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Abstract. Concentrated strain within plate margins and a significant toroidal component in 
global plate motion are among the most fundamental features of plate tectonics. A significant 
proportion of strain in plate margins is accommodated through motion on major tectonic faults. 
The decoupling influence of faulted plate margins primarily results from history-dependent 
lithospheric deformation rather than from instantaneous stress-weakening rheologies. For 
instantaneous mantle flow models, we argue that faults should be treated as preexisting mechanical 
structures. With models incorporating preexisting faults, a power law rheology with an exponent 
of 3, and slab pull and ridge push forces, we demonstrate that nonlinear interaction between weak 
faults and this power law rheology produces plate-like motion. Our models show that in order to 
produce plate-like motion, the frictional stress on faults needs to be small and the asthenosphere 
viscosity should be much weaker than that of lithosphere. While both plateness and the ratio of 
toroidal to poloidal velocities are reduced with increasing fault coupling, the viscosity contrast 
between the lithosphere and asthenosphere only influences plateness. This shows that both 
diagnostics, plateness and the ratio of toroidal to poloidal velocities, are necessary to characterize 
plate motion. The models demonstrate that weak transform faults can guide plate motion. This 
guiding property of transform faults and the decoupling of thrust faults result in oblique 
subduction where the strike of subducted slabs is oblique to transform faults. Subducted slabs 
beneath a dipping fault produce oceanic trench and fore bulge topography and principal stresses 
c onsistent with subduction zone observations. 

1. Introduction 

According to the theory of plate tectonics, plates are nearly 
rigid with negligible internal strain and with strain 
concentrated within plate margins [Wilson, 1965; Morgan , 
1968]. Moreover, plate motion is approximately equally 
partitioned between poloidal (i,e., motion associated with the 
creation and destruction of plates) and toroidal (i.e., strike-slip 
motion and plate spin) velocities [Hager and 0 'Connell, 
1979]. A significant amount of strain is accommodated in 
plate margins through earthquakes on major faults between 
plates [Davies and Brune, 1971; Kanamori, 1977]. An 
understanding of the dynamics of plate tectonics is a central 
goal of geodynamics, not only because plate tectonics is one 
of the most important features of the Earth hut also because 
plates have a first-order influence on the dynamics of the deep 
interior [Hager and 0 'Connell, 1 979; Davies, 1988; Gable e t 
al. , 1991]. 

Two classes of methodologies have been applied to the 
problem of coupling plates to mantle flow: one based on a 
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force balance and another based on rheology. In the first 
method, plates with a preset geometry are assumed perfectly 
rigid; velocity for each plate is determined by balancing 
torques and forces that act on the plate from mantle flow [Hager 
and O'Connell, 1981; Ricard and Vigny, 1989; Gable et al., 
1991]. These models are capable of reproducing plate motion 
by using seismically determined mantle buoyancy structures 
[Ricard and Vigny, 1989] or estimated subducted slab density 
anomalies based on the history of plate motion [Lithgow­
Bertelloni and Richards, 1995]. Since plates are derived by 
definition in these models, they can only address questions of 
the plate driving mechanism and the influence of plates on the 
mantle [Hager and O'Connell, 1981] rather than answenng the 
question of plate generation. This methodology simplifies the 
dynamics of plates and margins by using laterally 
homogeneous viscosity and prescribed boundary velocities for 
plates. Potentially important plate boundary forces [e.g., 
Forsyth and Uyeda, 1975] are often ignored in torque or force 
balances [Ricard and Vigny, 1989; Gable et al., 1991]. 

The second methodology does not assume perfectly rigid 
plates, rather a complex mantle rheology is used in the hope of 
producing plate-like surface motion from the solution of the 
momentum equation. Creep experiments on mantle rocks 
indicate that mantle rheology is both temperature- and stress­
dependent. The overall form of effective viscosity can be 
expressed with 
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where n is the exponent and is unity for a Newtonian rheology; 
A is the preexponent which depends on temperature, pressure, 
and composition; e is the second invariant of a strain rate 
tensor. For mantle rocks, the exponent n is about 3 (i.e., 
stress weakening) [e.g., Karato and Wu, 1993). Equation (1) is 
recast -from the stress-strain rate relationship (Figure 1 ). 
Stresses may be high in plate margins, and this is manifest 
with existence of a few kilometers of trench topography in 
converging margins. Earlier two-dimensional (2-D) models 
with prescribed weak zones, representing plate margins, 
enforce a localized deformation in weak zones [Kapitzke, 
1979; Schmeling and Jacoby, 1981; Jacoby and Schmeling, 
1982]. The weak zones in these models were intended to 
mimick the stress weakening of the lithosphere and mantle 
inherent in equation (I), although additional weakening 
processes probably occur in plate margins, such as those 
dependent on lithology, volatiles [Lenardic and Kaula, 1994], 
and deformation history [Gurnis, 1997]. This weak zone 
formulation has been extensively used in modeling plates in 
two dimensions [Gurnis, 1988; Gurnis and Hager, 1988; 
Davies, 1989; King an4 Hager, 1990; Zhong and Gurnis, 
1994a; Puster et al., 1995]. 

Considerable effort in modeling plate generation has been 
directed toward incorporating non-linear stress or stress­
weakening rheology into dynamic models [Christensen, 1983; 
Weinstein and Olson, 1992; Bercovici, 1993, 1995; 
Solomatov and Moresi, 1997]. Models which utilize the power 
law rheology (equation (1)) with exponents in the range of 3 to 
5 predict surface motion which has substantial internal strain 
but with only a few percent toroidal component [Christensen, 
1983; Christensen and Harder, 1991]. By using thin plate 
models, Weinstein and Olson [1992] and Bercovici [1993] 
have shown that only when a much stronger nonlinear 
rheology is utilized can a concentrated strain or plate-like 
surface motion be achieved. The nonlinearity increases with n, 
but the nonlinearity is strongest when the exponent is -1 as 
used in models considered by Bercovici [1993]. When n=-1, 
the power law rheology gives two possible branches of strain 
rate for a given stress, one normal branch with a small strain 
rate and the other branch with a larger strain rate [Bercovici, 
1993]. For n as high as 20, the width of regions with 
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Figure 1. The stress and strain rate relationship for a power 
law rheology with n=3 and a pseudo-plastic rheology with 
n=20 for stress larger than 20 MPa. The dimensional 
preexponent A is 7.9x10"8 Pa3s (i.e., nondimensional A is 
2x 1 07

). 

concentrated strain (i.e., plate margins) is quite large 
[Weinstein and Olson, 1992], but models with n::-1 produce 
much narrower margins [Bercovici, 1993]. Recently, this n=-1 
rheology has been implemented in a three dimensional model 
[Tackley, 1998]. Solomatov and Moresi [1997] used a pseudo­
plastic rheology (i.e., n is infinite) with depth-dependent yield 
stress to model the plates, but the emphasis of their models is 
how a different yield stress can lead to a different style of 
convection (i.e., stagnant lid or mobile plate). Models with a 
strong nonlinear rheology apparently have the advantage over 
models with prescribed weak zones in that plate geometry and 
surface motion naturally emerge from the dynamics. However, 
there are significant implications of this methodology. 
Implicit to the stress weakening rheology is that the 
weakening processes are instantaneous. Essentially, the 
models imply that as long as the stress is high, weak fault 
zones will develop instantaneously, independent of 
deformation history. This may be inconsistent with 
observations. 

