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1. Matrix perturbation bounds. Given a low-rank matrix we con-
sider what happens to the invariant subspaces when the matrix is perturbed
by a small amount. We assume without loss of generality that the matrix
under consideration is square and symmetric, and our methods can be ex-
tended to the general non-symmetric non-square case. We refer the interested
reader to [1, 3] for more details, as the results presented here are only a brief
summary of what is relevant for this paper. In particular the arguments pre-
sented here are along the lines of those presented in [1]. The appendices in
[1] also provide a more refined analysis of second-order perturbation errors.

The resolvent of a matrix M is given by (M − ζI)−1 [3], and it is well-
defined for all ζ ∈ C that do not coincide with an eigenvalue of M . If M
has no eigenvalue with magnitude equal to η, then we have by the Cauchy
residue formula that the projector onto the invariant subspace of a matrix
M corresponding to all singular values smaller than η is given by

(1.1) PM,η =
−1

2πi

∮
Cη
(M − ζI)−1dζ,

where Cη denotes the positively-oriented circle of radius η centered at the
origin. Similarly, we have that the weighted projection onto the invariant
subspace corresponding to the smallest singular values is given by

(1.2) PwM,η =MPM,η =
−1

2πi

∮
Cη
ζ (M − ζI)−1dζ,

Suppose thatM is a low-rank matrix with smallest nonzero singular value
σ, and let Δ be a perturbation of M such that ‖Δ‖2 ≤ κ < σ

2 . We have the
following identity for any |ζ| = κ, which will be used repeatedly:

(1.3) [(M +Δ)− ζI]−1 − [M − ζI]−1 = −[M − ζI]−1Δ[(M +Δ)− ζI]−1.
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We then have that

PM+Δ,κ − PM,κ =
−1

2πi

∮
Cκ
[(M +Δ)− ζI]−1 − [M − ζI]−1dζ

=
1

2πi

∮
Cκ
[M − ζI]−1Δ[(M +Δ)− ζI]−1dζ.(1.4)

Similarly, we have the following for PwM,κ:

PwM+Δ,κ − PwM,κ =
−1

2πi

∮
Cκ
ζ

{
[(M +Δ)− ζI]−1 − [M − ζI]−1

}
dζ

=
1

2πi

∮
Cκ
ζ

{
[M − ζI]−1Δ[(M +Δ)− ζI]−1

}
dζ

=
1

2πi

∮
Cκ
ζ [M − ζI]−1Δ[M − ζI]−1dζ

− 1

2πi

∮
Cκ
ζ [M − ζI]−1Δ[M − ζI]−1Δ[(M +Δ)− ζI]−1dζ.

(1.5)

Given these expressions, we have the following two results.

Proposition 1.1. Let M ∈ R
p×p be a rank-r matrix with smallest

nonzero singular value equal to σ, and let Δ be a perturbation to M such
that ‖Δ‖2 ≤ κ

2 with κ < σ
2 . Then we have that

‖PM+Δ,κ − PM,κ‖2 ≤ κ

(σ − κ)(σ − 3κ
2 )

‖Δ‖2.

Proof : This result follows directly from the expression (1.4), and the sub-
multiplicative property of the spectral norm:

‖PM+Δ,κ − PM,κ‖2 ≤ 1

2π
2π κ

1

σ − κ
‖Δ‖2 1

σ − 3κ
2

=
κ

(σ − κ)(σ − 3κ
2 )

‖Δ‖2.

Here, we used the fact that ‖[M−ζI]−1‖2 ≤ 1
σ−κ and ‖[(M+Δ)−ζI]−1‖2 ≤

1
σ− 3κ

2

for |ζ| = κ. �
Next, we develop a similar bound for PwM,κ. Let U(M) denote the invariant
subspace of M corresponding to the nonzero singular values, and let PU(M)

denote the projector onto this subspace.
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Proposition 1.2. Let M ∈ R
p×p be a rank-r matrix with smallest

nonzero singular value equal to σ, and let Δ be a perturbation to M such
that ‖Δ‖2 ≤ κ

2 with κ < σ
2 . Then we have that

‖PwM+Δ,κ − PwM,κ − (I − PU(M))Δ(I − PU(M))‖2 ≤
κ2

(σ − κ)2(σ − 3κ
2 )

‖Δ‖22.

Proof : One can check that

1

2πi

∮
Cκ
ζ [M − ζI]−1Δ[M − ζI]−1dζ = (I − PU(M))Δ(I − PU(M)).

Next we use the expression (1.5), and the sub-multiplicative property of the
spectral norm:

‖PwM+Δ,κ − PwM,κ − (I − PU(M))Δ(I − PU(M))‖2
≤ 1

2π
2π κ κ

1

σ − κ
‖Δ‖2 1

σ − κ
‖Δ‖2 1

σ − 3κ
2

=
κ2

(σ − κ)2(σ − 3κ
2 )

‖Δ‖22.

As with the previous proof, we used the fact that ‖[M − ζI]−1‖2 ≤ 1
σ−κ and

‖[(M +Δ)− ζI]−1‖2 ≤ 1
σ− 3κ

2

for |ζ| = κ. �
We will use these expressions to derive bounds on the “twisting” between

the tangent spaces at M and at M +Δ with respect to the rank variety.

