A Caltech Library Service

Whole mantle shear structure beneath the East Pacific Rise

Melbourne, Timothy I. and Helmberger, Donald V. (2002) Whole mantle shear structure beneath the East Pacific Rise. Journal of Geophysical Research B, 107 (B9). Art. No. 2204. ISSN 0148-0227.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


We model broadband seismograms containing triplicated S, S^2, and S^3 along with ScS to produce a pure path one-dimensional model extending from the crust to the core-mantle boundary beneath the East Pacific Rise. We simultaneously model all body wave shapes and amplitudes, thereby eliminating depth-velocity ambiguities. The data consist of western North American broadband recordings of East Pacific Rise (EPR) affiliate transform events that form a continuous record section out to 82° and sample nearly the entire East Pacific Rise. The best fitting synthetics contain attenuation and small changes in lithospheric thickness needed to correct for variation in bounce point ages. The 660-km discontinuity is particularly well resolved and requires a steep gradient (4%), extending down to 745 km. We find no discernible variation in apparent depths of the 405- and 660-km discontinuities over ridge-orthogonal distances on the order of 1000 km (or 20 Ma lithosphere). Body waveform comparisons indicate that we can resolve discontinuity depths to less than ±10 km, providing an upper limit to transition zone topography. These depth estimates, in conjunction with the fan shot nature of the ray paths, lower the detection limit from S^2 precursor analysis of the lateral length scale over which short-wavelength topographic variation could occur and indicate the sub-EPR Transition Zone and upper mantle are remarkably homogeneous. The lower mantle beneath the East Pacific Rise is well modeled by PREM, with the greatest variation occurring in ScS, reflecting strong heterogeneity along the core-mantle boundary. Together, these observations require that the East Pacific Rise spreading ridge cannot be actively supplied from the local lower mantle and that tomographically imaged lateral variation beneath the ridge likely reflects lateral smearing of outlying velocity gradients. Dynamically, the transition zone therefore appears vertically decoupled from the overlying East Pacific Rise spreading system.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:© 2002 American Geophysical Union. Received 31 January 2000; revised 25 November 2001; accepted 30 November 2001; published 28 September 2002. This work was supported under National Science Foundation grants EAR-9973191 to Melbourne and EAR-97-2508 to Helmberger. Caltech Seismological Laboratory contribution 8746.
Funding AgencyGrant Number
Subject Keywords:Transition zone; East Pacific Rise; mantle
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Caltech Seismological Laboratory8746
Classification Code:Index terms: 7218 Seismology: Lithosphere and upper mantle; 7207 Seismology: Core and mantle; 8121 Tectonophysics: Dynamics, convection currents and mantle plumes; 7203 Seismology: Body wave propagation
Record Number:CaltechAUTHORS:20130213-152644968
Persistent URL:
Official Citation:Melbourne, T. I., and D. V. Helmberger, Whole mantle shear structure beneath the East Pacific Rise, J. Geophys. Res., 107(B9), 2204, doi:10.1029/2001JB000332, 2002.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:36905
Deposited By: Jason Perez
Deposited On:13 Feb 2013 23:54
Last Modified:13 Feb 2013 23:54

Repository Staff Only: item control page