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Supporting Information: Figure 1 and Figure S1 present 
11

B, 
1
H, and 

7
Li MAS NMR 

spectra for the ball-milled LC (black) and LC/CMK-3 (red). In all 
11

B NMR spectra of LC 

and LC/CMK-3, there appear minor and broad peaks at ~0 ppm and ~5-20 ppm, which are 

related to B-O bondings in B(OH)4 and BO3 groups, respectively.
1-2

 We observed the same 

peaks mainly in the starting material of Ca(BH4)2, indicating the presence of the oxide 

contaminants in the as-received chemicals to some extent. The oxygen contamination of 

Ca(BH4)2 is responsible for the formation of unexpected intermediate phases
3-4

 like 

Ca3(BH4)3(BO3) and LiCa3(BH4)(BO3)2. However, the amount is less than 5 % of the total 

LC or LC/CMK-3 materials, which would not change the main results in our study. The line 

broadening observed for all nuclei in LC/CMK-3 compared to LC can be explained with the 

distorted local magnetic field homogeneity because of anisotropic magnetic susceptibility of 

CMK-3 and/or higher disorder in materials due to dispersion of borohydrides over large 

surface area.
5
 The shifted peaks, upfield in particular and clear at least for 

1
H and 

7
Li NMR, 

could be originated from interaction of borohydrides with carbon surface
6
 that is mainly 

composed of aromatic rings. The local circulation of electrons around aromatic rings can 

shield the external magnetic field experienced at nucleus and leads shift to upfield.
7
 Those 

NMR results certainly indicate that only part of borohydrides is in close contact with carbon 

surface after ball-milling. 

Experimental Section: 

The eutectic 0.68LiBH4+0.32Ca(BH4)2 composites (LC) were made by mixing as-purchased 

commercial LiBH4 (assay 95%, Acros) and Ca(BH4)2 (assay 98%, Sigma-Aldrich). Various 

scaffolds were used to create different kinds of interface: mesoporous carbon (CMK-3), 

mesoporous silica (MCM-41, Sigma-Aldrich), microporous pure silica zeolite, and non-

porous graphite and quartz glass powder. CMK-3 (pore size of 3.5 nm, BET surface area of 



1229 m
2
/g, and mesopore volume of 1.04 cm

3
/g) was synthesized using a mesoporous silica 

SBA-15 as a template and phenol as a carbon source.
3
 To remove residual oxygen or water, 

the CMK-3 was dried at 420 °C under vacuum for 6 h before using. Commercial MCM-41 

(Sigma-Aldrich, pore size of 2.1-2.7 nm, pore volume of 0.98 cm
3
/g, used after dried at 

200 °C under vacuum for 5 h to remove water) and graphite powder (99.99%, Sigma-Aldrich) 

were used. Microporous pure silica zeolite beta was prepared and calcined in the Professor 

Davis group at California Institute of Technology using well established recipe.
8
 The calcined 

zeolite beta showed the micropore volume of 0.19 cm
3
/g and was used after the similar 

pretreatment to remove water. Hereafter, we will use a notation such as LC/CMK-3 for 

denoting the eutectic LC mixture with CMK-3. For the LC/CMK-3 sample, the amount of 

carbon was chosen such that its mesopore volume is equal to the calculated volume of the 

bulk LC composite. The amount of other scaffold materials used was adjusted similarly. The 

samples were prepared by ball-milling or hand-mixing (mortar and pestle), and in some cases 

subsequent melt-infiltration was done. A ball-milling process was conducted using a 

planetary mill (Fritsch P7) operated at 600 rpm for 1 h. About 1 g of the mixture was ball-

milled together with three 12.7 mm and seven 7.9 mm diameter Cr-steel balls. For melt-

infiltration, the mixtures were heated at 230 °C for 30 min under p(H2) = 3 bar and cooled 

down to room temperature. The temperature of 230
 
°C was chosen to be over the eutectic 

melting point of LC (~200 °C)
3
 to ensure full melt-infiltration. Sample handling was done in 

an argon-filled glove box whenever needed (LABstar, MBraun, p(O2) < 1 ppm). 