2. Curvature of rank variety. For a symmetric rank-r matrix M ,
the projection onto the tangent space T (M) (restricted to the variety of
symmetric matrices with rank less than or equal to r) can be written in
terms of the projection PU(M) onto the row space U(M). For any matrix N

PT (M)(N) = PU(M)N +NPU(M) − PU(M)NPU(M).

One can then check that the projection onto the normal space T (M)⊥

PT (M)⊥(N) = [I −PT (M)](N) = (I − PU(M)) N (I − PU(M)).

Proposition 2.1. Let M ∈ R
p×p be a rank-r matrix with smallest

nonzero singular value equal to σ, and let Δ be a perturbation to M such
that ‖Δ‖2 ≤ σ

8 . Further, let M +Δ be a rank-r matrix. Then we have that

ρ(T (M +Δ), T (M)) ≤ 2

σ
‖Δ‖2.
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Proof : For any matrix N , we have that

[PT (M+Δ) − PT (M)](N) =

[PU(M+Δ) − PU(M)] N [I − PU(M)] + [I − PU(M+Δ)] N [PU(M+Δ) − PU(M)].

Further, we note that for κ < σ
2

PU(M+Δ) − PU(M) = [I − PU(M)]− [I − PU(M+Δ)]

= PM,κ − PM+Δ,κ,

where PM,κ is defined in the previous section. Thus, we have the following
sequence of inequalities for κ = σ

4 :

ρ(T (M +Δ), T (M)) = max
‖N‖2≤1

‖[PU(M+Δ) − PU(M)] N [I − PU(M)]

+ [I − PU(M+Δ)] N [PU(M+Δ) − PU(M)]‖2
≤ max

‖N‖2≤1
‖[PU(M+Δ) − PU(M)] N [I − PU(M)]‖2

+ max
‖N‖2≤1

‖[I − PU(M+Δ)] N [PU(M+Δ) − PU(M)]‖2
≤ 2 ‖PM+Δ,σ

4
− PM,σ

4
‖2

≤ 2

σ
‖Δ‖2,

where we obtain the last inequality from Proposition 1.1. �

Proposition 2.2. Let M ∈ R
p×p be a rank-r matrix with smallest

nonzero singular value equal to σ, and let Δ be a perturbation to M such
that ‖Δ‖ ≤ σ

8 . Further, let M +Δ be a rank-r matrix. Then we have that

‖PT (M)⊥(Δ)‖2 ≤ ‖Δ‖22
σ

.

Proof : Since bothM andM+Δ are rank-rmatrices, we have that Pw
M+Δ,κ =

Pw
M,κ = 0 for κ = σ

4 . Consequently,

‖PT (M)⊥(Δ)‖2 = ‖(I − PU(M)) Δ (I − PU(M))‖2
≤ ‖Δ‖22

σ
,

where we obtain the last inequality from Proposition 1.2 with κ = σ
4 . �
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3. Proof of supplementary results of main theorem. Through-
out this section we denote m = max{1, 1γ }. Further Ω = Ω(K∗

O) and T =

T (K∗
O,H(K

∗
H)

−1K∗
H,O) denote the tangent spaces at the true sparse matrix

S∗ = K∗
O and low-rank matrix L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O. We assume that

(3.1) γ ∈
[
3β(2− ν)ξ(T )

να
,

να

2β(2 − ν)μ(Ω)

]

We also let En = ΣnO −Σ∗
O denote the difference between the true marginal

covariance and the sample covariance. Finally we let D = max{1, να
3β(2−ν)}

throughout this section. For γ in the above range we note that

(3.2) m ≤ D

ξ(T )
.

Standard facts that we use throughout this section are that ξ(T ) ≤ 1 and
that ‖M‖∞ ≤ ‖M‖2 for any matrix M .

We study the following convex program:
(3.3)
(S̄n, L̄n) = argmin

S,L
tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]

s.t. S − L � 0.

Comparing (3.3) with the convex program (1.2) (main paper), the main
difference is that we do not constrain the variable L to be positive semidef-
inite in (3.3) (recall that the nuclear norm of a positive semidefinite matrix
is equal to its trace). However we show that the unique optimum (S̄n, L̄n)
of (3.3) under the hypotheses of Theorem 4.1 (main paper) is such that
L̄n � 0 (with high probability). Therefore we conclude that (S̄n, L̄n) is
also the unique optimum of (1.2) (main paper). The subdifferential with
respect to the nuclear norm at a matrix M with (reduced) SVD given by
M = UDV T is as follows:

N ∈ ∂‖M‖∗ ⇔ PT (M)(N) = UV T , ‖PT (M)⊥(N)‖2 ≤ 1.

The proof of this theorem consists of a number of steps, each of which is
analyzed in separate sections below. We explicitly keep track of the constants
α, β, ν, ψ. The key ideas are as follows:

1. We show that if we solve the convex program (3.3) subject to the
additional constraints that S ∈ Ω and L ∈ T ′ for some T ′ “close to” T
(measured by ρ(T ′, T )), then the error between the optimal solution
(S̄n, L̄n) and the underlying matrices (S∗, L∗) is small. This result is
discussed in Appendix 3.2.
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2. We analyze the optimization problem (3.3) with the additional con-
straint that the variables S and L belong to the algebraic varieties of
sparse and low-rank matrices respectively, and that the correspond-
ing tangent spaces are close to the tangent spaces at (S∗, L∗). We
show that under suitable conditions on the minimum nonzero singular
value of the true low-rank matrix L∗ and on the minimum magnitude
nonzero entry of the true sparse matrix S∗, the optimum of this modi-
fied program is achieved at a smooth point of the underlying varieties.
In particular the bound on the minimum nonzero singular value of
L∗ helps bound the curvature of the low-rank matrix variety locally
around L∗ (we use the results described in Appendix 2). These results
are described in Appendix 3.3.

