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THE REVEALED PREFERENCE THEORY OF STABLE AND
EXTREMAL STABLE MATCHINGS

BY FEDERICO ECHENIQUE, SANGMOK LEE,
MATTHEW SHUM, AND M. BUMIN YENMEZ1

We investigate the testable implications of the theory of stable matchings. We pro-
vide a characterization of the matchings that are rationalizable as stable matchings
when agents’ preferences are unobserved. The characterization is a simple nonpara-
metric test for stability, in the tradition of revealed preference tests. We also character-
ize the observed stable matchings when monetary transfers are allowed and the stable
matchings that are best for one side of the market: extremal stable matchings. We find
that the theory of extremal stable matchings is observationally equivalent to requiring
that there be a unique stable matching or that the matching be consistent with unre-
stricted monetary transfers.

KEYWORDS: Revealed preference theory, two-sided matching markets, stability, ex-
tremal stability, assignment game.

1. INTRODUCTION

THIS PAPER STUDIES the testable implications of stability in two-sided match-
ing markets. In the spirit of classical revealed preference analysis, we suppose
that one can observe matchings, but not agents’ preferences, and we want to
understand the empirical content of matching theory.

We give simple conditions that characterize the observable restrictions of
the theories of stable matching with transfers and without transfers, and the
stable matchings that are optimal for each side of the market (extremal stable
matchings). The model with transfers turns out to be strictly more restrictive
than the model without transfers and is observationally equivalent to extremal
stable matchings.

The revealed preference problem in matching presents unique challenges.
In classical revealed preference theory, if Catherine chooses option A over op-
tion B, then we may infer that she prefers A over B. In a two-sided model,
the situation is much more complicated: If Catherine matches with Jules and
not with Jim, it may be because she likes Jules best, but it may also be be-
cause Jim is matched to someone he prefers over Catherine. Jim’s preferences
are, however, as unobservable as Catherine’s. Hence, matching data do not un-
ambiguously resolve the direction of revealed preferences. This problem is a
crucial challenge: it is intrinsic to two-sided models and most empirical studies
of matching circumvent the problem by assuming unlimited transfers among

1This paper evolved from Echenique, Lee, and Yenmez (2010) and contains generalizations of
the theoretical results in Echenique, Lee, and Shum (2010), both of which are obsolete now. We
thank Lars Ehlers for questions that motivated some of the current research. We are very grateful
to the editor and anonymous referees for their comments on a previous draft.
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the agents.2 Ours is the first paper to provide a complete revealed preference
characterization of stable matchings.

The literature on stable matching has grown rapidly, delivering beautiful the-
oretical results and important empirical applications. It is, however, largely a
normative theory. The applications of matching theory deal with how markets
should be designed (Roth (2008), Sönmez and Ünver (2011)).3 As a positive
theory, stable matching is not well understood.

For example, much is known about the two canonical models of matching:
the model with no monetary transfers (the Gale and Shapley (1962) college-
admissions model) and the model with transfers (the Shapley and Shubik
(1971) assignment game), but we do not know how to empirically distinguish
one model from the other. The marriage market is a popular application of
both models, but one cannot observe transfers and thus understand which
model is more appropriate.4 We want to know which model is more appro-
priate when we only observe who matches with whom, but no preferences or
transfers are observed.

Another example relates to extremal stable matchings, the standard out-
comes in matching market design. In the absence of transfers, there are two
distinguished stable matchings: each is the best stable matching for one side
of the market and the worst for the other side. Centralized market clearing-
houses, such as the National Resident Matching Program in the United States
or the recent designs of public school choice programs, implement an extremal
stable matching, but would a decentralized market select a similar outcome?
To answer this question, we need to understand when observed matchings are
compatible with the theory of extremal stable matchings.

We focus on a general notion of data, which we call aggregate matchings. In
an aggregate matching, individuals on each side of the market are summed up
into cells on the basis of their observed characteristics, such as age, educational
attainment, or employment sector. Empirical researchers studying marriage,
for instance, typically use aggregate matchings (Choo and Siow (2006)).

We assume that all individuals with the same characteristics are identical
and have identical preferences. This is a strong assumption, but without it, the
theory has no testable implications: once one allows for enough heterogene-
ity in preferences among observationally identical individuals, any matching
could be trivially rationalizable. Thus, we focus on the restrictive case of no
preference heterogeneity among individuals with the same characteristics. This

2Under this assumption, they can focus on the matchings that maximize social surplus.
3The existing literature often notes that actual markets use stable matching mechanisms (Roth

(2002)), which is a positive finding. The thrust of the literature is, however, normative.
4In some empirical settings, such as labor markets, it may be possible to observe transfers.

In a number of empirical applications of matching models, however, transfers are not observed;
these include marriage markets (Becker (1973), Choo and Siow (2006)), auto-parts markets (Fox
(2008)), and venture capital markets (Sørensen (2007)).
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can be considered a “worst case” under which rationalizability is still possible.5

Different assumptions on what may be observed (e.g., if one could partially
observe preferences or some form of transfers) and on agent heterogeneity
will affect our conclusions. One message of our paper is that to distinguish the
theories that we find observationally equivalent, richer data sets are required.

2. MODEL

We present population versions of the two standard matching models: the
model with nontransferable utility (NTU) and the model with transferable util-
ity (TU). Our notion of population matching is termed aggregate matching and
is distinguished from the more familiar notion of “individual” matchings.