According to the studies by Jeffreys [1970] and Artyushkov 
[1973], the large topography variation in regions near 
seamounts and orogenic belts induce large local stresses. With 
strongly nonlinear stress-weakening rheology (e.g., the 
pseudo-plasticity or with n=-1), these high stress regions 
should develop weak fault zones and deform in the same way as 
plate margins. On the contrary, regions near large intraplate 
seamounts and old mountain belts do not show noticeable 
strain. On the other hand, transform fault plate margins, like 
the San Andreas, do not show high stresses [Lachenbruch and 
Sass, 1988], but significant deformation occurs within the 
fault zones. A traditional explanation, from Kanamori [ 1 9 80], 
is that lithospheric strength itself is highly heterogeneous. 
Here the strength is defined as the deviatoric stress that the 
lithosphere can support without deforming [Jeffreys, 1970]. 
Kanamori [1980] has suggested that heterogeneous strength 
results from the distribution of weak faults which may be weak 
due to weak material within faults. Another possible 
explanation is to invoke the n=-1 rheology whose duality of 
strain rates can account for the apparently uncorrelated stress 
to strain rate. Physical mechanisms including void generation 
and volatile ingestion may lead to the n=-1 rheology 
[Bercovici, 1998]. However, more studies, both theoretical 
and experimental, are clearly needed in applying this rheology 
to lithospheric deformation. In summary, we make the 
following observational inferences: (l) the instantaneous 
stress weakening is not the primary cause for generating weak 
fault zones, although it may play a role, even a fundam~ntal 
role, in lithospheric deformation; and (2) at any instant in 
time, the existence of weak fault zones reflects the deformation 
history rather than instantaneous stress. 

With the recognition of these fundamental properties of 
lithospheric strength, it has become clear to us that a simple 
weak zone formulation, originally from Kapitzke [1979], 
Schmeling wu1 Jacoby [19811, and Jacoby and Schmeling 
[1982], has its own merits in capturing the fundamental 
features of history-dependent lithospheric rheology. Owing to 
its simplicity, however, the weak zone formulation has 
considerable drawbacks as a description of plate margin 
processes. Seismological studies suggest that most 
lithospheric deformation in converging margins is 
accommodated through great thrust earthquakes on thrust faults 
[Davies and Brune, 1971; Kanamori, 1977; Ruff and Kanamori, 
1983]. Faults are discontinuities between plates. In the weak 
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zone fonnulation, the deformation is distributed over entire 
weak zones, typically a few hundred kilometers wide. 
Improving upon these weak zone models, Zhong and Gurnis 
[1994b, 1995, 1996] developed two- and three-dimensional 
finite element models of a mantle with preexisting faults 
directly incorporated into a mantle with a power law rheology. 
In these models, only faults are specified to be weak, although 
the stress may weaken the media surrounding the faults 

· according to the power law rheology. In these models, faults 
arc simulated as internal lines or planes across which normal 
velocities are continuous but tangential velocities may be 
discontinuous. Flow on either side of a fault can be coupled 
through frictional stress [Zhong and Gurnis, 1994b]. 
Moreover, only fault geometry is prescribed such that the 
sense of motion on faults (e.g., thrust or strike slip) is 
determined by the dynamics. 

In their 2-D models, Zhong and Gurnis [1995] have shown 
that faulted converging plate margins may contribute to 
producing plate-like surface motion such that the dynamically 
determined motion of faulted margins is an essential ingredient 
to the evolution of plate size and subduction dynamics. 3-D 
models include both transform and thrust faults and suggest 
that the interaction between weak faults and a power law 
rheology is essential to giving rise to plate·like motion 
[Zhong and Gurnis, 1996]. This study is an extension of the 
report by Zhong and Gurnis [1996]. We include high 
resolution 2-D models with curved fault and pseudo-plastic 
rheology, and more 3-D models with a variety of vertical and 
horizontal viscosity structure, all of which were not presented 
by Zhong and Gurnis [1996]. First, we will present numerical 
techniques for modeling faults in two and three dimensions; 
second, we will briefly show the influence of a dipping fault on 
stress and flow fields in a 2-D model of subduction zone; third, 
we will detail the influence of fault geometry, fault strength, 
and vertical viscosity structure on plate generation; and 
finally, we will discuss the implications of our model results to 
mantle dynamics. 

2. Description of Models and Numerical Methods 

The governing equations for mantle flow are derived from 
the conservation of mass and momentum. Since the mantle has 
a very high Prandlt number, the inertial forces can be ignored 
in the equation of motion. With the assumption of 
incompressibility, the momentum and continuity equations are 
respectively, 

('J!J',j + pgl)i2 = 0, (2) 

ui,i = 0, (3) 

where cr ii, Uf , p , and g are the stress tensor, the flow velocity, 
the density, and gravitational acceleration, respectively. The 
density may include contributions from temperature variation. 
The constitutive law is 

(4) 

where 

(5) 

Pis the pressure, ii,i is the unit tensor, and ~ctr is the effective 
viscosity and is defined in equation (1). It is essential to 

recognize that (1) whether a model produces plate-like surface 
motion is entirely detennined by the solution of equations (2) 
and (3) for a given rheology and density structure; (2) while 
history-dependent rheology may nominally be introduced 
through the preexponent of A, the rheological equation (1) is 
only applicable to continua and cannot be used for faults of 
discontinuous nature. Boundary conditions of the models are 
free slip on· both the bottom and top boundaries and reflecting 
on side walls. 

Although we will concentrate on the influences of 
preexisting faults and n=3 power law rheology, we will also 
explore the influences of highly nonlinear stress-weakening 
rheologies on the generation of plates, particularly the 
influences of a pseudo-plastic rheology. We choose to use a 
pseudo-plastic rheology over other stress-weakening 
rheologies because the pseudo-plastic rheology gives a 
reasonable numerical convergence rate while containing the 
basic features of stress-weakening rheologies. For the pseudo­
plastic rheology, the exponent n in equation {1) is assumed to 
be much larger than 3 when stress is larger than a yield stress 
(Figure 1). We refer to this rheology as "pseudo-plastic" 
because it differs fundamentally from the normal use of 
plasticity in rocks [Jaeger, 1969]. Normally, plasticity is used 
to describe the transitional deformation of material from 
elastic to ductile failure or flow regimes under a sufficiently 
large stress (i.e., yield stress) and is defined in terms of a 
stress-strain relationship [Jaeger, 1969], not a stress-strain 
rate relationship. Presumably, deformation in the plastic flow 
regime after the yield stress is reached can be described as 
viscous deformation or even linear viscous deformation. 
Pseudo-plastic rheology is based on a stress-strain rate 
relationship and implies that fluid viscosity is greatly reduced 
when stress is larger than a yield stress (Figure 1). In essence, 
pseudo-plastic rheology is a special form of a nonlinear 
viscous rheology. Similar pseudo-plastic rheologies have 
been applied to viscous flow models of the mantle by Sleep 
[1975] and more recently by Solomatov and Moresi [1997]. 