3. The next step is to show that the variety constraint can be linearized
and changed to a tangent-space constraint (see Appendix 3.4), thus
giving us a convex program. Under suitable conditions this tangent-
space constrained program also has an optimum that has the same
support/rank as the true (S∗, L∗). Based on the previous step these
tangent spaces in the constraints are close to the tangent spaces at
the true (S∗, L∗). Therefore we use the first step to conclude that the
resulting error in the estimate is small.

4. Finally we show that under suitable identifiability conditions these
tangent-space constraints are inactive at the optimum. Therefore we
conclude with the statement that the optimum of the convex pro-
gram (3.3) without any variety constraints is achieved at a pair of
matrices that have the same support/rank as the true (S∗, L∗) (with
high probability). Further the low-rank component of the solution is
positive semidefinite, thus allowing us to conclude that the original
convex program (1.2) (main paper) also provides estimates that are
algebraically correct.

3.1. Proof of main paper Proposition 5.1 – Bounded curvature of matrix
inverse. Consider the Taylor series of the inverse of a matrix:

(M +Δ)−1 =M−1 −M−1ΔM−1 +RM−1(Δ),

where

RM−1(Δ) =M−1

[ ∞∑
k=2

(−ΔM−1)k

]
.

This infinite sum converges for Δ sufficiently small. The following proposi-
tion provides a bound on the second-order term specialized to our setting:
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Proposition 3.1. Suppose that γ is in the range given by (3.1). Let
gγ(ΔS ,ΔL) ≤ 1

2C1
for C1 = ψ(1 + α

6β ), and for any (ΔS ,ΔL) with ΔS ∈ Ω.
Then we have that

gγ(A†RΣ∗
O
(A(ΔS,ΔL))) ≤ 2DψC2

1gγ(ΔS ,ΔL)
2

ξ(T )
.

Proof : We have that

‖A(ΔS ,ΔL)‖2 ≤ ‖ΔS‖2 + ‖ΔL‖2
≤ γμ(Ω)

‖ΔS‖∞
γ

+ ‖ΔL‖2
≤ (1 + γμ(Ω))gγ(ΔS ,ΔL)

≤ (1 +
α

6β
)gγ(ΔS ,ΔL)

≤ 1

2ψ
,

where the second-to-last inequality follows from the range for γ (3.1) and
that ν ∈ (0, 12 ], and the final inequality follows from the bound on gγ(ΔS,ΔL).
Therefore,

‖RΣ∗
O
(A(ΔS ,ΔL))‖2 ≤ ψ

∞∑
k=2

(‖ΔS +ΔL‖2ψ)k

≤ ψ3‖ΔS +ΔL‖22
1

1− ‖ΔS +ΔL‖2ψ
≤ 2ψ3(1 +

α

6β
)2gγ(ΔS ,ΔL)

2

= 2ψC2
1gγ(ΔS ,ΔL)

2.

Here we apply the last two inequalities from above. Since the ‖ · ‖∞-norm is
bounded above by the spectral norm ‖ · ‖2, we have the desired result. �

3.2. Proof of main paper Proposition 5.2 – Bounded errors. Next we
analyze the following convex program subject to certain additional tangent-
space constraints:
(3.4)

(ŜΩ, L̂T ′) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, S ∈ Ω, L ∈ T ′,

for some subspace T ′. We show that if T ′ is any tangent space to the low-
rank matrix variety such that ρ(T, T ′) ≤ ξ(T )

2 , then we can bound the error
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(ΔS ,ΔL) = (ŜΩ − S∗, L∗ − L̂T ′). Let CT ′ = PT ′⊥(L∗) denote the normal
component of the true low-rank matrix at T ′, and recall that En = ΣnO −
Σ∗
O denotes the difference between the true marginal covariance and the

sample covariance. The proof of the following result uses Brouwer’s fixed-
point theorem [4], and is inspired by the proof of a similar result in [5] for
standard sparse graphical model recovery without latent variables.

Proposition 3.2. Let the error (ΔS ,ΔL) in the solution of the con-

vex program (3.4) (with T ′ such that ρ(T ′, T ) ≤ ξ(T )
2 ) be as defined above.

Further let C1 = ψ(1 + α
6β ), and define

r = max

{
8

α

[
gγ(A†En) + gγ(A†I∗CT ′) + λn

]
, ‖CT ′‖2

}
.

If we have that

r ≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
,

for γ in the range given by (3.1), then

gγ(ΔS ,ΔL) ≤ 2r.

Proof : Based on Proposition 3.3 (main paper) we note that the convex
program (3.4) is strictly convex (because the negative log-likelihood term has
a strictly positive-definite Hessian due to the constraints involving transverse
tangent spaces), and therefore the optimum is unique. Applying the opti-
mality conditions of the convex program (3.4) at the optimum (ŜΩ, L̂T ′), we
have that there exist Lagrange multipliers QΩ⊥ ∈ Ω⊥, QT ′⊥ ∈ T ′⊥ such that

ΣnO−(ŜΩ−L̂T ′)−1+QΩ⊥ ∈ −λnγ∂‖ŜΩ‖1, ΣnO−(ŜΩ−L̂T ′)−1+QT ′⊥ ∈ λn∂‖L̂T ′‖∗.