The models feature two (disjoint) finite sets, M and W . The set M is a
set of types of men, while W is a set of types of women. We enumerate M as
{m1� � � � �m|M|} and W as {w1� � � � �w|W |}. We are given a list K = (Ki)i∈M∪W of
nonnegative real numbers; Km is the number (or the mass) of men of type m
and Kw is the number of women of type w. A matching is an |M| × |W | matrix
X = (xm�w) such that xm�w ∈ R+,

∑
w xm�w ≤ Km for all m, and

∑
m xm�w ≤ Kw

for all w. The number xm�w is the number (or the mass, or the probability) of
men of type m matched to women of type w. We assume that there are no
“singles” or unmatched agents; that is,

∑
mKm = ∑

w Kw, and
∑

w xm�w = Km

for all m, and
∑

m xm�w = Kw for all w.6

We allow for noninteger values of xm�w to accommodate random matchings
in our framework. For instance, Abdulkadiroğlu, Pathak, Roth, and Sönmez
(2005) and Kesten and Ünver (2009) studied the probabilistic assignment of
school seats to students, and one may ask if a randomized matching such as this
is consistent with stability for some preferences of the students and priorities
of the schools. Our results are applicable to these randomized matchings as
well. (See Echenique, Lee, and Yenmez (2010) for a complete discussion of
this issue.)

The standard model of individual matchings results when we have Ki = 1 for
i ∈M ∪W and xm�w ∈ {0�1}.

5This differs from the approach in existing empirical applications of matching theory, which as-
sumes transferable utilities (see, e.g., Choo and Siow (2006), Fox (2008), or Galichon and Salanie
(2009)), but allows for heterogeneous preferences at the individual level. Echenique (2008) and
Chambers and Echenique (2009) studied the revealed preference problem for a collection of
individual-level matchings, which differs from the general notion of matching data considered in
the present paper.

6We rule out singles for expositional simplicity, but the results are easily extended. In most
actual marriage data, we only observe formed couples, so assuming that there are no singles is not
a problem for most empirical applications to marriage. As a result, we do not define individual
rationality because it has no empirical bite when there are no singles. It is straightforward to
modify our setup to study individual rationality (Echenique, Lee, and Yenmez (2010)).
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2.1. Matching With Nontransferable Utility

The primitives of the model are represented by a four-tuple 〈M�W �P�K〉,
where M , W , and K are as described above, and P is a preference profile—a list
of preferences Pm for every type of man m and Pw for every type of woman w.
Each Pm is a linear order over W and each Pw is a linear order over M . The
weak order associated with Pm (Pw) is denoted by Rm (Rw).

The standard prediction concept for the NTU model is stability: A pair
(m�w) is a blocking pair for X if there exist m′ and w′ such that mPwm

′, wPmw
′,

xm�w′ > 0, and xm′�w > 0; X is stable if there are no blocking pairs for X .
We denote by S(M�W �P�K) the set of all stable matchings in 〈M�W �P�K〉.

2.2. Matching With Transferable Utility

The primitives of the model are represented by a four-tuple 〈M�W � A�K〉,
where M , W , and K are as described above, and A = (αm�w) is an |M| × |W |
matrix of nonnegative real numbers; A is called a surplus matrix, in which αm�w

is the surplus jointly generated by a type m man and a type w woman.
Consider the problem

max
X∈R|M|×|W |

+

∑
m�w

αm�wxm�w(1)

such that

⎧⎪⎪⎨
⎪⎪⎩

∀m�
∑
w

xm�w = Km,

∀w�
∑
m

xm�w = Kw.

A matching X is called optimal if it is a solution of (1). Optimality is equiv-
alent to stability for the TU model, but not in the NTU model. An optimal
matching achieves the maximum total surplus under the population constraints
defined by Km and Kw. It is well known that optimality corresponds to the ap-
propriate notion of stability for the TU model (Shapley and Shubik (1971)).
The formal notion of stability requires a discussion of agents’ payoffs; for rea-
sons of space, we omit the definition of stability and focus instead on optimal
matchings.

2.3. Extremal Stable Matchings in the NTU Model

Extremal stable matchings are matchings that are better for one side of the
market (say men) and worse for the other side (say women) than any other
stable matching. For a type of men (or women), a distribution over the types of
women (or men) is preferable over another in the sense of first-order stochastic
dominance.
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For each m ∈ M , define

Xm =
{
x ∈ R|W |

+ :
∑

1≤j≤|W |
xj =Km

}
�

the set of “distributions” over different types of women that m may match to.
Define a partial order ≤m on Xm by7

y ≤m x if and only if ∀w ∈ W�
∑

1≤j≤|W |
wjRmw

yj ≤
∑

1≤j≤|W |
wjRmw

xj�

Letting Xw = {x ∈ R|M|
+ :

∑
1≤i≤|M| xi = Kw}, we define ≤w in an analogous way.

Given an aggregate matching X , let Xm be the row corresponding to type-m
men, and let Xw be the column corresponding to type-w women. Baïou and
Balinski (2002) (and also Echenique, Lee, and Yenmez (2010)) showed that
there are two stable matchings XM and XW , such that for any stable match-
ing X ,

∀m� XW
m ≤m Xm ≤m XM

m �

∀w� XM
w ≤w Xw ≤w XW

w �

We refer to XM as the man-optimal (M-optimal) stable matching and refer to
XW as the woman-optimal (W -optimal) stable matching. We also call XM and
XW extremal stable matchings. A matching X is the unique stable matching if
S(M�W �P�K) = {X}; in this case, X coincides with the M- and W -optimal
stable matchings.