Our 3-D models in a Cartesian domain include a half-space 
cooling thermal boundary layer and cold subducted slabs (e.g., 
the geometry of one type of calculation is shown in Figure 2). 
The buoyancy is derived as if a region, 9\, is spreading from 
the left side boundary at a velocity of 3 em yr"1 (Figure 2). In 
9\ , the surface age increases with distance from the spreading 
center, and outside of 9\ , excluding the slabs, the thermal 
structure is identical to that with the oldest age (Figure 2). A 
100 km thick slab extends from a depth of 100 km to 670 km 
with a 60° dip angle (Figure 2). Slab buoyancy is identical to 
that of the lithosphere just prior to subduction. The viscosity 
in the upper mantle including the top 100 km layer is 
determined by a power law rheology with n=3, while the 
viscosity in the lower mantle is Newtonian and equal to 2x I 022 

Pas. Temperature dependence of viscosity is simulated with 
the power law preexponent A such that a larger A is used for 
both slabs and the upper 100 km. At the spreading center, a 
narrow region within the top 100 km layer has a smaller A to 
account for the higher temperature and partial melting below a 
ridge. For most calculations undertaken, A for the top 100 km 
layer and slabs, the spreading centers, and the upper mantle are 
2x101

, 2xl03
, and 20, respectively. These preexponents are 

chosen such that the average effective viscosities for the top 
100 km and the upper mantle are about 1023 Pa s and 2x 1020 Pa 
s, respectively, and that the average surface velocity in 9\ is 
close to the velocity used to derive the input buoyancy fi elds. 
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Figure 2. (a) The geometry of the three-dimensional flow 
model with faults , (b) a cross-section AA' of the model f or 
viscosity and thermal structure, and (c) the average v i scosity 
profile. In Figure 2a, F, S, and W stand for faults, slab, and 
weak zone, respectively. In Figure 2c, viscosity is normalized 
by 2xl012 .Pas. The density, thermal diffusivity, and thermal 
expansivity for the mantle are 3300 kg m·3

, 10·6 m s·2
, and 

2x 1 0"5K"1
, respectively. 

9t is bounded by faults with different dips whi~h dissect the 
upper 100 km (high viscosity) layer, except for the side with 
the spreading center (Figure 2). Fault dip is 30° when the fault 
is above a slab but vertical elsewhere. In the 2-D models, fault 
dip may steepen with the depth. In converging margins, 
seismically active faults do extend to greater than 60 lcm depth 
[Tichelaar and Ruff, 1993], but the faults (at least for the 
seismogenic portion) are shallower in transform fault plate 
boundaries. Because the top 100 km layer is assumed to have a 
uniformly high preexponent A, for simplicity, we assume a 
uniform 100 km fault depth in our models. Transform faults 
that offset spread ing centers are usually shorter but occur with 
a large frequency, compared to vertical faults in the model 
(Figure 2). In the model, the short transform faults are 
represented by a single long transform fault. Moreover, our 
long transform fault model also partly results from projection 
onto a Cartesian domain. For example, the northern and 
southern boundaries of the Pacific plate have a small length 
because of their proximity to the Pacific plate's pole of 
rotation. 

The influence of faults on stress and deformation fields has 
been previously studied in other geophysical contexts 
numerically [e.g., Melosh and Williams , 1989; Barr and 
Houseman, 1992, 1996; Bird and Kong, 1994]. We use 
constrained elements and matrix transformation techniques to 
simulate faults of arbitrary geometry. These techniques are 
generalized from Zhong and Gumis [1994b) (see Appendix A). 
Faults are simulated as internal interfaces across which normal 
velodties are constrained to . be continuous, but tangential 
velocities may be discontinuous. We emphasize that only fault 
geometry is prescribed while the sense of motion on faults 
(e.g.,. thrust or strike slip) is determined by the dynamics. 
Although for most calculations, the frictional stress on faults 

is zero, we explore nonzero frictional stress with prescribed 
values on faults. 

We use a finite element method to solve equations (2) and 
(3) with nonlinear rheology and faults. The finite element 
software, Citcom, used in this study is based on a primitive 
variable formulation with two-level iterations to solve the 
pressure and velocity simultaneously [Moresi and Solomatov, 
1995; Moresi and Gurnis, 1996]. Both multigrid and 
preconditioned conjugate gradient solvers are included in the 
inner level iteration in Citcom, while only a preconditioned 
conjugate gradient solver is usedin this study because of the 
complex 3-D meshes resulting from the inclusion of faults. We 
have ported the software to massively parallel computers (see 
Appendix B). With the use of parallel computers, we are able to 
solve models with significantly higher resolution than 
presented by Zhong and Gurnis [1996]. For most 3-D 
calculations, we use about 1.5xl05 linear elements (i.e., 8 
nodes per element). The finite element mesh was refined near 
the fau]ts, slabs, and top I 00 km with horizontal and vertical 
spacing of about 15 km. The nonlinear momentum equation is 
solved iteratively until relative variation in velocity between 
two consecutive iterations is less than 1%. 

To characterize plate-like surface motion, we define th e 
ratio of toroidal to poloidal components Rr /P [Gable et al., 
1991] and plateness P as 

Rr;P = :E y X X y I X X y y (6) (k v:lm -k v.zm )2 I (k v:zm +k v.tm )2 

k 2 k 2 k2 k2 ' l,m x+ y l,m x+ y 

(7) 

(8) 

(9) 

where kx=21t/L, and ky=21t/L
1 

are the wavenumbers in x and y 
directions; L, and L, are the horizontal dimensions of the box 
in x and y directions; integer indices l and m cannot be both 
equal to zero; v;m and V~m are the spectra of surface velocity 
of x and y components associated with l and m; VP is the 
magnitude of average veloci ty (ux,uy ) in region 9\; and 
Vnns is the RMS deviation from (ux,uy ) in 9\ (Fig. 2). 
Plateness defined here is different from that used in 2-D s~dies 
by Weinslein and Olson [1992]. Plateness is l for a perfectly 

rigid plate and is 0.52 for a sinusoidal variation in surface 
velocity along the spreading direction in 9\. Since Rr;p i s 
geometry-dependent [Olson and Bercov ici, 1991], we define a 
normalized ratio of toroidal to poloidal components, NrtP , 
which is RTfp normalized by the ratio of toroidal to poloidal 
components for a perfectly rigid plate within region 9\. 

3. Results 

In this section, we will first show the influence of a dipping 
fault positioned directly above a subducted slab on plate 
velocity, stress, and strain rate. Then, we will focus on 3-D 
problems with multiple faults. For 3-D models, we will 
examine the roles played by viscosity structure, fault stre ngth, 
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and fault geometry on plate generation. We will end with a 
discussion on the implications of our results to the Earth. 

3.1. Two-Dimensional Models 

Previously, the role which a dipping fault has on the 
dynamic support of outer rise, trench, and back arc topography 
in subduction zones has been investigated with 2-D viscous 
[Zhong and Gurnis, 1994b] and viscoelastic models [Gurnis et 
al., 1996]. Here, we build upon this earlier work and examine 
the influence of a dipping fault on stress, strain rate, and flow 
fields within lithosphere and mantle. The 2-D models should 
be viewed as cross sections dissecting the 3-D models of a 
subducted slab and spreading center described next (e.g., the 
cross section AA' in Figure 2). The rheological parameters and 
buoyancy structure are the same as those in 3-D models. 
Therefore the 2-D models can be directly compared with the 3-
D models. With our higher- resolution 2-D models, we are able 
to directly explore the influence of fault geometry, especially 
the influence of a curved dipping fault with a smaller dip at a 
shallower depth. This latter model with a curved dipping fault 
is more realistic than our earlier models with a straight fault 
and allows better comparisons of stress and strain rate with 
seismic observations. A mesh with 192x64 bilinear elements 
is used and is refined near the subducted slab and within the top 
1 00 km layer. 

