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SI TEXT 

 
 The products we observe are produced when the gaseous terpenes collide with the intact 

electroneutral aqueous jets as they emerge from the nozzle, i.e., before jets are broken up by 

the nebulizer gas. Since mass spectrometers detect net charge, the first step is the separation 

of pre-existing anions from cations in the electroneutral inflowing solutions. This is 

accomplished via the pneumatic breakup of the aqueous jet by a fast nebulizer gas that shears 

the outermost jet layers into droplets carrying net charges of either sign. These net charges are 

proportional to the concentrations of the protonated terpenes and their oligomers produced 

during gas-liquid collisions. Such droplets have a distribution of sizes and net charges
1,2 

and, 

together, possess more surface and electrostatic energies than the original jet at the expense of 

the kinetic energy lost by the nebulizer gas. Since the nebulizer gas can fragment the jet but not 
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the smaller droplets for hydrodynamic reasons,
3,4

 the creation of net charge is a one-time event. 

Gaseous terpenes may collide with the charged droplets within the spraying chamber, and 

charged droplets may hit the walls of the chamber, but such events will not be registered by the 

mass spectra because they do not affect the charges of the droplets in the first case, and 

prevent droplets reaching the mass spectrometer in the second. A critical feature of our 

instrument is that the jet issuing from the nozzle source is orthogonal to the polarized inlet to 

the mass spectrometer (see Figure S1). Therefore, the charged droplets deflected toward the 

mass spectrometer preferentially originate from the peripheral layers of the jet, while its core 

maintains its forward trajectory. The ejection of dissolved ions to the gas-phase takes place 

from the smallest droplets at the end of a sequence of events comprising extensive solvent 

evaporation, and net charge crowding in shrinking droplets that become unstable and undergo 

a cascade of Coulomb explosions.
5,6 

Gas-phase ions are sorted out and detected by the online 

mass spectrometer. Data analysis based on mass balances and the kinetic theory of gases
7
 

suggest that the thickness of the interfacial layers sampled in these experiments is less than 

one nm.
8,9

 

The nebulization of aqueous solutions of various pH into the spraying chamber of an 

electrospray ionization mass spectrometer (ESMS, Agilent 6130 Quadrupole LC/MS Electrospray 

System) at 1 atm at 298 K was utilized to monitor the cation composition at the air-water 

interface in situ. All the experiments were performed at Kyoto University. The present 

experimental setup is essentially the same as the one reported in elsewhere.
8-10

 Solutions are 

pumped (100 µL min
-1

) into the spraying chamber through a grounded stainless steel needle 

(100 µm bore) coaxial with a sheath issuing nebulizer N2(g) at high flow rates. The fast nebulizer 

gas (at nebulizer gas pressure 2.4 atm or 35 psi) strips the interfacial layers of the much slower 

liquid microjet into microdroplets that carry excess anions or cations. Note that the production 
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of charged microdroplets from a neutral liquid is the normal outcome of the charge fluctuations 

expected in a statistical breakup process, i.e., droplet charging does not require the application 

of an external electric field (cf. “classic” electrospray mass spectrometry).
11,12

 This charge 

separation process is variously labeled pneumatic or sonic spray ionization.
2,13,14

 Such charged 

microdroplets subsequently evaporate solvent in the chamber while being drawn to the 

electrically polarized inlet of the mass spectrometer with increasing acceleration. Since these 

microdroplets are the progeny of nascent droplets stripped from the surface of the microjet,
8,9

 

the ES mass spectra acquired in these experiments therefore report the ion composition of the 

outermost layers of the initial stage of microjet just reacted with gaseous terpene.  

Conditions in the present experiments were: drying nitrogen gas flow rate: 13 L min
-1

; drying 

nitrogen gas temperature: 340 
o
C; inlet voltage: + 3.5 kV relative to ground; fragmentor voltage value: 

80. (-)-α-pinene (> 95 %, Nacalai Tesque), (-)-β-pinene (> 95 %, Nacalai Tesque, or > 99 %, 

Sigma-Aldrich), d-limonene (> 95 %, Nacalai Tesque), and D2O (> 99.9 %, Sigma-Aldrich) were used as 

received. All solutions of various pH were prepared in purified water (Resistivity ≥ 18.2 MΩ cm 

at 298 K) from a Millipore Milli-Q water purification system. All experiments were performed at 

298 + 2 K. 
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Fig. S1 Schematic diagram of present experimental setup. A microjet is created in the 

spraying chamber of an electrospray mass spectrometer by injecting acidified water through 

an electrically grounded nebulizer. The microjet is briefly exposed to terpene vapors before it 

is broken up (at ~ 10-50 microseconds) into charged microdroplets by the fast nebulizer gas. 

Upon subsequent solvent evaporation, ion excesses are ultimately ejected from the 

microdroplets via field desorption, and detected by mass spectrometry within a few 

millisecond. MFC stands for mass flow controller. 
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Fig. S2 Products signal intensities obtained from water microjets at pH 2.2 exposed to 13.7 

ppmv α-pinene(g) as a function of fragmentor voltage. 
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