not be exactly the
correct bias values for that galaxy. In this section, we investigate
the scale of this effect.

The estimator of the ellipticity ê is biased, so that ê = ẽ + b[ê],
where ẽ is the unbiased estimator. By definition ẽ averaged over
noise realizations is equal to the true ellipticity, so that 〈ẽ〉 = etrue.

We estimate the true shear g with an estimator ĝ in a ring test. We
write the following equations to show mathematically what happens
when we do the correction on the individual galaxy ellipticities,

ĝ = 〈〈êl〉N 〉R = 〈〈ẽl〉N + b[êl]〉R (9)

= g + 〈b[êl]〉R, (10)

where el = e + g is the lensed ellipticity, and subscripts N and R
denote averages over noise realizations and around the ring, respec-
tively. Equation (10) shows that the bias of the shear estimator will
be equal to the bias on the lensed ellipticity e + g, averaged over
noise realizations and the ring. This is the bias we aim to calibrate.

We create a correction model which describes b[ê] as a function
of four galaxy parameters, i.e.

b[ê] = β(θ ) = β(e1, e2, Rgp/Rp, Fb/(Fb + Fd)). (11)

Then we apply this correction to the noisy estimates θ̂ , creating
an estimator of the correction β(θ̂) and we update our ellipticity
estimate to be

êβ ← ê − β(θ̂ ). (12)

Using this correction in the ring test implies

ĝβ = g + 〈b[ê + g] − 〈β(θ̂)〉N 〉R. (13)

Because we are applying the correction to the noisy ML estimates,
the correction itself can be biased under noise, so that b[β(ê, . . .)] =
〈β(θ̂)〉− b[ê]. Including this ‘bias on the correction’, we expect the
final bias on the shear after applying our calibration procedure to be

b[ĝβ ] = 〈〈b[β(ê + g)]〉N 〉R (14)

cβ = 〈〈b[β(ê)]〉N 〉R (15)

mβ = 〈〈b[β(ê + g)]〉N 〉R − 〈〈b[β(ê)]〉N 〉R
g

. (16)

Testing this procedure will include finding out how big the term in
equation (15) is.

In practice we create the model of the bias β(θ ) (equation 11)
using a learning algorithm based on radial basis function interpola-
tion,6 trained on all our simulated results. Then we use equation (12)
to correct the ellipticity estimates.

6 http://www.mathworks.com/matlabcentral/fileexchange/10056

Figure 3. Values of multiplicative (m) and additive (c) bias for uncalibrated
(blue) and calibrated (red) shear estimates. Ellipses indicate 1σ error bars.

The calibration procedure was tested by generating nearly 10
million galaxy images using the default galaxy parameters. The
ring test was performed as follows: a set of galaxies was simulated
with the galaxy intrinsic ellipticity angles equally spaced at 16
values from 0 to π, (i) with no shear applied and (ii) with a shear of
g1 = 0.1 applied. In total 300 000 galaxies were simulated at each
angle in the ring, for each shear value. To compute the uncalibrated
shear measurement bias, the measured ellipticity was averaged over
all galaxies with a given shear to obtain a shear estimate for that
population. Then a straight line was fitted to the resulting shear
estimates as a function of input shear to obtain the usual m and c.
To compute the calibrated shear measurement bias, the measured
ellipticities were corrected using equation (12) before averaging to
obtain the shear estimate.

The uncalibrated and calibrated shear measurement biases are
presented in Fig. 3. We see that the uncalibrated shear measurement
biases are well outside the requirement for upcoming surveys, as
discussed earlier. The calibration reduces the additive bias by a
factor of around 3, and the multiplicative bias by a factor of around
10. We find that the bias term in equation (15) is insignificantly
small to the accuracy afforded by our simulations. Therefore, the
calibrated biases are now within the requirement for upcoming
surveys for both additive and multiplicative shear biases.