2.4. Graph Theoretic Definitions

To state our main results, we use some basic definitions from graph theory.
A (undirected) graph is a pair G= (V �L), where V is a set and L is a subset

of V × V . A path in G is a sequence p = 〈v0� � � � � vN〉 such that (vn� vn+1) ∈ L
for all n ∈ {0� � � � �N − 1}. We denote by v ∈ p that v is a vertex in p. A path
〈v0� � � � � vN〉 connects the vertices v0 and vN . A path 〈v0� � � � � vN〉 is minimal if
there is no proper subsequence of 〈v0� � � � � vN〉 that also connects v0 and vN .

A cycle in G is a path c = 〈v0� � � � � vN〉 with v0 = vN . A cycle is minimal if for
any two vertices vn and vn′ in c, the paths in c from vn to vn′ and from vn′ to vn

7When Km = 1, vectors x and y in Xm represent probability distributions over the types of
women that m may match with. In that case, y ≤m x if and only if the lottery induced by y over W
is worse than the lottery induced by x, for any von Neumann–Morgenstern utility function. See
also Bogomolnaia and Moulin (2001).
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are distinct and minimal. If c and c′ are two cycles, and there is a path from a
vertex in c to a vertex in c′, then we say that c and c′ are connected.

For an aggregate matching X , we consider the graph defined by letting
the vertices be all the nonzero elements of the matrix and the graph de-
fined by letting there be an edge between two vertices when they lie on the
same row or column of X . Formally, to each matching X , we associate a
graph (V �L) defined as follows. The set of vertices V is {(m�w) :m ∈ M�w ∈
W such that xm�w > 0}, and an edge ((m�w)� (m′�w′)) ∈ L is formed for every
pair of vertices (m�w) and (m′�w′) with m =m′ or w = w′.

Consider the following example, to which we return when discussing our
main results. Let matching X be the matrix on the left, with three types of men
and women. Its associated graph is depicted on the right:

11 9 10

0 22 41

13 91 0

11 9 10

0 22 41

13 91 0

3. RATIONALIZABILITY

3.1. Results

We are now in a position to state the revealed preference problem for match-
ing theory. Given a matching X , we want to understand when there are pref-
erences for M and W such that X is a stable matching or a surplus matrix A
such that X is optimal.

Formally, we say that a matching X has the following qualities:
• It is rationalizable if there exists a preference profile P = ((Pm)m∈M�

(Pw)w∈W ) such that X is a stable matching in 〈M�W �P�K〉.
• It is TU-rationalizable if there is a surplus matrix A for which X is the

unique solution to problem (1).8
• It is M-optimal (W -optimal) rationalizable if there is a profile P for which

X is the M-optimal (W -optimal) stable matching in 〈M�W �P�K〉.
Our main result is a characterization of the rationalizable matchings:

THEOREM 1—Rationalizability: A matching X is rationalizable if and only if
its associated graph does not contain two connected distinct minimal cycles.

8Uniqueness renders the TU-rationalizability problem nontrivial. If we instead required X to
be only one of the maximizers of (1), then any matching could be rationalized with a constant
surplus (αm�w = c for all m�w). It may be possible to allow for multiple maxima, as long as we im-
pose that the set of maximizers is strictly less than the full set of matchings; we have not explored
this possibility here.
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As an illustration, consider the matching at the end of Section 2.4. Two min-
imal cycles in this graph are

11 9 10

0 22 41

13 91 0

11 9 10

0 22 41

13 91 0

The two minimal cycles in the graph are connected; thus, the matching is not
rationalizable. In Section 3.2 below, we provide an intuition behind the role of
cycles in Theorem 1. The necessity part of the proof of the theorem is in Ap-
pendix A and the sufficiency part is in the Supplemental Material (Echenique,
Lee, Shum, and Yenmez (2013)).

We now turn to a characterization of TU and extremal rationalizable match-
ings.

THEOREM 2: Let X be a matching. The following statements are equivalent:
(i) Matching X is TU-rationalizable.

(ii) Matching X is M-optimal rationalizable.
(iii) Matching X is W -optimal rationalizable.
(iv) Matching X is rationalizable as the unique stable matching.
(v) The graph associated to X has no minimal cycles.

This theorem means that the theory of optimal TU matching is strictly more
restrictive than NTU stable matching and is observationally equivalent to pre-
dicting an extremal, or unique, stable matching. The proof can be found in
Appendix B.

3.2. Intuition

A crucial distinction between individual and aggregate matchings is the pos-
sibility that, say, one type of man may be matched with more than one type
of woman and vice versa, resulting in edges in the graph corresponding to
this matching. To understand their importance for rationalizability, consider
a one-to-one individual matching. Obviously, there are no edges here and also
the matching is trivially rationalizable: We can set preferences such that each
agent’s match is his/her most preferred partner, so the observed matching will
be stable for these preferences.

In an aggregate matching, however, an edge invalidates these preferences;
indeed, for a “vertical” edge (in which two women of the same type match to
men of different types), strict preferences imply that, at the least, some women



160 ECHENIQUE, LEE, SHUM, AND YENMEZ

of this type are not matched to their most preferred type of men. For this to
be stable, it must be that more preferable types of men are “not available”
to these women; that is, these men are matched to women whom they find
more preferable. Obviously, this imposes restrictions on preferences. In the
presence of edges, the rationalizability question boils down, essentially, to the
number and configurations of edges that can be allowed for, such that one can
still devise preferences consistent with all the restrictions implied by the edges.

