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N2 SELF-SHIELDING IN THE SOLAR NEBULA: AN UPDATE

J. R. Lyons. Institute of Geophysics and Planetary Physics, UCLA, Los

Angeles, CA 90095-1567. E-mail: jimlyons@ucla.edu.

Introduction: The N2 molecule is isoelectronic to CO, and exhibits a

similar band system to CO in the VUV. The resolved rovibronic structure

and very strong bands make N2 a plausible candidate for self-shielding,

even though it is an order of magnitude less abundant than CO in a gas

of solar composition. The discovery of very large 15N enrichment in lithic

clasts in carbonaceous chondrites (e.g., [1–5]), in micrometeorites [6], and

in comets [7] could be due to either low temperature ion-molecule

chemistry that leads to NH3 formation [8] or to N2 self-shielding.

Nitrogen isotopes in the solar system may also be enriched in 15N as a

result of N2 self-shielding [9].

Previous Modeling: A preliminary assessment of N2 self-shielding in

the outer nebula [10, 11] suggests that although self-shielding does occur,

it produces substantial 15N enrichment in only a very small fraction of

nebular material at 30 AU (d15N is about +800& in <1 ppm of total N,

[11]). Also, the total enrichment in self-shielding product nitrogen (as

HCN) is about +100& over �106 yr at 30 AU. This enrichment may not

be large enough to distinguish Jupiter, with d15N = )380 ± 80& [12],

from the Sun, which has solar wind with d15N is about -450 ± 100&

[13].

Modeling in Progress: The preliminary model ([10, 11]) used a

reduced set of nitrogen reactions, and used an N2 shielding function

inferred from a Titan atmosphere photochemical model [14], with mean

N2 cross section representative of the 91–100 nm range applicable to the

solar nebula. Present modeling includes (1) a more complete set of

nitrogen reactions, and (2) a full integration over 911–100 nm of N2

dissociation in the presence of H2 absorption. The 28N2 and 29N2 cross

sections are from a coupled-channel model description of measured N2

cross sections, and were provided by A. Haeys and B. Lewis at ANU.

These calculations are in progress.

Implications: As I pointed at the 2010 LPSC, the preliminary model

results on nebular N2 self-shielding have implications for CO self-

shielding in the outer solar system. One criticism of outer solar nebula

CO self-shielding has been that Jupiter would become more enriched in
15N due to N2 self-shielding than is observed [12]. However, with present

uncertainties, a �100& increase in outer nebular d15N is not enough to

rule out the occurrence of N2 (and CO) self-shielding. Reduced

uncertainties on solar wind d15N, as well as a quantitative assessment of

fractionation during solar wind acceleration, could influence this

conclusion.
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Introduction: A unique dmitryivanovite (CaAl2O4) -dominant Ca-,

Al-rich refractory inclusion (CAI), named ‘‘Cracked Egg’’ by [1], was

observed in the NWA 1934 CV3 carbonaceous chondrite. During our

nano-mineralogy investigation of this CAI, Cl-bearing mayenite,

Ca12Al14O32Cl2, was identified. Electron-microprobe, SEM, electron back-

scatter diffraction (EBSD), and micro-Raman analyses have been used to

characterize its composition and structure. Pyrometamorphic and natural

Cl-bearing mayenites have been reported [2, 3] and synthetic

Ca12Al14O32Cl2 is well known [4]. Here, we report the first occurrence of

Ca12Al14O32Cl2 in a meteorite as a new alteration mineral in a CAI.

Occurrence, Chemistry, and Crystallography: Cl-bearing mayenite

occurs as small (80–300 nm) crystals forming fine-grained aggregates (1–

20 lm in size) along with Zn-bearing hercynite, gehlenite and perovskite

in veins and inclusions within the dmitryivanovite-dominant CAI. The

mean chemical composition is (wt%) Al2O3 48.48, CaO 45.73, Cl 5.12,

FeO 0.80, Na2O 0.12, TiO2, 0.03, O -1.16, sum 99.12. An empirical

formula calculated on the basis of 34 O + Cl atoms is

(Ca11.93Na0.06)
P

11.99 (Al13.91Fe0.16Ti0.01)
P

14.08O31.94Cl2.11.

Synthetic Ca12Al14O32Cl2 has a cubic structure with a Ca-Al-O

framework forming ‘‘cages’’ in which the Cl is located [4]. The meteoritic

Cl-bearing mayenite showed no electron back-scatter diffraction pattern,

due to small crystal sizes and, probably, poorly ordered structures but

Raman microanalysis revealed a spectrum very close to that of synthetic

Ca12Al14O32Cl2, confirming that the meteoritic phase has a similar

structure.

Origin and Significance: Cl-bearing mayenite is not only a new

meteoritic Ca-, Al-phase, but also a new Cl-rich phase, joining the Cl-rich

meteoritic minerals sodalite (Na4Al3Si3O12Cl) and wadalite

(Ca6Al5Si2O16Cl3). Cl-bearing mayenite is a secondary alteration phase in

‘‘Cracked Egg’’. A simple scenario for its formation would be the parent

body breakdown of dmitryivanovite in a Cl-, Fe-rich vapor or fluid to

produce Cl-bearing mayenite and hercynite, although we have not yet

ruled out the possibility that Cl-bearing mayenite formed during

terrestrial alteration or that preterrestrial Cl-free mayenite was later

chlorinated. Multiple-alteration events seem to have occurred in this CAI.
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