5 C O N C L U S I O N S

In this paper, we have investigated the effect of noise on shear
measurement from galaxy images. We have found that this can
significantly bias shear measurement from realistic images, even
though the bias goes away completely for images with lower noise
levels. This was previously studied in Hirata et al. (2004) and R12,
who demonstrated the existence of this noise bias effect. We quan-
tified noise bias using images simulated from more realistic galaxy
models and used a forward fitting shear measurement method which
fitted a matching set of galaxy models to the simulations (IM3SHAPE;
Zuntz et al., in preparation). These models are based on observation-
ally motivated combinations of exponential disc and de Vaucouleurs
bulge models, and are broadly representative of the light profiles of
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realistic galaxies. They have also formed the basis of previous weak
lensing simulation programmes (Heymans et al. 2006; Bridle et al.
2010; Kitching et al. 2012). We use an MLE to obtain galaxy ellip-
ticity estimates from the images, and use these ellipticity estimates
as our noisy shear estimates. We find that the shear measurement
biases often exceed ∼1 per cent and even approach ∼10 per cent
for the smallest galaxies and highest noise values we consider in
this paper.

One feature of the simulations presented is that they are delib-
erately internal: test galaxies are generated using the same models
and routines as used later for fitting them, the only difference being
the addition of noise. In this way we are able to explore the effects
of noise biases in isolation from the contribution of underfitting
or model bias (e.g. Bernstein 2010; Melchior et al. 2010; Voigt &
Bridle 2010). The fact that the biases we detect are considerable,
even when fitting with perfect knowledge of the parametric galaxy
model, is striking. We conclude that, for many methods, bias from
unavoidable noise in galaxy images must be considered an important
potential source of systematic error when seeking shear inference at
sub-per cent level accuracy. The existence of noise bias is likely to
be a common feature to many shape measurement methods (Hirata
et al. 2004; R12). Unless shape measurement methods are theo-
retically constructed to avoid noise bias, empirical calibration with
simulations is necessary.

We quantified the noise bias as a function of image and galaxy
parameters and found a strong dependence. We found that the de-
pendence on image SNR is inverse square, as expected from sym-
metry arguments (e.g. see R12). The dependence on galaxy size
is quite non-linear and rises steeply as the galaxy size decreases
relative to the PSF size. The bias depends on the galaxy profile in
a complicated way. We find that for our fiducial parameters shears
are overestimated for exponential disc galaxies and underestimated
for de Vaucouleurs bulge galaxies. The dependence on the bulge to
total flux ratio is reasonably consistent with a linear relation. There
is a good linear relation between the additive shear measurement
noise bias and the PSF ellipticity.

Many shape measurement methods are potentially subject to
noise bias, and for these methods this sort of calibration will be
an important step in order to reduce systematic errors below the
level required for upcoming survey data sets. We illustrate a correc-
tion scheme based on a model of the measured biases, as a function
of observed galaxy properties. Note that this is not expected to re-
move the bias completely because the observed galaxy properties
are not the true galaxy properties and therefore we will be using
slightly the wrong bias correction. This correction was able to re-
duce ellipticity estimator biases to lower levels than those required
for the upcoming lensing surveys, for a fiducial galaxy with SNR =
20 and a typical intrinsic ellipticity of magnitude 0.3.

There is a small residual bias remaining after this first level of
correction. This is due to the scatter and bias in measured galaxy
parameters about their true values. This scatter and bias is an output
of the simulations and could therefore be propagated into a second
level of bias correction which would reduce the residual bias yet
further, into the realm of far-future surveys.

The calibration scheme we proposed can only be applied to a
method which, in addition to ellipticity, also produces estimates of
other parameters; it will probably be difficult to use it with a method
such as KSB, which primarily aims to estimate only the ellipticity
parameters.

This calibration approach is extremely computationally expen-
sive and would ideally be carried out for a large range and sampling
of image and galaxy parameters. The resolution of our results was

limited by the available computing time. The final results shown in
this paper took over 1 yr of CPU time.

These results are obtained using the same two-component co-
elliptical galaxy model in the simulations and in the fits. In practice,
it will be necessary to investigate more complicated galaxy mor-
phologies, which may not be precisely modelled in the fits. See
Zuntz et al. (in preparation) for noise bias calibration applied to
GREAT08 data.