Recall the intuition presented in the Introduction, involving Catherine,
Jules, and Jim: by translating the question into the graph defined by the match-
ing, we can get a handle on the problem of the circularity of revealed prefer-
ences. Consider the cycle on the left in the example above. This cycle con-
sists of four edges connecting two types of men (call them m1 and m3), and
two types of women (call them w1 and w2). In the cycle, men of type m1 are
matched to women of both types w1 and w2. Because of strict preferences,
however, m1 cannot be indifferent between these two types of women. Assum-
ing that women of type w1 are more preferred (i.e., w1Pm1w2), then it must
be that for the men of type m1 who are matched to w2, the preferable women
of type w1 are not “available” to him; specifically, women of type w1 who are
matched with men of type m3 must prefer their spouses to men of type m1 (i.e.,
m3Pw1m1). Obviously, repeating this argument for all four edges in the cycle
leads to a very large number of restrictions on the preferences between the
types of men and women in the cycle.

In fact, it turns out that there are only two possible sets of preference pro-
files among the four types in the cycle that are consistent with stability. More
precisely, preferences within a cycle must be a flow; that is, they “point” in one
direction. Going back to the left-hand side cycle in the example, this means
that if w1Pm1w2, then m3Pw1m1. To see why this is so, assume to the contrary
that m1Pw1m3. This would imply that the couples composed of (m3�w1) and
(m1�w2) are unstable, because w1 from the first couple and m1 from the second
couple would form a blocking pair. Consequently, we also must have w2Pm3w1

and m1Pw2m3. Graphically, these preferences form a “counterclockwise flow”
on the left-hand side matrix of Example 1. Similarly, the “clockwise flow” with
preferences satisfying w2Pm1w1, m3Pw2m1, w1Pm3w2, and m1Pw1m3 is also con-
sistent with stability.

Theorem 1 says that multiple cycles can coexist in a stable matching only
if they are isolated; that is, there is no path composed of edges that connect
the cycles. Intuitively, this is because when cycles are isolated, the preferences
among the types in one cycle do not affect the preferences in another cycle.
However, when cycles are connected, then preferences among the types in
these cycles are interdependent and, according to Theorem 1, cannot be mu-
tually coherent. The issue is that preferences along a path that connects two
cycles must also be a flow, but the flow must point away from each cycle. It is
not possible for a flow to point away from both of the connected cycles.
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Now, to illustrate the ideas behind Theorem 2, we present a slightly modified
example. Consider the aggregate matching on the left:

11 0 10

0 22 41

13 91 0

12 0 9

0 21 42

12 92 0

The matching exhibits a unique cycle, so it is (NTU–) rationalizable. As-
sume, contradicting Theorem 2, that it is rationalizable as an M-optimal stable
matching. Label the agents according to the row or column number. By the
argument we made above, the rationalizing preferences must define a flow; say
that w1Pm1w3, m3Pw1m1, and so on. Then we can create a stable matching that
is better for men and worse for women: Shift one type-m1 man from a type-w3

woman to match a type-w1 woman, which we take from a type-m3 man. Note
that this man is better off and the woman is worse off. Such a shift would leave
a type-w3 woman and a type-m3 man unmatched, but because there is a cycle,
we can complete a sequence of shifts that defines a new matching, one in which
some men are better off and some women are worse off, while the rest of the
agents are indifferent. This is the matching in the matrix on the right.

A similar argument underlies the TU-rationalizability result; it turns out that
when a cycle is present, it is always possible to increase the total surplus of
agents by “shifting” agents within the cycle, as we did above.

3.3. Discussion

Theorems 1 and 2 provide a complete picture of the empirical content of
models of stable matching. We conclude by discussing some implications and
qualifications of our results.

Throughout, we restrict attention to the rationalizability question when only
matching data are available to the researcher; particularly, no data on transfers
are available. This appears reasonable, especially as a prominent application of
the TU matching model in empirical work has been to the marriage market,
in which no explicit transfers are observed. In applications to labor markets,
however, transfers may be observable.

We reiterate here that our results are based on the assumption that agents
of the same type are identical: they have identical preferences and they are
perceived as identical by all other agents. This assumption is standard in most
exercises on revealed preferences, but it is problematic.9

9Most empirical studies of revealed preference in consumption, from Famulari (1995) to
Blundell, Browning, and Crawford (2003), make the same assumption.
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It is possible that an observed matching may fail to be rationalizable be-
cause we have imposed a too rigid structure on individual preferences. In ac-
tual empirical implementations of our test, one would need to introduce some
additional flexibility (possibly in the form of measurement errors, as in Varian
(1985) or Echenique, Lee, and Shum (2011) in the context of consumption be-
havior). Finally, allowing for too much heterogeneity in individual preferences
renders the theory nontestable, so it is also possible to interpret the strong
conditions we obtain in our paper as a negative result.

Our results imply that the matching model with transfers is nested in the
model without transfers and that a stable matching with transfers is observa-
tionally equivalent to extremal, and unique, stable matchings without transfers.

