A Caltech Library Service

Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences

Kirschvink, Joseph L. and Gaidos, Eric J. and Bertani, L. Elizabeth and Beukes, Nicholas J. and Gutzmer, Jens and Maepa, Linda N. and Steinberger, Rachel E. (2000) Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences of the United States of America, 97 (4). pp. 1400-1405. ISSN 0027-8424. PMCID PMC26445.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation (“snowball Earth” conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O_2 are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This geochemical event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.

Item Type:Article
Related URLs:
URLURL TypeDescription DOIArticle CentralArticle
Kirschvink, Joseph L.0000-0001-9486-6689
Gaidos, Eric J.0000-0002-5258-6846
Additional Information:© 2000 National Academy of Sciences. Communicated by Paul F. Hoffman, Harvard University, Cambridge, MA, November 8, 1999 (received for review September 8, 1999). We thank T. Warnow, K. H. Nealson, D. Dean, Y. Yung, and J. W. Hagadorn for their advice and samples. This work was supported by the National Aeronautics and Space Administration Astrobiology Institute, National Science Foundation Grant 9418523, and an anonymous donor.
Funding AgencyGrant Number
Issue or Number:4
PubMed Central ID:PMC26445
Record Number:CaltechAUTHORS:20130125-142540155
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:36601
Deposited By: Jason Perez
Deposited On:26 Jan 2013 00:11
Last Modified:29 Nov 2019 03:07

Repository Staff Only: item control page