3.1.1. Models with and without a dipping fault. 
With no fault (case 1 in Table 1), the mantle flow induced by 

Table 1. Model Parameters 

Case Model DescriEtion 

Geomet!l Rheolo~:l: Faults F,MPa 

1 2Dl Ml N 
2 2D1 Ml y 0 
3 2DI Ml y 0 
4 2Dl M1P N 
5 2Dl MlP N 
6 3D! M1 N 
7 3D! Ml y 0 
8 3D I M2 y 0 
9 3D I M3 y 0 

10 3D! M4 y 0 
11 3D1 M1 y 5 
12 3D! MI y 10 
13 3D! M1 y 20 
14 3Dl M5 y 0 
15 3D! M6 y 0 
16 3D! M7 y 0 
17 3D2 Ml N 
18 3D2 Ml y 0 
19 3D3 M1 N 
20 3D3 M1 y 0 

the slab and oceanic plate shows that (1) the horizontal 
velocity of the subducting plate is about 1.3 em yr 1, 

significantly greater than that of the overriding plate (Figures 
3a and 4a); (2) a significant portion ( -500 km in width) of the 
overriding plate is actively deforming and moving with a 
substantial horizontal velocity toward the overriding plate 
(Figures 3a, 3d and 4a); (3) although concentrated in the upper 
mantle, flow extends into the high viscosity lower mantle 
beneath the overriding plate (Figure 3a). In comparison with 
the upper mantle, the effective viscosities for the lithosphere 
and subducted slab are higher (Figure 3a). The averaged 
viscosities for the oceanic plate, slab24and upper ll!~ntle below 
the s~0bducting plate are about 2x 10 Pa s, 4x 10 Pa s, and 
4x10 Pa s, respectively. In the top 100 km layer, besides a 
weak spreading center derived from a reduced exponent A, a 
weak

22
zone develops above the slab with a viscosity of about 

2xl0 Pas (Figures 3a and 3d). 
The strain rate is concentrated near the material boundaries 

(e.g., regions surrounding the slab and beneath the 
lithosphere) and in the weak zones in the top 100 km layer 
(Figures 3b and 3e). In the top 100 km layer excludin~ th

1
e 

weak spreading center, the largest strain rate (-2x 1 0 s ) 
occurs directly above the slab (Figure 3e). The deviatoric stress 
in the lithosphere, slab, and lower mantle near the slab is 
much larger compared to other regions and is largest within 
and above the slab (Figure 3c). The principal stresses show a 
horizontal compression in the overriding plate and a 

VP, cm/yr p NTtp(RTJP) ~lithl~um 

1.3 0.96 5.5xi03 

2.8 0.96 3.7xl03 

2.3 0.96 4.1xl o3 

2.8 0.96 3.3x103 

5.0 0.96 2.lx103 

0.98 0.74 0.49(0.27) 2.3x102 

3.3 0. 91 0.87(0.48) J.[ X 102 

0.16 0.49 0.16(0.09) 3.1x102 

0.44 0.82 0.36(0.20) 2.2x102 

2.3 0.89 0.89(0.49) 2.8x102 

2.6 0.87 0.80(0.44) 2.7x102 

2.1 0.82 0. 73 (0.40) 2.3x102 

1.4 0.72 0.56(0. 31) 2 .0xl02 

2.2 0.83 0.87(0.48) 1.4xl02 

1.1 0.62 0.80(0.44) 50.2 
0.96 0.94 0.89(0.49) 6. lx102 

0.91 0. 7 4 0.51(0.28) 2.7xl02 

2.9 0.89 0.87(0.48) 3.0x102 

0.97 0.72 0.65(0.41) 2.7xl02 

2.9 0.88 0.90(0.57) 3.5xl02 

2DI and 2D2 are for slab dips 60° and 30°, respectively; 3Dl, 3D2, and 3D3 are for three different geometries that 
are shown in Figure 6 and 11. M1-M7 represent different rheology models; Ml, A=(2xl07, 2x 10 7, 2x103, 2x1 01) 
and n=(3, 3, 3, 3); M2, A=(5.6, 1.8x l o·2, 5.6, 1. 8xl0-2) and n=(l, 1, 1, 1); M3, A=(5.6, 5.0x 1 o-1, 9x 10·3, 
1.8xl0-2) and n=(l, 1, 1, 1); M4, A=(2xi07, 5x10·1, 9x1Q·3 , l.8xl0-2) and n=(3, 1, 1, l);M5, A=(2xl07, 2x107, 
2x103, 2xl02) and n=(3, 3, 3, 3); M6, A=(2x l07, 2x107, 2x103, 2x103) and n=(3, 3, 3, 3); M7, A=(2xi08, 2x!08, 
2xl03, 2xl01) and n=(3, 3, 3, 3), where the numbers in parentheses are the preexponents and exponents for the top 
100 km layer, slab, spreading center, and upper mantle. MlP is for M1 rheology model with pseudo-plastic 
rheology for the top 100 km layer. F gives the frictional stress on faults. Rr!P for a perfectly rigid plate with 
geometry 3Dl, 3D2, and 3D3 are 0.55, 0.55, and 0.63, respectively. 
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Figure 3. (a) Effective viscosity and flow velocity (vectors), 
(b) second invariants of strain rate and (c) stress for 2D case 
without a fault (case 1 ). Magnified views in the vicinity of slab 
show (d) effective viscosity and flow velocity and (e) second 
invariant of strain rate and principal compressive stress. In 
Figure 3e, the length and orientation of each line represent the 
magnitude and direction of principal compressive stress. The 
viscosity, stress, and strain rate are normalized by 2.0x1022 Pa 
s, 71.1 MPa, and 1.78x10"14 s· 1

• The effective viscosity is in a 
logarithmic scale. 

horizontal extension in the subducting plate (Figure 3e). 
Within the slab, the stress is downdip extensional at the 
shallow part (Figure 3e), and turns into downdip 
compressional at a_ depth of about 500 km, similar to the finite 
element models by Vassiliou and Hager [1988]. Topography 
decreases with distance from the spreading center as expected 
for a cooling plate but becomes a significant depression (about 
500 km in width and 2.4 km in amplitude) directly above the 
slab (Figures 4c and 4d). The maximum depression in dynamic 
topography occurs approximately in the location of maximum 
strain rate (Figures 4c, 4d, and 4e). 

We now investigate the influence of a dipping fault on 
stress, strain rate, and flow fields in subduction zones. A 
curved dipping fault is included in case 2 which is otherwise 
identical to the preceding case (Table 1 ). The horizontal 
distance between the two end points of the fault is 200 km 
(Figure 5) , consistent with what has been inferred for most 
subduction zones [e.g. , Jarrard, 19&6]. The fault dip steepens 
with depth and is about 25° when it intersects the surface 
(Figure 5). Compared with the case with no fault (case 1 ), the 
inclusion of the dipping fault does not change the overall 

patterns of viscosity (Figure 5a), strain rate (Figure 5b), and 
stress (Figure 5c). However, we observe significant changes in 
the velocity (Figures 4a, 5a, and 5d), stress and strain rate 
within the top 100 km layer (Figures 5c, 5d, and 5e). The 
subducting plate velocity is now about 2.8 em yr·1

, more than 
twice the rate of the preceding case with no fault (case 1). The 
velocity above the slab is now substantially larger in the 
subducting plate compared to the overriding plate. The 
subducting plate velocity along the fault is nearly parallel to 
the tangent of the dipping fault (Figure 5d). Across the fault, 
the tangential velocity is discontinuous and the relative 
motion is comparable with convergence velocity between 
subducting and overriding plates (Figures 4a and 5d). This 
discontinuous tangential velocity arises from fault decoupling 
and differs from the preceding case with no fault (case 1) in 
which velocity everywhere is continuous (Figure 3d). 

While horizontal compression persists in the overriding 
plate, the magnitude of the "Compressional stress is . reduced 
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Figure 4. Surface velocity profiles (a) for the 2-D cases with 
no fault (case 1) and with curved and stright faults (cases 2 and 
3) (a) and (b) for the cases with the pseudo-plastic rheology 
and different slab dip (cases 4 and 5), (c) dynamic topography, 
and (d) magnified view of dynamic topography for the cases 
with no fault (case 1) and with a curved fault (case 2). Also 
plotted in Figure 4b is the surface velocity for case 2. with a 
curved fault. 
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Figure 5. (a) Effective viscosity and flow velocity (vectors), 
(b) second invariants of strain rate and (c) stress, and (d) 
magnified views of effective viscosity and flow velocity and 
(e) second invariant of strain rate and principal compressive 
stress for case 2 with a fault. See Figure 3 for more details. 