Multinuclear magic angle spinning nuclear magnetic resonance (MAS NMR) measurements 

were performed using a Bruker DSX-500 spectrometer and a Bruker 4 mm wide variable 

temperature (WVT) MAS probe which is free of boron background. The operating 

frequencies for 
1
H, 

11
B, 

7
Li are 500.2, 160.5, and 194.4 MHz, respectively. Samples were 



loaded into 4 mm ZrO2 rotors and sealed with Vespel drive caps inside an argon-filled glove 

box. Quartz glass powder was often ground with a sample as a diluting agent using a mortar 

and a pestle when the electrically conducting nature of samples caused severe probe detuning 

problems. Compressed dry N2 gas was used for sample spinning, and the speeds were 

typically 15 kHz for ex situ and 8 kHz for in situ variable temperature (VT) experiments. 

NMR signals were acquired after single pulse, 4 µs-90 degree pulse for 
1
H and 0.5 µs-π/12 

for 
11

B or 
7
Li, and strong 

1
H decoupling pulse was used for 

11
B and 

7
Li detections. NMR 

spectra were referenced to external references of tetramethylsilane (TMS), BF3·O(CH2CH3)2, 

1M aqueous solution of LiCl, for 
1
H, 

11
B, and 

7
Li, respectively. In addition, the NMR 

experiments for LC/MCM-41were performed in two different ways because of repeated 

spinning crashes (cap opening due to high pressure building inside) during in situ NMR (Fig. 

3(a)) at temperature above 140 °C. NMR recording for higher temperatures was performed in 

ex situ (Fig. 3(b)). For this case, a hand mixed LC/MCM-41 was heated under 1 bar of Ar gas 

for 2 hours and cooled for NMR measurements. 

Thermogravimetric analysis (TG, Netzsch TG 209 F1) combined with mass spectrometry 

(MS, Netzsch QMS 403 C) was done for LC mixed with carbon materials. The TG-MS data 

were obtained while heating a sample to 500 °C at a scanning rate of 5 °C/min under flowing 

argon (99.9999% purity, 40 mL/min). 

 

 

 

 



 

Figure S1. Ex situ (a) 
1
H, and (b) 

7
Li MAS NMR spectra of the ball-milled 

0.68LiBH4+0.32Ca(BH4)2 without CMK-3 (black) and with CMK-3 (red). The new peaks are 

marked by the arrows.  

 

 



 

Figure S2. Ex situ 
11

B MAS NMR for the ball-milled samples of LiBH4/CMK-3 and 

Ca(BH4)2/CMK-3. The symbols “α”, “β”, and “o” denote α-Ca(BH4)2, β-Ca(BH4)2, and 

orthorhombic LiBH4, respectively. No new peak is observed in these two samples. The peaks 

located at 0-20 ppm originated from the oxygen-containing groups of B(OH)4 and BO3 are 

observed only in Ca(BH4)2. Spinning sidebands are marked by the *. 

 

 

 



 

Figure S3. XRD patterns of the ball-milled 0.68LiBH4+0.32Ca(BH4)2 without carbon (a) and 

with carbon (b). The infiltrated samples were treated at 230 °C for 30 min under 3 bar of 

hydrogen pressure. 

 

 

 

 

 

 



 

Figure S4. In situ 
1
H MAS NMR spectra of the eutectic mixture of 0.68LiBH4+0.32Ca(BH4)2 

in the absence of CMK-3. 

 

 

 

 

 

 

 

 

 



 

Figure S5. Ex situ 
13

C Bloch Decay MAS and CPMAS NMR spectra of CMK-3 only and of 

the eutectic mixture 0.68LiBH4+0.32Ca(BH4)2 with CMK-3: infiltrated at 230 °C (a) and 

dehydrogenated at 400 °C (b). Peak near 125 ppm indicates that nearly all carbons are in 

graphite like environment (C=C double bonds). No aliphatic peak appears after infiltration or 

dehydrogenation reactions, showing the non-reactive nature of the carbon surface with 

borohydrides unlike fullerenes. Spinning sidebands are marked by the *.  
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