For future surveys the simulated data must be carefully con-
structed in order to recreate realistic observing conditions, and the
realistic properties of the underlying galaxies (the latter requirement
poses greater difficulties than the former). The deep imaging of the
real sky is potentially an expensive overhead for future surveys, but
may prove necessary for confidence in the final results. Accurate
estimates of gravitational shear from methods affected by noise bias
will rely on consistent strategies for measuring and correcting these
systematic effects.

The presented calibration scheme does not use the information
about the galaxy parameters distribution in the Universe. We found
that the measured galaxy parameters were a sufficiently good proxy
for the true galaxy parameters that the noise bias could be corrected
well enough for upcoming surveys. If this result were generally true,
then this would place less stringent requirements on the simulations
because the galaxy population demographics would not need to
match exactly with reality, and the simulations would only have
to span a realistic range of galaxy parameters. However, different
calibration schemes could be created based on the distributions of
galaxy parameters. The simplest solution would be to calculate one
m and c for the whole population of galaxies, randomly drawing
not only noise maps but also galaxy and image parameters from
histograms of measured parameters from galaxies in the survey.
Using this method is not limited to ML fitting; potentially all shear
measurement methods could be calibrated that way.

We have used a white Gaussian noise model. In general, it should
be possible to repeat this procedure for a case of correlated noise.
It should also be possible to repeat the procedure for Poisson noise.
Our bias results will also depend on the number of parameters used
in the fitting. We have used seven free parameters and fixed the
ratio of radii of the bulge and disc galaxy components to unity.
We also assumed no constant background in the image, whereas
this could also be included as a free parameter in the fit. An un-
certain variable background level would complicate the analysis
further.

Another approach would be to use a fully Bayesian analysis: use
the full likelihood distribution (or samples) of ellipticity given the
noisy images and propagate this uncertainty to the cosmological
parameters. In this case the calibration would not be necessary.
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A P P E N D I X A : M E A S U R E M E N T O F T H E B I A S
O N T H E SH E A R

The multiplicative and additive bias were measured using the fol-
lowing procedure.

(i) Evaluate the bias on a grid in observed ellipticity. A grid in
the observed ellipticity parameter was created for each test galaxy
in Table 2. This grid consisted of eight angles on a ring. At each
angle, 15 ellipticity magnitudes were used in the range {0, 0.05, . . .,
0.7}. This grid is presented in Fig. A1. For each point on this grid,
we evaluate 20 000 noise realizations and average them to obtain
the bias. The number of noise realizations is chosen so that the
uncertainty on the mean was smaller than σ e < 10−3.

(ii) Create a model of the bias as a function of observed elliptic-
ity. A third-order 2D polynomial was fit to the surface of the bias.
Not all terms in the 2D expansion were used to avoid overfitting
of the data. In particular, we used {1, e1, e1, e

2
2, e

3
1} for fitting the

bias on e1, analogously for e2. This expansion takes into account
the inherent rotational symmetry of the problem: rotating galaxy
ellipticity and PSF ellipticity vectors results in the rotation of the
bias vector.

(iii) Perform a ring test to calculate m and c. The parametric
model of the bias surface allows us to perform a ring test at any
desired intrinsic ellipticity.

The bottom panels of Fig. A1 present the grid (dots) and interpo-
lated surface (colour scale) of the magnitude of bias as a function
of true e1 and e2 for a circular and elliptical PSF. We note that for
the circular PSF within the modelled range, the bias surface has
a circular symmetry which demonstrates that the problem is sym-
metric and that the effect of the pixel orientation with respect to
the galaxy is not strong. The top panels of Fig. A1 present cross-
sections of the above grid and surface for each angle. The bias on
ellipticity changes sign for large intrinsic ellipticities. This is due
to the edge effect of the ellipticity parameter space, described in
Section 3.
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Figure A1. Top panels: the colour scale presents the model of the magnitude of the bias on the estimated galaxy ellipticity, |b[ê1] + ib[ê2]|, as a function of
true galaxy ellipticities e1 and e2 for PSF ellipticities ePSF = {0.0, 0.0} (left) and ePSF = {−0.1, 0.0} (right). The model was created using biases measured
from simulations on a grid of true ellipticity values shown by the diamond points. Middle and bottom panels: bias on ê1 as a function of true absolute ellipticity
|e| for ePSF = {0.0, 0.0} (middle-left) and ePSF = {−0.1, 0.0} (middle-right), Rgp/Rp = 1.4 (bottom-left) and pure bulge (bottom-right). All other parameters
are held at the fiducial values (see Section 2). The lines (dashed magenta, dash–dotted cyan, dotted blue, solid red) correspond to true ellipticity angles
{0,π/8, π/4, 3π/8} joined with {π/2, 5π/8, 3π/4, 7π/8}. Lines are third-order polynomial fits to the points. The middle-left and -right panels correspond to
the fiducial galaxy model with circular and highly elliptical PSF, respectively, as in the top panels.
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Table B1. Measured multiplicative and additive biases for all simulated galaxies. Biases here are shown for a ring test using
the intrinsic ellipticity of 0.3. All parameters of the galaxies were the same as the fiducial model, except the ones indicated
in the first column.