Restricting these conditions to the space Y = Ω× T ′, one can check that

PΩ[Σ
n
O − (ŜΩ − L̂T ′)−1] = ZΩ, PT ′ [ΣnO − (ŜΩ − L̂T ′)−1] = ZT ′ ,

where ZΩ ∈ Ω, ZT ′ ∈ T ′ and ‖ZΩ‖∞ = λnγ, ‖ZT ′‖2 ≤ 2λn (we use here the
fact that projecting onto a tangent space T ′ increases the spectral norm by
at most a factor of two). Denoting Z = [ZΩ, ZT ′ ], we conclude that

(3.5) PYA†[ΣnO − (ŜΩ − L̂T ′)−1] = Z,

with gγ(Z) ≤ 2λn. Since the optimum (ŜΩ, L̂T ′) is unique, one can check
using Lagrangian duality theory [6] that (ŜΩ, L̂T ′) is the unique solution
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of the equation (3.5). Rewriting ΣnO − (ŜΩ − L̂T ′)−1 in terms of the errors
(ΔS ,ΔL), we have using the Taylor series of the matrix inverse that

ΣnO − (ŜΩ − L̂T ′)−1 = ΣnO − [A(ΔS ,ΔL) + (Σ∗
O)

−1]−1

= En −RΣ∗
O
(A(ΔS ,ΔL)) + I∗A(ΔS,ΔL)

= En −RΣ∗
O
(A(ΔS ,ΔL)) + I∗APY(ΔS ,ΔL) + I∗CT ′ .(3.6)

Since T ′ is a tangent space such that ρ(T ′, T ) ≤ ξ(T )
2 , we have from

Proposition 3.3 (main paper) that the operator B =
(PYA†I∗APY

)−1
from

Y to Y is bijective and is well-defined. Now consider the following matrix-
valued function from (δS , δL) ∈ Y to Y:

F (δS , δL) = (δS , δL)−B
{
PYA†[En −RΣ∗

O
(A(δS , δL + CT ′)) + I∗APY(δS , δL) + I∗CT ′ ]− Z

}
.

A point (δS , δL) ∈ Y is a fixed-point of F if and only if PYA†[En−RΣ∗
O
(A(δS , δL+

CT ′)) + I∗APY(δS , δL) + I∗CT ′ ] = Z. Applying equations (3.5) and (3.6)
above, we then see that the only fixed-point of F by construction is the
“true” error PY(ΔS ,ΔL) restricted to Y. The reason for this is that, as dis-
cussed above, (ŜΩ, L̂T ′) is the unique optimum of (3.4) and therefore is the
unique solution of (3.5). Next we show that this unique fixed-point of F lies
in the ball Br = {(δS , δL) | gγ(δS , δL) ≤ r, (δS , δL) ∈ Y}.

In order to prove this step, we resort to Brouwer’s fixed point theorem
[4]. In particular we show that the function F maps the ball Br onto itself.
Since F is a continuous function and Br is a compact set, we can conclude
the proof of this proposition. Simplifying the function F , we have that

F (δS , δL) = B
{
PYA†[−En +RΣ∗

O
(A(δS , δL + CT ′))− I∗CT ′ ] + Z

}
.

Consequently, we have from Proposition 3.3 (main paper) that

gγ(F (δS , δL)) ≤ 2

α
gγ

(
PYA†[En −RΣ∗

O
(A(δS , δL + CT ′)) + I∗CT ′ ]− Z

)
≤ 4

α

{
gγ(A†[En −RΣ∗

O
(A(δS , δL + CT ′)) + I∗CT ′ ]) + λn

}
≤ r

2
+

4

α
gγ(A†RΣ∗

O
(A(δS , δL + CT ′))),

where in the second inequality we use the fact that gγ(PY(·, ·)) ≤ 2gγ(·, ·)
and that gγ(Z) ≤ 2λn, and in the final inequality we use the assumption on
r.
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We now bound the term gγ(A†RΣ∗
O
(A(δS , δL))) using Proposition 3.1 as

gγ(ΔS ,ΔL) ≤ 1
2C1

:

4

α
gγ(A†RΣ∗

O
(A(δS , δL + CT ′))) ≤ 8DψC2

1 (gγ(δS , δL) + ‖CT ′‖2)2
ξ(T )α

≤ 32DψC2
1r

2

ξ(T )α

≤ 32DψC2
1r

ξ(T )α

αξ(T )

64DψC2
1

≤ r

2
,

where we have used the fact that r ≤ αξ(T )
64DψC2

1
. Hence gγ(PY(ΔS ,ΔL)) ≤ r

by Brouwer’s fixed-point theorem. Finally we observe that

gγ(ΔS ,ΔL) ≤ gγ(PY(ΔS ,ΔL)) + ‖CT ′‖2
≤ 2r.