Such a relation between these models is striking, especially in light of the
fact that the TU and extremal stable matching models are the two most widely
used models in applied work on matching markets. Particularly, most econo-
metric studies on matchings assume that there are transfers, motivated by the
view in Becker (1973) that transfers in matching may be implicit and nonpe-
cuniary. On the other hand, most applications of matching in market design
seek to implement an extremal stable matching, using the algorithm of Gale
and Shapley (1962). When preferences are unknown, there are no reasons to
a priori expect one theory to be more relevant than the other: the theories
should be compared empirically. Our results imply that when only observing an
aggregate matching, the matching theory with transfers is nested in the matching
theory without transfers, and the predictions of the Gale–Shapley algorithm are
equivalent to Becker’s model of marriage with transfers.

APPENDIX A: PROOF OF THEOREM 1

A.1. Proof of Necessity

Let (V �L) be the graph defined from a matching X .
We start with two simple facts about minimal cycles and paths:
(a) If c = 〈v0� � � � � vN〉 is a minimal cycle, then no vertex other than v0 = vN

appears twice in c.
(b) Let {(m�w)n :n = 0� � � � �N} be a minimal path with N ≥ 2. Then for any

n ∈ {0� � � � �N − 2},
(mn =mn+1 ⇒wn+1 =wn+2) and (wn =wn+1 ⇒mn+1 = mn+2);

that is, any two subsequent edges in a minimal path must be at right angles:

1 1 1

1

1 1 1

1



REVEALED PREFERENCE THEORY 163

The path on the left is not minimal; the path on the right is.
An orientation of (V �L) is a mapping d :L → {0�1}. We often write

d((m�w)� (m�w′)) as dm�w�w′ and d((m�w)� (m′�w)) as dw�m�m′ . A preference
profile P defines an orientation d by setting dm�w�w′ = 1 if and only if wPmw

′,
and dw�m�m′ = 1 if and only if mPwm

′.
Let d be an orientation defined from a preference profile. Then X is stable

if and only if, for all (m1�w1) and (m2�w2), if x1�1 > 0 and x2�2 > 0, then

dm1�w2�w1dw2�m1�m2 = 0 and dm2�w1�w2dw1�m2�m1 = 0�(2)

We say that the pair ((m1�w1)� (m2�w2)) is an antiedge if x1�1 > 0 and x2�2 > 0
for m1 �=m2 and w1 �=w2.

A path {(m�w)n :n = 0� � � � �N} is a flow for d if either d((m�w)n� (m�
w)n+1) = 1 for all n ∈ {0� � � � �N − 1} or d((m�w)n� (m�w)n+1) = 0 for all
n ∈ {0� � � � �N − 1}. If the second statement is true, we call the path a forward
flow.

Fix an orientation d derived from the preferences that rationalize X .

LEMMA 1: Let p = 〈(m�w)n :n= 0� � � � �N〉 be a minimal path. If d((m�w)0�
(m�w)1)= 0 or d((m�w)N−1� (m�w)N)= 1, then p is a flow for d.

PROOF: Because subsequent edges in a minimal cycle form right angles, for
any n ∈ {1� � � � �N − 1}, the pair of vertices (m�w)n−1 and (m�w)n+1 form an
antiedge: we have x(m�w)n−1 > 0, x(m�w)n+1 > 0, mn−1 �= mn+1, and wn−1 �= wn+1.
Further, (m�w)n has one element in common with (m�w)n−1 and the other in
common with (m�w)n+1. Therefore, if d((m�w)n−1� (m�w)n) = 0 or, equiva-
lently, d((m�w)n� (m�w)n−1) = 1, then we have d((m�w)n� (m�w)n+1) = 0 by
equation (2).

The argument in the previous paragraph shows that the existence of some
n′ with d((m�w)n′−1� (m�w)n′) = 0 implies d((m�w)n−1� (m�w)n) = 0 for all
n ≥ n′. So if d((m�w)0� (m�w)1)= 0, then d((m�w)n� (m�w)n+1)= 0 for all n ∈
{1� � � � �N − 1}, and if d((m�w)N−1� (m�w)N) = 1, then d((m�w)n� (m�w)n+1)
= 1 for all n ∈ {0� � � � �N − 1}. In either way, p is a flow. Q.E.D.

We obtain the following lemma from Lemma 1.

LEMMA 2: If c = 〈(m�w)n〉 is a minimal cycle, then c is a flow for d.

Let p = 〈(m�w)n〉 be a path and let (m�w) /∈ p. We say that a path p̄ =
〈(m̄� w̄)n :n = 0� � � � � N̄〉 connects p and (m�w) if (m̄� w̄)0 ∈ p and (m̄� w̄)N̄ =
(m�w).

LEMMA 3: Let c = 〈(m�w)n :n = 0� � � � �N〉 be a minimal cycle, and let p =
〈(m̄� w̄)n :n = 0� � � � � N̄〉 be a minimal path connecting c and (m̄� w̄) /∈ c. Then
〈(m̄� w̄)n : n = 1� � � � � N̄〉 is a forward flow.
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PROOF: By Lemma 2, c is a flow for d. Suppose that c is a forward flow. If c
is not a forward flow, we can re-index (m�w)k by (m�w)N−k, thereby making c
be a forward flow. For any positive integer r, we define (m�w)r to be (m�w)k,
where k is the remainder when we divide r by N (e.g., (m�w)2N+1 = (m�w)1).
In doing so, we can index the cycle by any positive integer.