(Figure 5e), compared with the case without a fault (Figure 5e). 
But more significantly, within the subducting plate directly 
beneath the fault, principal compressional stress is rotated so 
that it is approximately perpendicular to the fault, indicating a 
downdip extension (Figure Se). As we will discuss later, this 
downdip extension in the top 1 00 km layer is remarkably 
similar to seismic observations, but this is not a prediction 
from the case without a fault (Figure 3e for case 1). Th~re -~s 
also significant strain rate beneath the fault (-2x!O s ) 
(Figure Se). On the oceanic plate and near the fault, the 
topography is characterized by an outer rise { -0.4 km in 
amplitude and 200 km in width) and trench (-4 km in amplitude 
and 100 km in width). On the overriding plate, topography is 
elevated near the fault and is low over the subducted slab 
(Figures 4c and 4d). We also compute a case (case 3) which is 
identical to case 2 except that the fault is straight. The overall 
features including stress and strain rate, and topography from 
this straight fault calculation are similar to those from the 
curved fault case (case 2), but the surface velocity is· reduced by 
about 20% to 2.3 em yr 1 (Figure 4a). This case shows that 
models with a straight fault [e.g., Zhong and Gurnis, 1994b] 
capture all the important features for faults with variable dip 
angles. Therefore, for dipping faults in our 3-D models, we will 
assume that the dip angles do not vary with depth. 

3.1.2. Models with a pseudo-plastic rheology. 
Given the important influence of a dipping fault, it i s 

interesting to examine whether a highly nonlinear stress­
weakening rheology alone can reproduce the stress, strain, and 
flow velocity that are seen in the case with a fault (case 2). We 
will use two models without faults (cases 4 and 5) and with a 
pseudo-plastic rheology for the lithosphere to demonstrate 
that the stress-dependent rheology alone may not reproduce 
the feature resulting from faults. In the pseudo-plastic 
rheology used here, the exponent n is assumed to be 20 when 
the deviatoric stress is larger than a yield stress, 20 MPa, 
while n is 3 for smaller stresses (Figure 1). 

Case 4 is identical to the case without a fault (case I) except 
that the pseudo-plastic rheology is used for the lithosphere. 
Compared with a purely n=:3 rheology {case 1), the pseudo­
plastic rheology leads to a decrease in both effective viscosity 
and deviatoric stress but an increase in strain rate in the region 
above the slab (Figures 6a and 6b for case 4 and Figures 3d and 
3e for case 1). This is because the maximum deviatoric stresses 
in the lithosphere are limited to be around 20 MPa by the 
pseudo-plastic rheology, which effectively weakens the region 
above the slab where the stress would be significantly greater 
than 20 MPa if there was no pseudo~ plastic rheology (e.g., 
case I). The pseudo-plasticity does not seem to influence the 
pattern of stress, although the strain rate is more localized and 
surface velocity is increased (Figures 6b and 4b), compared 
with case 1 (Figures 3e and 4b). 

Compared with the case with a fault and purely n=3 
rheology (case 2), the magnitude of surface velocity for the 
case with pseudo-plasticity (case 4) is approximately the same 
{Figure 4b), but the stress and strain rate above the slab are 

Figure 6. Magnified views of (a and c) effective viscosity 
and flow velocity and (b and d) second invariant of strain rate 
ami principal compressive stress for cases 4 and 5 with pseudo­
plastic rheology, respectively. See Figure 3 for more details. 



15,262 ZHONG ET AL.: ROLE OF FAULTS, NONLINEAR RHEOLOGY 

different (Figures 6a, 6b, 5d, and 5e); the location of the "plate 
margin" where the horizontal velocity decreases rapidly is 
about 100 km closer to the overriding plate (i.e., converging 
velocity has a steep dip angle) (Figures 4b .. 6a, and 5d). For 
this pseudo-plastic case without a fault (case 4), the location of 
"margin" as well as the stress and strain rate fields are 
controlled by the buoyancy of the slab. The location of the 
effective "margin" moves even further toward the overriding 
plate when slab dip is reduced from 60° in case 4 to 30° in 
another model (case 5) which is otherwise identical to the 
preceding case with pseudo-plasticity (case 4) (Figures 4b, 6c 
and 6d). This is because the maximum or the slab-induced 
deviatoric stresses moves further into the overriding plate with 
smaller slab dips (case 5). Both cases with the pseudo­
plasticity (cases 4 and 5) show similar stress and strain rate 
fields (Figures 6b and 6d), although the flow velocity is greater 
for case 5 with a smaller dip, primarily because of the longer 
slab and larger buoyancy (the slabs are assumed to reach the 
same depth, i.e., 670 km). 

The flow velocity, velocity jump across the fault, and stress 
and strain rate beneath the fault (case 2) reflect influence of 
faults (Figure 5). It seems difficult for models with only 
pseudo-plastic or stress-weakening rheology with exponent 
n>l (i.e., cases 4 and 5 and other cases with different yield 
stresses and exponents) to simulate realistically these features, 
although the pseudo-plastic rheology can produce weak 
margins to mobilize surface plates (Figures 4b and 6). 

3.2. Three Dimensional Models 

While 2-D models are a powerful tool to explore the role of 
dipping faults, they cannot be used to understand the role of 
transform faults on plate motion, especially the generation of 
toroidal motion which is inherently three dimensional. In the 
following models, we will study the influence of faults in three 
dimensions. 

3.2.1. Models with and without faults. For 
comparison, our first model (case 6) is the 3-D equivalent of 
case 1 containing no faults and with slab strike parallel to the 
spreading center (Figure 7a). The length (i.e., in the spreading 
direction) and width of the region 9\ are 3000 km and 2250 
km, respectively. Surface velocities in region 9\ vary 
gradually in both the spreading parallel and perpendicular 
directions (Figures 7b, 8a, and 8b), indicating a large internal 
strain rate. The average velocity in region ':)t, VP' is about 
0.98 em yr"1 and is perpendicular to the spreading center 
(Figure 7b ). Although there is a sudden jump in thermal 
structure from ~ to the surrounding region along the ridge 
direction, surface flow is predominantly ridge-perpendicular 
(Figure 7b). The lack in ridge-parallel surface flow results from 
the following reasons. The main driving force in this case is 
the slab, and the bouyancy associated with the jump in thermal 
structure is secondary because of its short-wavelength and 
shallow depth. The slab which is parallel to the ridge always 
tends to excite flow perpendicular to its strike. This effect is 
further enhanced by the lateral variations in viscosity 
associated with the slab and ridge which are served as a stress 
guide. The ratio of toroidal to poloidal components of the 
surface velocity, Rr;p, is 0.27, compared to 0.55 for a 
perfectly rigid plate wHh this configuration (i.e., 
Nr;p=0.49), and plateness Pis 0.74 (Table 1). The effective 
viscosity of both the diverging and converging "margins" are 
reduced. The effective viscosity in other surface regions varies 

gradually and reflects the variations in strain rate (Figure 7b). 
The average

23
viscosity in 9\ ~pd in the upper mantle beneath 9\ 

are about 10 Pas and 5xl0 Pas, respectively. Topography 
in the region 9\ increases with age and distance from the 
spreading center, as expected, but over the slab there is a broad 
depression ( -500 km in width) (Figure 7c), similar to that from 
the 2-D calculation (Figures 4c and 4d for case 1). 