�

3.3. Solving a variety-constrained problem. In order to prove that the
solution (S̄n, L̄n) of (3.3) has the same sparsity pattern/rank as (S∗, L∗), we
will study an optimization problem that explicitly enforces these constraints.
Specifically, we consider the following non-convex constraint set:

M = {(S,L) | S ∈ Ω(S∗), rank(L) ≤ rank(L∗),

‖PT⊥(L− L∗)‖2 ≤ ξ(T )λn
Dψ2

, gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn}

Recall that S∗ = K∗
O and L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O. The first constraint

ensures that the tangent space at S is the same as the tangent space at S∗;
therefore the support of S is contained in the support of S∗. The second and
third constraints ensure that L lives in the appropriate low-rank variety,
but has a tangent space “close” to the tangent space T . The final constraint
roughly bounds the sum of the errors (S−S∗)+(L∗−L); note that this does
not necessarily bound the individual errors. Notice that the only non-convex
constraint is that rank(L) ≤ rank(L∗). We then have the following nonlinear
program:
(3.7)

(ŜM, L̂M) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, (S,L) ∈ M.
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Under suitable conditions this nonlinear program is shown to have a unique
solution. Each of the constraints in M is useful for proving the consis-
tency of the solution of the convex program (3.3). We show that under
suitable conditions the constraints in M are actually inactive at the opti-
mal (ŜM, L̂M), thus allowing us to conclude that the solution of (3.3) is
also equal to (ŜM, L̂M); hence the solution of (3.3) shares the consistency
properties of (ŜM, L̂M). A number of interesting properties can be derived
simply by studying the constraint set M.

Proposition 3.3. Consider any (S,L) ∈ M, and let ΔS = S−S∗,ΔL =
L∗ − L. For γ in the range specified by (3.1) and letting C2 = 48

α + 1
ψ2 , we

have that gγ(ΔS ,ΔL) ≤ C2λn.

Proof : We have by the triangle inequality that

gγ(A†I∗A(PΩ(ΔS),PT (ΔL))) ≤ 11λn + gγ(A†I∗A(PΩ⊥(ΔS),PT⊥(ΔL)))

≤ 11λn +mψ2‖PT⊥(ΔL)‖2
≤ 12λn,

as m ≤ D
ξ(T ) . Therefore, we have that gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ 24λn,

where Y = Ω×T . Consequently, we can apply Proposition 3.3 (main paper)
to conclude that

gγ(PY(ΔS ,ΔL)) ≤ 48λn
α

.

Finally, we use the triangle inequality again to conclude that

gγ(ΔS ,ΔL) ≤ gγ(PY(ΔS ,ΔL)) + gγ(PY⊥(ΔS ,ΔL))

≤ 48λn
α

+m‖PT⊥(ΔL)‖2
≤ C2λn.

�
This simple result immediately leads to a number of useful corollaries.

For example we have that under a suitable bound on the minimum nonzero
singular value of L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O, the constraint in M along the

normal direction T⊥ is locally inactive. Next we list several useful conse-
quences of Proposition 3.3.

Corollary 3.4. Consider any (S,L) ∈ M, and let ΔS = S−S∗,ΔL =

L∗−L. Suppose γ is in the range specified by (3.1), and let C3 =
(
6(2−ν)
ν + 1

)
C2
2ψ

2D

and C4 = C2+
3αC2

2 (2−ν)
16(3−ν) (where C2 is as defined in Proposition 3.3). Let the
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minimum nonzero singular value σ of L∗ = K∗
O,H(K

∗
H)

−1K∗
H,O be such that

σ ≥ C5λn
ξ(T )2 for C5 = max{C3, C4}, and suppose that the smallest magnitude

nonzero entry of S∗ is greater than C6λn
μ(Ω) for C6 =

C2να
β(2−ν) . Setting T

′ = T (L)

and CT ′ = PT ′⊥(L∗), we then have that:

1. L has rank equal to rank(L∗), i.e., L is a smooth point of the variety
of matrices with rank less than or equal to rank(L∗). In particular L
has the same inertia as L∗.

2. ‖PT⊥(ΔL)‖2 ≤ ξ(T )λn
19Dψ2 .

3. ρ(T, T ′) ≤ ξ(T )
4 .

4. gγ(A†I∗CT ′) ≤ λnν
6(2−ν) .

5. ‖CT ′‖2 ≤ 16(3−ν)λn
3α(2−ν) .

6. sign(S) = sign(S∗).

Proof : We note the following facts before proving each step. First C2 ≥
1
ψ2 ≥ 1

mψ2 ≥ ξ(T )
Dψ2 . Second ξ(T ) ≤ 1. Third we have from Proposition 3.3

that ‖ΔL‖2 ≤ C2λn. Finally
6(2−ν)
ν ≥ 18 for ν ∈ (0, 12 ]. We prove each step

separately.
For the first step, we note that

σ ≥ C3λn
ξ(T )2

≥ 19C2
2ψ

2Dλn
ξ(T )2

≥ 19C2λn
ξ(T )

≥ 8C2λn ≥ 8‖ΔL‖2.

Hence L is a smooth point with rank equal to rank(L∗), and specifically has
the same inertia as L∗.

For the second step, we use the fact that σ ≥ 8‖ΔL‖2 to apply Proposi-
tion 2.2:

‖PT⊥(ΔL)‖ ≤ ‖ΔL‖22
σ

≤ C2
2ξ(T )

2λ2n
C3λn

≤ ξ(T )λn
19Dψ2

.