To prove Lemma 3, we need to deal with two cases. Let (m�w)n∗ = (m̄� w̄)0.
By definition of a cycle, (m̄� w̄)0 shares either m or w with (m�w)n∗−1. Suppose,
without loss of generality, that they share m, so m̄0 = mn∗−1. The two cases in
question are represented below, where the center vertex is (m̄� w̄)0. Case 1
on the left has (m̄� w̄)1 also sharing m with (m̄� w̄)0, while Case 2 has (m̄� w̄)0

sharing w with (m̄� w̄)1.

1

1 1 1

1

1

1 1 1

1

Case 1. Suppose that m̄1 = m̄0 =mn∗−1. Consider the minimal path

p′ = 〈
(m�w)n∗−1� (m̄� w̄)1� � � � � (m̄� w̄)N̄

〉
�

Since mn∗−2 �= m̄1, the path

p̂= 〈
(m�w)n∗−2� (m�w)n∗−1� (m�w)1

〉
is a minimal path from (m�w)n∗−2 to (m�w)1. We have that d((m�w)n∗−2� (m�
w)n∗−1)= 0, as c is a forward flow. It follows by Lemma 1 that d((m�w)n∗−1� (m̄�
w̄)1) = 0 and thus p̂ is also a forward flow. Then, by Lemma 1 again, p′ is a
forward flow; in particular, d((m̄� w̄)n� (m̄� w̄)n+1)= 0 for n ∈ {1� � � � � N̄ − 1}.

Case 2. Suppose that m̄1 �= m̄0 =mn∗−1. Then the path
〈
(m�w)n∗−1� (m̄� w̄)0� (m̄� w̄)1

〉
is a minimal path connecting (m�w)n∗−1 and (m̄� w̄)1. We have that d((m�
w)n∗−2� (m�w)n∗−1) = 0, as c is a forward flow. By an application of Lemma 1,
analogous to the one in Case 1, we obtain that p is a forward flow.

Regardless of whether we are in Case 1 or Case 2, the path 〈(m̄� w̄)n :n =
1� � � � � N̄〉 is a forward flow. Q.E.D.

Lemma 4 finishes the proof of the necessity direction.
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LEMMA 4: There are no two connected distinct minimal cycles.

PROOF: Suppose, for contradiction, that there are two minimal cycles c1

and c2, and a path p = 〈(m�w)n :n = 0� � � � �N〉 connecting (m�w)0 ∈ c1 with
(m�w)N ∈ c2. We can suppose, without loss of generality, that p is minimal.
We can also suppose that N ≥ 3, because if N < 3, we can add (m′�w′) ∈ c1

with ((m′�w′)� (m�w)0) ∈ L, and (m′′�w′′) ∈ c2 with ((m′′�w′′)� (m�w)N) ∈ L
to p; the corresponding path will also be a minimal path connecting c1 and c2.

By applying Lemma 3 to c1 and p, we obtain that 〈(m�w)n :n = 1� � � � �N〉
is a forward flow. By applying Lemma 3 to c2 and p, we also find that
〈(m�w)N−k :k = 1� � � � �N〉 is a forward flow. The first statement implies that
d((m�w)1� (m�w)2) = 0, and the second implies that d((m�w)1� (m�w)2) = 1,
which contradict each other. Q.E.D.

A.2. Proof of Sufficiency: An Illustration

The proof of the sufficiency direction of Theorem 1 is constructive; it works
by using an algorithm to construct a rationalizing preference profile. Since it is
rather tedious, we present an example that illustrates how the algorithm works.
For a detailed proof, see the Supplemental Material.

EXAMPLE 1—Constructing Rationalizing Preferences: Consider the match-
ing.

X =
⎛
⎜⎝

1 1 1 0
1 0 0 1
0 0 0 1
1 0 1 0

⎞
⎟⎠ �

The algorithm first identifies the unique minimal cycle (if it exists), and
then finds minimal paths connecting the cycle and vertices not in the cycle
by searching over the graph (V �L). In our example, there is a minimal cycle
{(m1�w1)� (m4�w1)� (m4�w3)� (m1�w3)}. From the cycle, we denote the set of
types of men and the set of types of women in the cycle by M̄1 and W̄1, respec-
tively:

M̄1 = {m1�m4} and W̄1 = {w1�w3}�
Subsequently, we define M̄k as the set of types of men that are not in⋃k−1
k′=1 M̄k′ and that match to types of women in W̄k−1. We similarly define W̄k;

that is,

M̄2 = {m2}� W̄2 = {w2}�
M̄3 = ∅� W̄3 = {w4}�
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and

M̄4 = {m3}� W̄4 = ∅�

We orient (V �L) such that the minimal cycle is a flow, and each minimal path
connecting the cycle and a vertex not in the cycle is a forward flow. Accordingly,
we obtain the following graph.

w1 w3 w2 w4

m1

m4

m2

m3

1

(2)

(2)

(1)

1
(2)(1)

1 0

1
(2)
(1)

1

(1)

0 0

1

(3)

0 0 1
(4)

0 0 0 1

All orientations labeled (1) show that the minimal cycle is a flow. The ori-
entations denoted (2)� (3)� and (4) are determined as we sequentially specify
minimal paths connecting the cycle and the vertices not in the cycle, which are
all forward flows.