We now contrast this model (case 6) with a model (case 7) 
that includes faults with zero frictional stress but is otherwise 
identical to case 6. The strike of the dipping fault is parallel to 
the spreading center but perpendicular to the strike of vertical 
faults (Figure 7d), and the dip angle is constant. We find that 
surface velocity in region 9\ bounded by faults are nearly 
constant (Figures 7e, Sa and 8b) and parallel to the strike of 
vertical faults. There are sharp velocity contrasts across the 
faults (Figures 8a and Sb). Vp is about 3.3 em yr'', close to the 
velocity with which the buoyancy was derived. RTJP andP are 
0.48 ( Nr;p =0.87) and 0.91, respectively (Table 1). The 
gross topography and viscosity are similar to those from the 
case with no faults (case 6) (Figures 7b, 7c, 7e, and 7f). Like 
the 2-D model, there is a prominent outer rise (-200 km in 
width and 0.5 km in amplitude) and a distinct trench ( -100 km 
wide and 4 km deep) near the dipping fault (Figure 7f). In 
comparison to the tluid near the converging margin, the 
transform faults are relatively strong (Figure 7f). The average 
vis

2
'josity in 9\ and jp the upper mantle beneath 9\ are about 

10 Pas and 3.6xl0 Pas, respectively. Compared with case 
6 without faults, the case with faults (case 7) has a larger 
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Figure 7. Map view of input buoyancy structure, outputs of 
surface velocity and effective viscosity, and dynamic 
topography, for the 3-D cases (a, b, and c) with no fault and (d, 
e, and f) with faults (cases 6 and 7), respectively. In Figures 7a 
and 7d, the lines outside 9t show the depth of slabs. In Figure 
7d, the lines bounding 9t represent faults; triangles on fault 
lines indicate a dipping fault The length, width, and thickness 
of the model box.es are 6000 km, 4500 km, and 1500 km, 
respectively. 
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Figure 8. Surface velocities for cross sections (a) AA' and (b) BB', and (c) normalized ratio of toroidal to 
poloidal components, 1Y TIP, and plateli.ess, P for cases without faults (NF for case 6) and with faults of 
different frictional stress (cases 7, 11, 12, and 13). 

viscosity in 9\ and this is due to a smaller strain rate in the 
subducting plate, although the plate has a larger velocity 
(Figures 7b and 7e), and the larger plate velocity for case 7 
causes a greater shearing in the upper mantle and therefore a 
weaker upper mantle beneath the plate. 

3.2.2. Influence of viscosity structure and fault 
strength. The plate-like surface velocity from case 7 (Figure 
7e) (we will refer case 7 as the standard case hereafter) results 
from a non-linear interaction between weak faults and the 
stress weakening rheology and weak coupling between plate 
and asthenosphere. In this section, we will use a series of 
models with different frictional fault forces and different 
viscosity structures to demonstrate that weak faults, stress 
weakening rheology, and weak coupling between plate and 
asthenosphere are all necessary in order to achieve the plate­
like surface motion. 

We first show that stress weakening rheology plays an the 
essential role in generating plate-like motion. Case 8 uses a 
layered Newtonian viscosity structure (i.e., n:::l) without 
lateral variations in viscosity, but it includes the same 
buoyancy force and faults as in our standard case (i.e., case 7). 
The viscosities for the top 100 km layer, the upper mantle 
(i.e., 100 km to 670 km depth) , and the lower mantle arc the 
same as the average effective viscosities for each 
corresponding layer in the standard case (Table 1). For this 
case with Newtonian viscosity , surface velocities are greatly 
reduced in amplitude, and internal strain rate increases such 
that both plateness and Nr;p are greatly reduced (P=0.49 and 
Nr;p:::O.I6) (Figure 9a and Table l). This indicates that faults 
alone do not result in the plate-like surface velocity. 
Augmenting this case with some lateral variations in 
viscosity, we further include a weak spreading center and 
strong slab in another Newtonian calculation (case 9 and Table 
1) . For consistency, the spreading center and slab viscosities 

are the same as the average effective vJscosJttes for each 
corresponding regions in the standard case. Compared with the 
standard case, this Newtonian case with some lateral variations 
in viscosity (case 9), yields a similar plateness but 
significantly less toroidal component (P=0.82 and 
Nr;p=0.36 in Table 1) (Figure 9b for surface velocity). Based 
on the preceding case (i.e., case 9), we now change the 
rheology for the top 100 km layer into the stress weakening 
rheology used in the standard case, but with other regions 
remaining Newtonian (case 10 in Table 1). Surface velocities 
with stress weakening rheology only in the lithosphere (case 
1 0) show similar plate-like features as those in the standard 
case, with a plateness of 0.89 and Nyjp of 0.89 (Figure 9c), 
indicating that the stress weakening rheology for lithosphere 
is the essential component for producing plate-like features. 

We now demonstrate the importance of weak faults. The 
standard case with faults (case 7) and our original 3-D model 

Figure 9. Map views of surface velocity and effective 
viscosity for (a) the Newtonian case with no lateral variation 

- in viscosity (case 8), (b) the Newtonian case with strong slab 
and weak spreading center (case 9), and (c) the stress 
weakening lithosphere (case 1 0). In all cases, there are weak 
faults with a geometry shown in Figure 7d. 
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without faults (case 6) represent two extremes. With no 
frictional force across the faults, flow is fully decoupled; at the 
other extreme, where no faults are included, flow is fully 
coupled. Calculations have been done for cases (cases 11, 12, 
and 13 in Table 1) with the same fault and buoyancy 
distribution as for the standard case but with different frictional 
forces on faults. As the frictional force increases from 0 to 20 
MPa, the surface velocity, Nr;p and P decrease and 
progressively resemble those from the case with no faults 
(Figure 8). These calculations indicate that plateness and 
toroidal velocity component are sensitive to the frictional 
force on faults and that plate-like surface motion only arises 
when there is a low frictional force on faults. 

Finally, we show the influence of coupling between 
lithosphere and asthenosphere on surface motion. We compare 
our standard case (case 7) with those cases (cases 14, 15, and 
16) with different pre-exponents A for the top 100 km layer 
and the upper mantle to determine the influence of viscosity 
contrast between plate and the upper mantle (Table 1). These 
three cases are identical to the standard case (case 7) except for 
the pre-exponents A. In cases 14 and 15, the pre-exponents are 
increased only for the upper mantle and remain the same 
elsewhere, as in the standard case. For these two cases, the 
increased pre-exponents for the upper mantle increase the 
upper mantle viscosity and reduce the viscosity contrast (i.e., 
increase the coupling) between plate and upper mantle, 
compared with the standard case (Figure lOa and Table 1). The 
increased coupling between plate and upper mantle reduces the 
surface velocity in 9\ and plateness (Figures lOb and JOe) . In 
case 16, while pre-exponent for the upper mantle is the same 
as in the standard case, pre-exponents for the top 100 km and 
slab are increased. Therefore, both the viscosity within plate 
and the viscosity contrast between plate and the upper mantle 
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are increased (Figure lOa and Table 1). The surface velocity 
from this case is reduced and shows less variation in 9\ (i.e., a 
larger plateness), compared with the standard case (Figures lOb 
and 1 Oc), and this is due to the increased lithospheric 
viscosity. These three cases (cases 14, 15, and 16) along with 
the standard case (case 7) show that in order to achieve a large 
plateness the viscosity contrast between lithosphere and the 
upper mantle should be large (Figure lOd). However, Nr; p 
does not vary significantly with the viscosity contrast (Figure 
lOd). 

3.2.3. Influence of fault geometry. Plates usually 
have much more complicated geometry in comparison to our 
standard case. For the Pacific plate, while the strikes of Tzu­
Bonin and Japanese subduction zones are approximately 
perpendicular to plate motion, the strike of Aluentian 
subduction zone is nearly parallel to plate motion. In the case 
of the Aluentian subduction zone, oblique subduction occurs. 
We will now demonstrate that fault decoupling is essential for 
oblique subduction. 