m1 m1 c1 c2

Fiducial +0.019 62 ± 0.000 40 +0.020 94 ± 0.000 44 +0.000 84 ± 0.000 40 −0.000 06 ± 0.000 08
SNR = 200 +0.000 10 ± 0.000 17 +0.000 21 ± 0.000 18 −0.000 07 ± 0.000 17 −0.000 03 ± 0.000 04
SNR = 40 +0.003 83 ± 0.000 28 +0.004 16 ± 0.000 31 +0.000 16 ± 0.000 28 −0.000 09 ± 0.000 06
Rgp/Rp = 1.4 +0.058 09 ± 0.000 60 +0.052 63 ± 0.000 67 +0.002 74 ± 0.000 60 −0.000 03 ± 0.000 13
Rgp/Rp = 1.8 +0.008 09 ± 0.000 31 +0.006 88 ± 0.000 34 +0.000 37 ± 0.000 31 +0.000 09 ± 0.000 07
Disc +0.039 92 ± 0.000 45 +0.039 29 ± 0.000 50 +0.001 66 ± 0.000 45 −0.000 02 ± 0.000 10
Bulge −0.013 25 ± 0.000 36 −0.011 71 ± 0.000 40 −0.000 36 ± 0.000 36 −0.000 06 ± 0.000 08
ePSF = {0.0, 0.0} +0.020 50 ± 0.000 40 +0.020 67 ± 0.000 44 +0.000 10 ± 0.000 40 −0.000 05 ± 0.000 08
ePSF = {−0.1, 0.0} +0.021 76 ± 0.000 40 +0.021 19 ± 0.000 44 +0.001 95 ± 0.000 40 +0.000 06 ± 0.000 09
Rgp/Rp = 1.8 disc +0.017 40 ± 0.000 35 +0.017 85 ± 0.000 39 +0.000 89 ± 0.000 35 −0.000 06 ± 0.000 07
Rgp/Rp = 1.8 bulge −0.026 94 ± 0.000 31 −0.021 01 ± 0.000 34 −0.000 66 ± 0.000 31 −0.000 12 ± 0.000 07
Rgp/Rp = 1.4 disc +0.058 99 ± 0.000 63 +0.056 34 ± 0.000 70 +0.002 89 ± 0.000 63 −0.000 03 ± 0.000 13
Rgp/Rp = 1.4 bulge +0.034 50 ± 0.000 54 +0.034 59 ± 0.000 60 +0.001 61 ± 0.000 54 +0.000 16 ± 0.000 12

Table B2. Equations for the noise bias model function. These are the equations fitted to the data points in Fig. 2.

m1 c1

m2 c2

D1 := SNR +7.956 × 10+00 · D−2
1 +3.026 × 10−01 · D−2

1
+8.470 × 10+00 · D−2

1 −6.685 × 10−05

D2 := Rgp/Rp − 1 −2.190 × 10−03 · D−2
2 + 5.791 × 10−03 · D−3

2 −4.002 × 10−05 · D−2
2 + 1.953 × 10−04 · D−3

2
−1.923 × 10−03 · D−2

2 + 5.639 × 10−03 · D−3
2 + 2.089 × 10−05

D3 := Fb
Fb+Fd

−5.716 × 10−02 + 4.557 × 10−02 · D3 −1.775 × 10−03 + 1.496 × 10−03 · D3

−5.641 × 10−02 + 4.518 × 10−02 · D3 −1.034 × 10−04

D4 := ePSF +2.084 × 10−02 + 9.193 × 10−03 · −D4 +5.697 × 10−05 + 1.612 × 10−02 · −D4

+2.111 × 10−02 + 1.185 × 10−02 · −D4 −1.107 × 10−05

Table B3. Parameters of equations for the bias on ellipticity. These are the parameters used with equation (B1).