Given the constructed orientation d, we define two collections of partial
orders: (P̃m :m ∈ M) and (P̃w :w ∈ W ): wP̃mw

′ when dm�w�w′ = 1, and mP̃wm
′

when dw�m�m′ = 1. Then we extend P̃m by including wP̃mw
′ if xm�w > 0 and

xm�w′ = 0. This extended preference is a well defined strict partial order. Thus,
we can extend the preference of man type m further to be a complete strict or-
der on W . We similarly extend preferences of all other types of men and types
of women. These preferences rationalize the matching X .

APPENDIX B: PROOF OF THEOREM 2

We proceed by proving first that rationalizability as either M- or W -optimal
stable matching (i.e., extremal rationalizability) implies the absence of cycles.
Second, we prove that the absence of cycles implies rationalizability as a unique
stable matching. Since a unique stable matching is trivially both M- and W -
optimal, the condition also implies rationalizability as extremal stable match-
ings.

We omit the proof that TU-rationalizability is equivalent to the absence of
cycles. The proof can be found in Echenique, Lee, and Yenmez (2010).
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B.1. Proof That Extremal Rationalizability Implies the Absence of Cycles

Let X be a matching that is extremal rationalizable. There exists a pref-
erence profile P such that X is M-optimal or W -optimal stable matching in
〈M�W �P�K〉.

Suppose, for contradiction, that the graph (V �L) associated to X has a min-
imal cycle c = 〈v0� � � � � vN〉. As before, we denote mn for the type of the men in
vn and denote wn for the type of the women in vn, respectively.

As we do in the beginning of Section A.1, we construct an orientation d
from the preference profile P that rationalizes X as an extremal matching.
According to Lemmas 1 and 2, we can index c such that the path 〈vn〉N−1

n=0 is a
flow for d such that dn�n�n+1 = 0 for all n = 0�1� � � � �N − 1; that is, if an edge
(vn� vn+1) is vertical (i.e., wn = wn+1), we have dwn�mn�mn+1 = 0, and when the
edge is horizontal (i.e., mn = mn+1), we have dmn�wn�wn+1 = 0.

We introduce two partial orders on matchings. For two matchings X and Y ,

X ≤M Y if, for all m�Xm ≤m Ym�

X ≤W Y if, for all w�Xw ≤w Yw�

In the following proof, we show that we can make the types of men (women)
weakly better (worse) off by “rematching” agents whose matches are involved
in the cycle c while preserving stability. We can also make types of women
(men) weakly better (worse) off with a similar rematching. Therefore, X is
neither M-optimal nor W -optimal stable matching.

We capture “rematching” using a matrix of differences in matches: Let E be
the set of all |M| × |W | matrices E such that for all i and j.

(i) ei�j = 0 if and only if (i� j) is not in the cycle c,
(ii)

∑|W |
h=1 ei�h = 0 and

∑|M|
l=1 el�j = 0,

(iii) |ei�j| ≤ xi�j .

CLAIM 1: For all E ∈ E , X + E and X − E are stable in 〈M�W �P�K〉, and
either

X −E ≤M X ≤M X +E and X −E ≥W X ≥W X +E

or

X +E ≤M X ≤M X −E and X +E ≥W X ≥W X −E�

PROOF: For any E ∈ E , X + E is a well defined matching: by property (ii),
the row and column sum of X +E respect the feasibility constraints; by prop-
erty (iii), the entries of X + E are nonnegative; by property (i), the matrix
X +E is also a stable matching, as

xi�j + ei�j > 0 ⇒ xi�j > 0;
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that is, if there were a blocking pair of type mi and type wj under X + E, it
would also be a blocking pair under X . Since E ∈ E ⇒ −E ∈ E , X − E is also
well defined and stable.

As a consequence of properties (i) and (ii), en (i.e., emn�wn) alternates in sign
as n increases: if en > 0, then en+1 (i.e., emn+1�wn+1 ) is less than 0. This implies
that one of the following two cases has to hold.

(a) For all n, if mn = mn+1 = m, then em�wn < 0 and em�wn+1 > 0, and if wn =
wn+1 =w, then emn�w > 0 and emn+1�w < 0.

(b) For all n, if mn = mn+1 = m, then em�wn > 0 and em�wn+1 < 0, and if wn =
wn+1 =w, then emn�w < 0 and emn+1�w > 0.

We proceed by assuming that we are in case (a) and we prove that X −E ≤M

X ≤M X+E. It will become clear that if we were in case (b), we would establish
that X +E ≤M X ≤M X −E.

Fix m ∈ M . By definition of minimal cycle, there is at most one n such that
vn� vn+1 ∈ c and mn =mn+1 =m. If no such n exists, Em = 0 by property (i) of E
and, thus, trivially (X −E)m ≤m Xm ≤m (X +E)m. On the other hand, if there
is n such that vn� vn+1 ∈ c and mn = mn+1 = m, then (vn� vn+1) is horizontal and
(vn+1� vn+2) is vertical. From the orientation d, we have dm�wn�wn+1 = 0, implying
that wn+1Pmwn. In Em, only en and en+1 are nonzero, and en+1 = −en > 0 as we
consider the case (a). By definition of ≤m, wn+1Pmwn implies that (X −E)m ≤m

Xm ≤m (X +E)m.
Since the type m was arbitrary, we obtain X −E ≤M X ≤M X +E. By The-

orem 5 in Baïou and Balinski (2002) (and also by Theorem 2 in Echenique,
Lee, and Yenmez (2010)), this also implies that X −E ≥W X ≥W X +E. Last,
X �= X + E and X �= X − E by property (i) of E , implying that X is neither
M-optimal nor W -optimal stable matching. Q.E.D.