For the third step we apply Proposition 2.1 (by using the conclusion from
above that σ ≥ 8‖ΔL‖2) so that

ρ(T, T ′) ≤ 2‖ΔL‖2
σ

≤ 2C2ξ(T )
2

C3
≤ 2ξ(T )2

19C2Dψ2
≤ ξ(T )

4
.

For the fourth step let σ′ denote the minimum singular value of L. Con-
sequently,

σ′ ≥ C3λn
ξ(T )2

− C2λn ≥ C2λn

[
19C2Dψ

2

ξ(T )2
− 1

]
≥ 8‖ΔL‖2.
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Using the same reasoning as in the proof of the second step, we have that

‖CT ′‖2 ≤ ‖ΔL‖22
σ′

≤ C2
2λ

2
n

( C3
ξ(T )2

− C2)λn
=

C2
2ξ(T )

2λn

C2
2Dψ

2(6(2−ν)ν ) + C2
2Dψ

2 − C2ξ(T )2

≤ C2
2ξ(T )

2λn

C2
2Dψ

2(6(2−ν)ν )
≤ νξ(T )λn

6(2 − ν)Dψ2
.

Hence

gγ(A†I∗CT ′) ≤ mψ2‖CT ′‖2 ≤ λnν

6(2− ν)
.

For the fifth step the bound on σ′ implies that

σ′ ≥ C4λn
ξ(T )2

− C2λn ≥ 3C2
2α(2− ν)

16(3 − ν)
λn

Since σ′ ≥ 8‖ΔL‖2, we have from Proposition 2.2 and some algebra that

‖CT ′‖2 ≤ C2
2λ

2
n

σ′
≤ 16(3 − ν)λn

3α(2 − ν)
.

For the final step since ‖ΔS‖∞ ≤ γC2λn, the assumed lower bound on
the minimum magnitude nonzero entry of S∗ guarantees that sign(S) =
sign(S∗). �

Notice that this corollary applies to any (S,L) ∈ M, and is hence appli-
cable to any solution (ŜM, L̂M) of the M-constrained program (3.7). For
now we choose an arbitrary solution (ŜM, L̂M) and proceed. In the next
steps we show that (ŜM, L̂M) is the unique solution to the convex program
(3.3), thus showing that (ŜM, L̂M) is also the unique solution to (3.7).

3.4. From variety constraint to tangent-space constraint. Given the solu-
tion (ŜM, L̂M), we show that the solution to the convex program (3.4) with
the tangent space constraint L ∈ TM � T (L̂M) is the same as (ŜM, L̂M)
under suitable conditions:
(3.8)

(ŜΩ, L̂TM) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, S ∈ Ω, L ∈ TM.

Assuming the bound of Corollary 3.4 on the minimum singular value of
L∗ the uniqueness of the solution (ŜΩ, L̂TM) is assured. This is because we
have from Proposition 3.3 (main paper) and from Corollary 3.4 that I∗ is
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injective on Ω⊕TM. Therefore the Hessian of the convex objective function
of (3.8) is strictly positive-definite at (ŜΩ, L̂TM).

We let CM = PT⊥
M
(L∗). Recall that En = ΣnO −Σ∗

O denotes the difference
between the sample covariance matrix and the marginal covariance matrix
of the observed variables.

Proposition 3.5. Let γ be in the range specified by (3.1). Suppose that
the minimum nonzero singular value σ of L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O is such

that σ ≥ C5λn
ξ(T )2

(C5 is defined in Corollary 3.4). Suppose also that the mini-

mum magnitude nonzero entry of S∗ is greater than or equal to C6λn
μ(Ω) (C6 is

defined in Corollary 3.4). Let gγ(A†En) ≤ λnν
6(2−ν) . Further suppose that

λn ≤ 3α(2 − ν)

16(3− ν)
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

Then we have that
(ŜΩ, L̂TM) = (ŜM, L̂M).

Proof : Note first that the condition on the minimum singular value of
L∗ in Corollary 3.4 is satisfied. Therefore we proceed with the following two
steps:

1. First we can change the non-convex constraint rank(L) ≤ rank(L∗)
to the linear constraint L ∈ T (L̂M). This is because the lower bound
assumed for σ implies that L̂M is a smooth point of the algebraic
variety of matrices with rank less than or equal to rank(L∗) (from
Corollary 3.4). Due to the convexity of all the other constraints and
the objective, the optimum of this “linearized” convex program will
still be (ŜM, L̂M).

2. Next we can again apply Corollary 3.4 (based on the bound on σ)

to conclude that the constraint ‖PT⊥(L − L∗)‖2 ≤ ξ(T )λn
Dψ2 is locally

inactive at the point (ŜM, L̂M).

Consequently, we have that (ŜM, L̂M) can be written as the solution of
a convex program:
(3.9)

(ŜM, L̂M) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, S ∈ Ω, L ∈ TM,

gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn.
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We now need to argue that the constraint gγ(A†I∗A(S − S∗, L∗ − L)) ≤
11λn is also inactive in the convex program (3.9). We proceed by showing
that the solution (ŜΩ, L̂TM) of the convex program (3.8) has the property
that gγ(A†I∗A(ŜΩ − S∗, L∗ − L̂TM)) < 11λn, which concludes the proof of
this proposition. We have from Corollary 3.4 that gγ(A†I∗CTM) ≤ λnν

6(2−ν) .
Since gγ(A†En) ≤ λnν

6(2−ν) by assumption, one can verify that

8

α

[
λn + gγ(A†En) + gγ(A†I∗CTM)

]
≤ 8λn

α

[
1 +

ν

3(2− ν)

]

=
16(3 − ν)λn
3α(2 − ν)

≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

The last line follows from the assumption on λn. We also note that ‖CTM‖2 ≤
16(3−ν)λn
3α(2−ν) from Corollary 3.4, which implies that ‖CTM‖2 ≤ min

{
1

4C1
, αξ(T )
64DψC2

1

}
.