We first show a calculation including a slab with a strike 
oblique to the spreading center (Figure 11 a) but no falllts. (Case 
17 in Table 1 ). While one side of region 9\ is 3562 km long, 
the other side is 1125 km shorter (Figure lla). The width of 
region 9\ is 2250 km. For this case with no faults, velocities 
in 9\ vary gradually in both magnitude and direction, and 
velocity becomes nearly perpendicular to the strike of slab 
near the slab (Figure llb). Plateness is 0.74 and Ny;p =0.51 
(Rrtp=0.28; Rr;p=0.55 for a perfect plate of this 
geometry). The average velocity in 9\ is 0 .91 em yr' 1

• When 
faults are included in a model (case 18) (Figure I I a) which is 
otherwise identical to the preceding case (case 17), surface 
velocities in 9\ are nearly parallel to the vertical faults and are 
approximately uniform (Fig. llc), showing plate-like 
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Figure 10. (a) Average effective viscosity profile , surface velocities for cross sections (b) AA' and (c) BB', 
and (d) normalized ratio of toroidal to poloidal components, JV TI P , and plateness, P for cases with different 
vi scosity contrast be tween the lithosphere and upper mantle. The viscosity contrast for each case is marked on 
velocity profile in Figure lOb. 
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Figure 11. Map views of (a) input buoyancy structure and 
faults and model outputs of surface velocity and effective 
viscosity for cases (b) 17 and (c) 18; map views of (d) the 
buoyancy structure and faults and model outputs of surface 
velocity and effective viscosity for cases (e) 19 and (f) 20. For 
cases 19 and 20, the length, width, and thickness of the model 
boxes are 6000 km, 7500 km, and 1500 km, respectively. 

behavior with P=o0.89 and JVr 1 p =o0.87 with Vp=2.9 em yr" 1 

(Table 1). Oblique subduction is indicated by the surface 
velocities near the dipping fault (Figure llc) . 

In order to further understand the influence of faults on the 
oblique subduction, we now show two additional calculations 
of another configuration of slab and spreading center (Figure 
lid for cases 19 and 20). In these two cases, the strike of the 
slab is parallel to that of the spreading center, but the 
transform faults are oblique to both the slab and spreading 
center (Figure l id). This configuration of faults and slab is not 
observed, but these two cases clearly show the physics of fault 
interaction. Again, for case 19 with no faults, surface velocity 
displays a large internal strain rate and does not show oblique 
subduction (i.e., the velocities are perpendicular to the strike 
of slab) (Figure lle). However, when faults are included (case 
20), plate-like features including oblique subduction and 
uniform surface velocities emerge (Figure II f). 

3 .3. Discussions 

Studies of earthquakes show that most strain in subduc tion 
zones is accomplished through thrust faulting [Davies and 

Brune, 1971; Kanamori, 1977; Ruff and Kanamori, 1983}, 
while some strain is released through normal faulting within 
subducting lithosphere [Kikuchi and Kanamori, 1995]. Our 2-D 
model with a preexisting dipping fault and a stress-weakening 
rheology with n:;;3 (case 2) is consistent with these observed 
features of strain and stress. The relative motion across the 
dipping fault is about the same as the converging velocity 
between the subducting and overriding plates (Figure 5d), 
consistent with observations [Davies and Brune, 1971; Ruff 
and Kanamori, 1983]. In the subducting plate and below the 
dipping fault, there is significant strain and the principal 
stress is perpendicular to the fault (Figure 5e), consistent with 
observations of normal fault earthquakes [Kikuchi and 
Kanamori, 1995]. Our models of dynamic compensation of the 
slabs beneath a dipping fault are consistent with outer rise and 
trench topography (Figure 4d) [Zhong and Gurnis, 1994b). The 
excess depression in the back arc region evident in the model 
(Figure 4d) indicates that other processes, perhaps volcanism, 
may have significant influence on dynamic topography. 

Subduction zone structure is difficult to be reproduced in 
models with a purely instantaneous stress-weakening rheology 
with no fault (cases 1, 4 and 5). However, lithospheric 
weakening above the slab may give rise to realistic plate 
velocities , especially if a pseudo-plastic rheology is used 
(Figure 4b). Without a fault, the maximum deviatoric stress 
(and strain rate) in the lithosphere always occurs in the 
overriding plate and directly above the slab, independent of 
the exponent n and yield stress (Figures 3e, 6b, and 6d). This 
is because the stress is primarily determined by the slab 
buoyancy. With stress-weakening rheology, either n=3 or our 
pseudo-plastic rheology, the maximum stress will weaken the 
region directly above the slab and produce a weak margin 
(Figures 3 and 6). The surface location of this margin depends 
on the geometry of slab and moves further towards the 
overriding plate for a shallower slab dip (Figure 6). This is 
inconsistent with the observation that converging margins 
tend to move more towards oceanic plates with respect to the 
location of slabs when the subduction dip becomes smaller 
[Jarrard, 1986]. Moreover, the stress and strain rate fields from 
these models (Figures 3 and 6 for cases 1, 4 and 5) are very 
different from the model with a fault (Figure 5 for case 2) and 
cannot explain observed features. These models suggest that 
the stress weakening rheology may not be the primary cause 
for the observed stress and strain patterns in subduction zones. 

The 3-D models show that the interaction between a power­
law rheology and weak faults produces the basic features of 
plate tectonics including small internal strain and significant 
toroidal motion. The models suggest that faults are pr~bably 
weak, consistent with other inferences [Lachenbruch and Sass, 
1988; Bird, 1978]. Weak faults alone may not be sufficient to 
produce plate~like surface motion and the stress-weakening 
rheology clearly plays a fundamental role, but the nonlinearity 
need not be strong. A weak coupling between the lithosphere 
and the upper mantle is also required to produce plate-like 
surface motion, suggesting that the upper mantle viscosity 
should be much smaller than the lithosphere. This seems to be 
compatible with the viscosity structure constrained by the 
Earth's geoid [Hager ami Richards, 1989; Hager and Clayton, 
1989]. However, some other inversion results from the geoid 
suggest a relatively strong upper mantle (from a depth of 1 00 
km to 410 km) [e.g., King and Masters , 1992]. Increasing 
fault strength (i.e., the horizontal coupling between plates) 
reduces the ratio of toroidal to poloidal motion and increases . 
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_ the internal strain, while the viscosity contrast between t he 
lithosphere and upper mantle (i.e., the vertical coupling) only 
influences the distribution of strain. This suggests that both 
the strain pattern and ratio of toroidal to poloidaJ m otion are 
important in c haracterizing plate motion [Bercovici, 1995; 
Zhong and Gurnis, I 996]. 

Faults strongly influence the dir~ction of plate motion . A 
transform fault tends to enhance plate motion a long its strike; 
a dipping fault decouples subducting from overriding plates. 
Therefore the incorporation of these faults results in oblique 
subduction when the strike of transform faults is 
nonperpendicular to the strike of subducted slabs (Figures 8 
and 9). The influences of transform faults on plate motion 
revealed from our models are consistent with some inference 
based on plate kinematics [Richards and Engebreson , 1994]. 