B.2. Proof That the Absence of Cycles Implies Unique Rationalizability

We prove that if the graph (V �L) associated to X has no cycles, then there is
a preference profile P such that 〈M�W �P�K〉 has X as its unique stable match-
ing. The matching X is, therefore, both M- and W -optimal stable matchings.

We consider a particular set of preferences. Let U = (um�w) ∈ R|M|×|W |
+ in

which um�w �= um′�w′ for all (m�w) �= (m′�w′). For each m and w, a man of type
m and a woman of type w both receive an equal utility um�w by being matched to
each other. We consider the preference profile induced by U , which we denote
by PU and call a perfectly correlated preference profile.

LEMMA 5: If a preference profile is perfectly correlated, there exists a unique
stable matching.

PROOF: Suppose, for contradiction, that X and Y are two distinct stable
matchings. Let U be the set of numbers um�w for m and w such that xm�w �= ym�w.
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Let (m∗�w∗) be such that um∗�w∗ ∈ U and um∗�w∗ ≥ u for all u ∈ U . Suppose,
without loss of generality, that xm∗�w∗ < ym∗�w∗ . Note that

∑
m:mPw∗m∗

xm�w∗ =
∑

m:mPw∗m∗
ym�w∗�

∑
w:wPm∗w∗

xm∗�w =
∑

w:wPm∗w∗
ym∗�w�

because mPw∗m∗ ⇒ um�w∗ > um∗�w∗ ⇒ xm�w∗ = ym�w∗ , and similarly for the sec-
ond equality.

Since xm∗�w∗ < ym∗�w∗ , there exist m and w such that xm�w∗ > 0, xm∗�w > 0,
w∗Pm∗w, and m∗Pw∗m. Thus, (m∗�w∗) is a blocking pair of X , contradicting
the stability of X . Q.E.D.

Suppose that the graph (V �L) associated to X has no minimal cycles, so
it has no cycles. Using the absence of cycles, we assign cardinal utilities U =
(um�w), such that X is a stable matching for 〈M�W �PU�K〉. Lemma 5 then
guarantees that X is the unique stable matching. We first consider the case
when all nodes in V are connected and later generalize to the case in which
there are multiple connected components of (V �L).

Choose a vertex v0 in V . Since (V �L) contains no cycles, for each v ∈ V
there is a unique minimal path connecting v0 to v in (V �L). Let η(v) be the
length of the minimal path connecting v0 to v. For v ∈ V (i.e., xv > 0), assign
uv = (1+η(v))+εv, and for all other (m�w) with xm�w = 0, assign um�w = εm�w.
All εv and εm�w are positive, and distinct real numbers; we assume all εm�w are
small enough that if η(v) > η(v′), then uv > uv′ .10 We suppose that both a type-
m man and a type-w woman receive the same utility um�w by being matched to
each other.

To show that X is a (unique) stable matching in 〈M�W �PU�K〉, suppose,
for contradiction, that a pair (mi�wj) blocks X: there exist mi′ and wj′ such
that xi�j′ > 0, xi′�j > 0, ui�j > ui�j′ , and ui�j > ui′�j . Since xi�j′ > 0 and xi′�j >
0, they are nodes in V , and thus ui�j′ > 1 and ui′�j > 1. Then, by defini-
tion of U , we have ui�j > max{ui′�j� ui�j′ } > 1, which implies xi�j > 0. In all,
〈(mi′�wj)� (mi�wj)� (mi�wj′)〉 is a path.

There are unique paths from v0 to each (mi′�wj), (mi�wj), and (mi�wj′).
Moreover, v0 �= (mi�wj) since ui�j > ui′�j . Consider the minimal path p =
〈v0� � � � � vN〉 connecting v0 to (mi�wj); that is, vN = (mi�wj). If this path does
not include (mi′�wj), then the minimal path connecting v0 to (mi′�wj) is
〈v0� � � � � vN� (mi′�wj)〉 since there exists no cycle. Therefore, ui′�j > ui�j which
is a contradiction. We get a similar contradiction when p does not include
(mi�wj′). But since p is minimal, p cannot contain both (mi�wj′) and (mi′�wj).
Consequently, (mi�wj) cannot be a blocking pair.

When (V �L) has multiple components {(V1�L1)� � � � � (VN�LN)}, we can par-
tition M and W as (M1� � � � �MN) and (W1� � � � �WN) such that for all v ∈ Vn, we

10We use εv and εm�w only to ensure strict preferences.
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have mv ∈ Mn and wv ∈ Wn. For each (Vn�Ln) with associated sets Mn and Wn,
we assign utilities (um�w)(m�n)∈Mn×Wn similar to the single component case. For
other (m�w) ∈ Mn × Wl with n �= l, we assign um�w = εm�w, which are all small
and positive real numbers, and εm�w �= εm′�w′ when (m�w) �= (m′�w′).

Suppose a type-m man and a type-w woman are not matched under X . If
there is n such that (m�w) ∈ Mn ×Wn, then (m�w) is not a blocking pair by the
proof above for the case of a single connected component. If (m�w) ∈Mn ×Wl

with n �= l, then, by the construction of um�w, w′Pmw for every w′ with xm�w′ > 0.
Thus, (m�w) is again not a blocking pair, and X is a stable matching and is the
unique stable matching by Lemma 5.
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