Letting (ΔS ,ΔL) = (SΩ − S∗, L∗ − L̂TM), we can conclude from Proposi-

tion 3.2 that gγ(ΔL,ΔS) ≤ 32(3−ν)λn
3α(2−ν) . Next we apply Proposition 3.1 (as

gγ(ΔL,ΔS) ≤ 1
2C1

) to conclude that

gγ(A†RΣ∗
O
(ΔS +ΔL)) ≤ 2DψC2

1gγ(ΔS ,ΔL)
2

ξ(T )

≤ 2DψC2
1

ξ(T )

32(3− ν)λn
3α(2 − ν)

αξ(T )

32DψC2
1

≤ 2(3− ν)λn
3(2− ν)

.(3.10)

From the optimality conditions of (3.8) one can also check that for Y =
Ω× TM,

gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ 2λn + gγ(PYA†RΣ∗
O
(ΔS +ΔL))

+gγ(PYA†I∗CTM) + gγ(PYA†En)
≤ 2[λn + gγ(A†RΣ∗

O
(ΔS +ΔL))

+gγ(A†En) + gγ(A†I∗CTM)]

≤ 4

[
2(3 − ν)λn
3(2 − ν)

]
.

Here we used (3.10) in the last inequality, and also that gγ(A†I∗CTM) ≤
λnν

6(2−ν) (as noted above from Corollary 3.4) and that gγ(A†En) ≤ λnν
6(2−ν) .
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Therefore,

gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ 16λn
3

,(3.11)

because ν ∈ (0, 12 ]. Based on Proposition 3.3 in the main paper (the second
part), we also have that

(3.12) gγ(PY⊥A†I∗APY(ΔS ,ΔL)) ≤ (1− ν)
16λn
3

≤ 16λn
3

.

Summarizing steps (3.11) and (3.12),

gγ(A†I∗A(ΔS,ΔL)) ≤ gγ(PYA†I∗APY(ΔS ,ΔL))

+gγ(PY⊥A†I∗APY(ΔS ,ΔL)) + gγ(A†I∗CTM)

≤ 16λn
3

+
16λn
3

+
λnν

6(2− ν)

≤ 32λn
3

+
λn
18

< 11λn.

This concludes the proof of the proposition. �
This proposition has the following important consequence.

Corollary 3.6. Under the assumptions of Proposition 3.5 we have that
rank(L̂TM) = rank(L∗) and that T (L̂TM) = TM. Moreover, L̂TM actually
has the same inertia as L∗. We also have that sign(ŜΩ) = sign(S∗).

3.5. Proof of main paper Proposition 5.3 – Removing the tangent-space
constraints. The following lemma provides a simple set of sufficient condi-
tions under which the optimal solution (ŜΩ, L̂TM) of (3.8) satisfies the op-
timality conditions of the convex program (3.3) (without the tangent space
constraints).

Lemma 3.7. Let (ŜΩ, L̂TM) be the solution to the tangent-space con-
strained convex program (3.8). Suppose that the assumptions of Proposi-
tion 3.5 hold. If in addition we have that

gγ(A†RΣ∗
O
(A(ΔS,ΔL))) ≤ λnν

6(2− ν)
,

then (ŜΩ, L̂TM) is also the unique optimum of the convex program (3.3).
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Proof : Recall from Corollary 3.6 that the tangent space at L̂TM is equal
to TM. Applying the optimality conditions of the convex program (3.8)
at the optimum (ŜΩ, L̂TM), we have that there exist Lagrange multipliers
QΩ⊥ ∈ Ω⊥, QT⊥

M
∈ T⊥

M such that

ΣnO−(ŜΩ−L̂TM)−1+QΩ⊥ ∈ −λnγ∂‖ŜΩ‖1, ΣnO−(ŜΩ−L̂TM)−1+QT⊥
M

∈ λn∂‖L̂TM‖∗.
Restricting these conditions to the space Y = Ω× TM, one can check that

PΩ[Σ
n
O−(ŜΩ−L̂TM)−1] = −λnγsign(S∗), PTM [ΣnO−(ŜΩ−L̂TM)−1] = λnUV

T ,

where L̂TM = UDV T is a reduced SVD of L̂TM . Denoting Z = [−λnγsign(S∗), λnUV T ],
we conclude that

(3.13) PYA†[ΣnO − (ŜΩ − L̂TM)−1] = Z,

with gγ(Z) = λn. It is clear that the optimality condition of the convex
program (3.3) (without the tangent-space constraints) on Y is satisfied. All
we need to show is that

(3.14) gγ(PY⊥A†[ΣnO − (ŜΩ − L̂TM)−1]) < λn.

Rewriting ΣnO − (ŜΩ − L̂TM)−1 in terms of the error (ΔS ,ΔL) = (ŜΩ −
S∗, L∗ − L̂TM), we have that

ΣnO − (ŜΩ − L̂TM)−1 = En −RΣ∗
O
(A(ΔS,ΔL)) + I∗A(ΔS ,ΔL).