As we have shown, . the interaction between preexisting 
weak faults and power law rheology produces the · observed 
pattern of plate motion in instantaneous mantle flow models. 
Essentially, our models indicate the importance of the 
heterogeneity in lithospheric strength (i.e., weak faults versus 
surrounding media) to the observed plate motion. On the basis 
of the observations of surface stress and strain and our 
numerical models, we suggest that the instantaneous stress­
weakening rheology may not be the primary cause for 
producing such heterogeneity in lithospheric strength. We 
think that this heterogeneity in lithospheric strength is likely 
an integrated effect of lithospheric deformation over geologic 
time, and lithospheric deformation hi story, instantaneous 
stress-weakening, and lithology may all contribute to the 
development of this heterogeneity. Initial attempts h ave been 
made in incorporating deformation history [Sleep, 1997) and 
self-]ubrication mech anism based on void generation and 
volatile ingestion [Bercovici , 1998} into lithospheric 
rheology models, but it remains a challenging question as to 
how different processes contribute to the developme nt of this 
heterogeneity. 

4. Conclusions 

On the basis of observations and numerical models, we 
argue that fault decoupling at plate margins primarily results 
from history-depende nt lithospheric deformation rather than 
from instantaneous stress-weakening rheology. We suggest 
that faults should be treated as preexisting mechanical structure 
for instantaneous mantle flow models. With models 
incorporating preexisting faults, a power-law rheology (n=3), 
and realistic buoyancy forces including slab pull and ridge 
push forces, we have demonstrated that nonlinear interac tion 
between weak faults and a power-law rheology explains a 
number of key features of plate motion, such as concentrated 
strain within plate margins and a significant toroidal 
component. 

Our models show that in order to produce plate-like motion, 
both the frictional stress on faults and the viscosity in the 
upper mantle immediately below the lithosphere (i .e., 
asthenosphere) are required to be small. Both the plateness and 
ratio of toroidal to poloidal velocities are reduced with 
increased fault coupling. Plateness is sensitive to the 
viscosity contrast between the lithosphere and upper mantle 
and is reduced as the viscosity contrast is decreased. However, 
the viscosity contrast does not s ignificantly influence the 
ratio of toroidal to peloidal velocities . Therefore both the 
plateness and ratio of toroidal to poloidal velocities · are 
necessary in characterizing plate motion . 

Our models show that weak transform faults enhance surface 
motion in the direction parallel to the strikes of transform 
faults . That is, transform faults appear to guide plate motion. 
This g uiding influence and the decoupling of thrust faults may 
result in oblique subduction where the strike of subducted slabs 
is oblique to transform fault. Our subduction zone models with 
a dipping fault also produce short-wavelength features 
including oceanic trench and forebulge topography and 
principal stresses that ~e largely consistent with subduction 
zone observations. 

Appendix A: Incorporation of Fault Planes 
Into 3D Finite Element Models 

Constrained elements and matrix transformation are used to 
incorporate faults into 3-D finite element models. These 
techniques are similar to those by Melosh and Williams [ 1989] 
and Barr and Houseman [1996] and are an extension of our 
previous penalty function method [Zhong and Gurnis, 1994b]. 
The general tr_eatment for such problems is given by Cook 
[1981] and will be briefly described as follows. 

Fault planes consist of elemental boundaries (Figure A I a). 
Those elements with boundaries which overlap a fault are 
called constrained elements. The constraints on faults are that 
velocities are continuous in the normal direction 
n=(nl,~>n3 ), while tangential velocities are coupled with a 

specified frictional stress, where ii is defined in a global 
coordinate system x, y, and z (Figure A la). We define two 
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· Figure Al. (a) Three dimensional fault with constrained 
elements in both global (x, y, z) and local (n, t, s) coordinate 
systems. (b) CPU time and efficiency versus the number of 
processors for the parallelized 3D finite element software 
Citcom on the Intel Paragon with 5 12 processors. For the 
benchmark in Figure Al b, the CPU times are only for solution 
of inner loop iteration of velocity and mesh size is 
160x64x80 . 
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tangential directional vectors t =(tl,~;t.l) and s=(sl,s2, s 3) 

such that ii, s, and t fo,rm an orthogonal coordinate system 
(i.e. , local coordinate system) (Figure Ala). We may define 
such a local coordinate. system for each faulted node within 
con strained d ements, 

For each constraine d ele m ent, elemental matrix equ ations in 

the g lobal coordinate system are 

KU+ GTP = F, 

GU =0 , 

(AI) 

(A2) 

where K is a stiffness malrix with 24x24 entri es (this is for a 
3-D trilinear element with eight nodes); F and cfi are force and 
divergence vectors; P is the pressure which is constan t wi thin 

the element; u · =(.,. ,.,uL ut,u~, .•. ,.JT where i is the to cat 

node index. If local node i is a faulted node, we will use 
vel ocities in the local coor dinate system for this node, and 
this can be done through the following transformation: 

u· =f;U, where U' =(. ,.,.,uj,,ui, u1,.,.,. )T is the new velocity 

vector; r; is a transformational matrix with 24x24 entries 

with only nonzero entries in eight 3x3 submatrices on the 

diagonal of i ;. Seven of the eight 3x3 submatrices are uni t 

matrices, and the only nonunit submatrix T; is associated with . 

nod e i. Ti can b e written as 

(A3) 

Applying the transformation to equations (A I) and (A2) leads 

to 

T ,' T 
IfRT'i U +iP P=iiF, (A4) 

ar{u' == o. (A S) 

If we define K ' =(Kf{, which remains symmetric and 

positive definite, G' =Grt , and F' = !iF, then the form of 

(A4) and (A5) are identical to (Al) and (A2). If there are other 

faulted nodes within this element, we consecutively apply this 

transformation to these nodes such that velocities associated 

with each faulted node in U' vector are based on the local 

coordinate system for that node. 
Fault constraints are enforced when elemental matrix 

equations are assembled into global matrix equations. For e ach 
faulted node in the g lobal matrix equations, we assign five 
degrees of freedom: one normal velocity, uL and four 
tangential velocities, 1 u;, 1 u1, , u.f , and , u1, with the firs t 
two for the left side of the fault and the last two fo r the right 

(Fig ure A 1 a). The parameters r ul and 1 u1, and , ui and , u1 
are used for the constained elements on the left and right sides 
of the fault, respectively. After the global equations are 
solved, we obtain the velocity field in w hich the velocities on 
faulted nodes are based on the local coordinate system for each 
faulted node. We can apply the transformation U = rtu· for 

each . faulted node to retrieve the Yelocities in the g lobal 
coordina te system. 

Appendix B: ParaUelization of 3D Finite Element 
Code Citcom With MPI . 

Paralle l computing has been previously used in modeling 
mantle dynamics [Gumis et al., 1988; Tackley, 1994; Bunge 

and Baumgardner, 1995]. Tackley [1994] used a message 
passing software native to a massively parallel processing 
supercomputer Intel Delta for a finite volume code and a 
spectral convection code [Glatzmaier, 1988], while Bunge and 
Baumgardner [1995] p arallelized a finite element code 
[Bawngardner, 1985] with a message passing software PVM. 
In the last few years, as a result of steady improvement of both 

interprocessor communication speed and message passin g 
sotiwares, parallel computing has become very effective. 

We have applied Message Passing Interface software MPI 
[Snir et al., 1996] to parallelize the finite element code Citcom 
[Moresi and Solomatov, 1995; Moresi and Gurnis, 1996]. 
S ince MPI ' is widely supported on many different parallel 
computers, including shared and distributed memory mac hines , 
the parallelized Citcom can be easily ported onto different 
parallel computers. The two-level Uzawa algorithm 
implemented in Citcom displays a significant locality and is 
suitable for parallelization. Computations of stiffness matrix, 
force vectors, and divergence, gradient, and Laplacian 
operators are performed at an element level and do not involve 
interprocessor communication. Communications are needed in 
computing g lobal residue terms and assembling force vectors. 

Communications only involve information on boundaries of 
each computational dom ain. The parallelized Citcom achieves 
better than 80% efficiency on the m assively parallel 
processing s upercomputer Intel Paragon for a m oderate size 
problem (Figure Alb). 
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