a
(0)
1 a

(1)
1 a

(2)
1 a

(3)
1 a

(4)
1 a

(0)
2 a

(1)
2 a

(2)
2 a

(3)
2 a

(4)
2

Fiducial +0.0008 +0.0201 +0.0003 +0.0004 −0.0013 −0.0001 +0.0216 +0.0006 −0.0047 −0.0070
SNR = 200 −0.0001 +0.0001 +0.0004 −0.0009 +0.0004 −0.0001 +0.0004 +0.0002 −0.0009 −0.0007
SNR = 40 +0.0002 +0.0039 +0.0004 −0.0013 +0.0013 −0.0000 +0.0037 +0.0001 +0.0047 +0.0021
Rgp/Rp = 1.4 +0.0027 +0.0767 −0.0076 −0.1154 −0.1075 +0.0001 +0.0754 −0.0031 −0.1048 −0.1125
Rgp/Rp = 1.8 +0.0003 +0.0073 +0.0008 +0.0055 +0.0054 +0.0001 +0.0059 −0.0003 +0.0073 +0.0066
Disc +0.0014 +0.0443 +0.0004 −0.0282 −0.0256 −0.0001 +0.0432 +0.0004 −0.0247 −0.0254
Bulge −0.0004 −0.0132 +0.0007 −0.0024 −0.0000 −0.0001 −0.0137 +0.0002 −0.0023 +0.0133
ePSF = {0.0, 0.0} +0.0001 +0.0216 −0.0008 −0.0072 −0.0042 −0.0000 +0.0213 −0.0009 −0.0046 −0.0048
ePSF = {−0.1, 0.0} +0.0017 +0.0223 +0.0014 −0.0056 −0.0039 +0.0001 +0.0227 −0.0015 −0.0006 −0.0107
Rgp/Rp = 1.8, disc +0.0008 +0.0172 +0.0010 −0.0008 +0.0049 −0.0000 +0.0173 −0.0002 +0.0052 +0.0016
Rgp/Rp = 1.8, bulge −0.0006 −0.0290 +0.0003 +0.0030 +0.0140 −0.0001 −0.0230 −0.0004 +0.0020 +0.0108
Rgp/Rp = 1.4, disc +0.0030 +0.0843 −0.0110 −0.1420 −0.1485 +0.0001 +0.0844 −0.0010 −0.1540 −0.1425
Rgp/Rp = 1.4, bulge +0.0014 +0.0425 −0.0012 −0.0500 −0.0468 +0.0001 +0.0450 −0.0004 −0.0593 −0.0529

A P P E N D I X B: PA R A M E T E R S A N D
F U N C T I O N S U S E D TO C R E ATE MO D E L S O F
THE BIA S O N ELLIPTICITY AND SHEAR

Table B1 contains the multiplicative and additive bias measure-
ments for all galaxies used in this work. See Appendix A for details
of how these values were calculated. Fiducial galaxy parameters
were SNR = 20, Rgp/Rp = 1.6, FWHMPSF = 2.85, ePSF = {0.05,
0}, βMoffat = 3, fluxbulge/fluxtotal = 0.5, rbulge/rdisc = 1.0. Table B2
contains equations of the functions in Fig. 2. Table B3 contains the

parameters of the polynomial function fitted to the bias on elliptic-
ity, for example in Fig. A1. The equation used with these parameters
is

b[ê1] = a
(0)
1 + a

(1)
1 ê1 + a

(2)
1 ê2

1 + a
(3)
1 ê1ê

2
2 + a

(4)
1 ê3

1, (B1)

accordingly for b[ê2] with parameters a2.
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