Restating the condition (3.13) on Y, we have that
(3.15)
PYA†I∗APY(ΔS ,ΔL) = Z + PYA†[−En +RΣ∗

O
(A(ΔS ,ΔL))− I∗CTM ].

(Recall that CTM = PT⊥
M
(L∗).) A sufficient condition to show (3.14) and

complete the proof of this lemma is that

gγ(PY⊥A†I∗APY(ΔS ,ΔL)) < λn−gγ(PY⊥A†[−En+RΣ∗
O
(A(ΔS,ΔL))−I∗CTM ]).

We prove this inequality next. Recall from Corollary 3.4 that gγ(A†I∗CTM) ≤
λnν

6(2−ν) . Therefore, from equation (3.15) we can conclude that

gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ λn + 2(gγ(A†[−En +RΣ∗
O
(A(ΔS ,ΔL))− I∗CTM ]))

≤ λn + 2

[
3λnν

6(2− ν)

]

=
2λn
2− ν

.



18 CHANDRASEKARAN, PARRILO, WILLSKY

Here we used the bounds assumed on gγ(A†En) and on gγ(A†RΣ∗
O
(A(ΔS ,ΔL))).

Applying the second part of Proposition 3.3 (main paper), we have that

gγ(PY⊥A†I∗APY(ΔS ,ΔL)) ≤ 2λn(1− ν)

2− ν

= λn − νλn
2− ν

< λn − νλn
2(2 − ν)

≤ λn − gγ(A†[−En +RΣ∗
O
(A(ΔS ,ΔL))− I∗CTM ])

≤ λn − gγ(PY⊥A†[−En +RΣ∗
O
(A(ΔS ,ΔL))− I∗CTM ]).

Here the second-to-last inequality follows from the bounds on gγ(A†En),
gγ(A†RΣ∗

O
(A(ΔS ,ΔL))), and gγ(A†I∗CTM). This concludes the proof of the

lemma. �

3.6. Proof of main paper Lemma 5.4 – Probabilistic analysis. All the
analysis described so far in this section has been completely deterministic in
nature. Here we present the probabilistic component of our proof. Specifi-
cally, we study the rate at which the sample covariance matrix converges to
the true covariance matrix. The following result from [2] plays a key role in
our analysis:

Theorem 3.8. Given natural numbers n, p with p ≤ n, let Γ be a p× n
matrix with i.i.d. Gaussian entries that have zero-mean and variance 1

n .
Then the largest and smallest singular values s1(Γ) and sp(Γ) of Γ are such
that

max
{
Pr

[
s1(Γ) ≥ 1 +

√
p
n + t

]
,Pr

[
sp(Γ) ≤ 1−

√
p
n − t

]}
≤ exp

{
−nt2

2

}
,

for any t > 0.

Using this result the next lemma provides a probabilistic bound between
the sample covariance ΣnO formed using n samples and the true covariance
Σ∗
O in spectral norm. This result is well-known, and we mainly discuss it here

for completeness and also to show explicitly the dependence on ψ = ‖Σ∗
O‖2.

Lemma 3.9. Let ψ = ‖Σ∗
O‖2. Given any δ > 0 with δ ≤ 8ψ, let the

number of samples n be such that n ≥ 64pψ2

δ2
. Then we have that

Pr [‖ΣnO − Σ∗
O‖2 ≥ δ] ≤ 2 exp

{
− nδ2

128ψ2

}
.
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Proof : Since the spectral norm is unitarily invariant, we can assume that

Σ∗
O is diagonal without loss of generality. Let Σ̄n = (Σ∗

O)
−1
2ΣnO(Σ

∗
O)

−1
2 ,

and let s1(Σ̄
n), sp(Σ̄

n) denote the largest/smallest singular values of Σ̄n.
Note that Σ̄n can be viewed as the sample covariance matrix formed from
n independent samples drawn from a model with identity covariance, i.e.,
Σ̄n = ΓΓT where Γ denotes a p× n matrix with i.i.d. Gaussian entries that
have zero-mean and variance 1

n . We then have that

Pr [‖ΣnO − Σ∗
O‖2 ≥ δ] ≤ Pr

[
‖Σ̄n − I‖2 ≥ δ

ψ

]
≤ Pr

[
s1(Σ̄

n) ≥ 1 + δ
ψ

]
+ Pr

[
sp(Σ̄

n) ≤ 1− δ
ψ

]
= Pr

[
s1(Γ)

2 ≥ 1 + δ
ψ

]
+ Pr

[
sp(Γ)

2 ≤ 1− δ
ψ

]
≤ Pr

[
s1(Γ) ≥ 1 + δ

4ψ

]
+ Pr

[
sp(Γ) ≤ 1− δ

4ψ

]
≤ Pr

[
s1(Γ) ≥ 1 +

√
p
n + δ

8ψ

]
+ Pr

[
sp(Γ) ≤ 1−

√
p
n − δ

8ψ

]
≤ 2 exp

{
− nδ2

128ψ2

}
.

Here we used the fact that n ≥ 64pψ2

δ2
in the fourth inequality, and we applied

Theorem 3.8 to obtain the final inequality by setting t = δ
8ψ . �

The following corollary describes relates the number of samples required
for an error bound to hold with probability 1− 2 exp{−p}.
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