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Summary. Hawley has shown through two-dimensional computer simulations 
that a slender torus in which a linear Papaloizou-Pringle (PP) instability with 
azimuthal wavenumber m, is excited evolves non-linearly to a configuration with 
m nearly disconnected 'planets'. We present an analytical fluid equilibrium that 
we believe represents his numerical planets. The fluid has an ellipsoidal figure and 
is held together by the Corio lis force associated with the retrograde fluid motion. 
There is a bifurcation between the torus and planet configurations at precisely the 
vorticity below which the PP instability switches on. Although the solution is 
three-dimensional, there is perfect hydrostatic equilibrium and the motion is 
entirely two-dimensional. We analyse the linear modes of the analytical planet 
and find that there are numerous instabilities, though they are not as violent as the 
PP instability in the torus. We also discuss the energy and vorticity of neutral 
modes, and we argue that when the torus breaks up into planets, neutral modes 
with negative energy and non-zero vorticity are excited in order to conserve total 
energy and specific vorticity. We speculate that the fluid in Hawley's simulations 
may be approaching two-dimensional turbulence. 

Papaloizou & Pringle (1984, 1985; henceforth PP) made the important discovery that isentropic 
thick accretion tori are dynamically unstable to linear non-axisymmetric modes. Parameterizing 
the angular velocity profile of a torus in the form 

(l..t) 

where r is the orbital radius, they showed that the principal mode of instability occurs for all 
q>~3. Thus, a thin Kepler disc, with q=3/2, is stable, whereas a thick constant-angular­
momentum torus, with q =2, is violently unstable. 

The nature of the principal branch of the linear PP instability has been clarified by the work of 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1987MNRAS.225..695G


1
9
8
7
M
N
R
A
S
.
2
2
5
.
.
6
9
5
G

696 J. Goodman, R. Narayan and P. Goldreich 

Blaes (1985), Blaes & Glatzel (1986), and by the present authors in Paper I of this series 
(Goldreich, Goodman & Narayan 1986). We showed in Paper I that, in the principal branch, the 
fluid maintains vertical hydrostatic equilibrium to a very good approximation, and so its motion is 
essentially two-dimensional, i.e. restricted to the orbital plane. Consequently, the modal analysis 
is greatly simplified and is described by an eigenvalue problem with an ordinary differential 
equation. Using this, we have computed the growth rate of the PP instability for different q and 
azimuthal wavenumber m, for a variety of fluid compressibilities. 

In view of the violent growth rate of the PP instability, the non-linear fate of a thick torus is an 
interesting question. Zurek & Benz (1986) numerically studied constant-angular-momentum tori 
using a smooth-particle hydrodynamics code with 1000 particles. They confirm the existence of 
the PP instability, and find that the initial q =2 torus settles down finally to a somewhat disturbed 
and lumpy configuration that is describable on the average as a q~ 1.75 torus. Thus the instability 
redistributes specific angular momentum on a dynamical time-scale. 

Recent numerical work by Hawley (1987) has provided new intriguing clues regarding the 
non-linear evolution of unstable thick tori. Using the results of Paper I as a guide, Hawley 
assumed vertical hydrostatic equilibrium and studied a two-dimensional compressible fluid in an 
equilibrium configuration that simulated a slender* three-dimensional q =2 torus. He introduced 
a small multiple of one of the unstable modes calculated in Paper I, and studied the numerical 
evolution of the system using an accurate finite-difference hydrodynamics code. Two interesting 
results emerge from his work. First, the growth rate calculated in Paper I on the basis of linear 
perturbation theory is confirmed to be accurate, and to be valid well into the non-linear regime, 
even for surface density perturbations ~~~~~1. Secondly, a torus in which a single mode with 
azimuthal wavenumber m is excited breaks up into m coherent blobs that are only tenuously 
connected to one another in the azimuthal direction. These orbits around the central mass with 
essentially the same angular velocity Q as the original torus. 

The blobs that Hawley (1987) finds, which he calls 'planets', seem to persist for a relatively long 
time, and they may signal a new underlying equilibrium configuration for the fluid. In Section 2 
we present an exact analytical solution for a three-dimensional equilibrium with constant vorticity 
that, in two dimensions, looks qualitatively similar to Hawley's blobs. Our solution is valid for a 
polytropic fluid of arbitrary polytropic index, and corresponds in the incompressible limit to a 
non-self-gravitating Roche-Riemann ellipsoid. We consider in Section 3 whether the PP 
instability could represent a non-linear transition from a torus to a configuration related to our 
analytical planet solution. The strongest evidence in favour of this hypothesis is that the 
maximum vorticity attainable in the planet configuration is (2-{f)Q, which is exactly the 
vorticity of the marginally stable torus with q = ~3. This implies that there is a bifurcation between 
the torus and planet configurations at this vorticity. In Section 4 we show that the planets 
themselves suffer from a number oflinear instabilities, both in two and three dimensions, but with 
a somewhat smaller growth rate than the PP instability in the torus. Section 5 is devoted to the 
neutral modes of the planet. We show that these could have vorticity, in contrast to the unstable 
modes, and also that they could have either sign of energy. We argue that differences in energy 
and specific vorticity between the initial torus and final planet configurations could be absorbed 
by finite-amplitude neutral modes. We end the paper with a discussion in Section 6 of the ultimate 
fate of a thick torus. The instabilities in the planets may saturate at a modest amplitude, leading to 
long-lived blobs, but this seems unlikely in view of more recent numerical work by Hawley 
(private communication). Alternatively, the planets may evolve further. An intriguing possibility 
is that the fluid may go two-dimensionally turbulent. In this case, the planets may coalesce into a 
single large blob, with very fine-scale vortical structure superposed on it. 

*We call a torus 'thick' if the vertical and radial widths are comparable, and 'slender' or 'narrow' ifthe radial width is 
small compared to the orbital radius. The tori of Paper I are both slender and thick. 
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The stability of accretion tori 697 

2 Planet equilibria 

As in Paper I, we consider a non-self-gravitating, non-viscous, polytropic fluid in orbit around a 
central mass, and we assume that the fluid occupies a range D.r in radius very much smaller than 
the mean orbital radius, r0. Then, in a frame corotating with the fluid, the Euler equation is 
approximately 

av A A A 

-+(v · V)v=Q2(3xi- zk)-2Qkx v-VQ. 
at 

(2.1) 

Here, x,y, and z are r-r0 , r08, and z in terms of the natural cylindrical coordinate system, and i,j, 
and k are corresponding unit vectors. We neglect the curvilinearity of the xyz system in this local 
approximation. 

The first term on the right-hand side of (2.1) is the tidal gravity, the second is the Coriolis 
acceleration, and the last term is the acceleration due to the pressure gradient, where 

Q=(n+ 1) !!_=(n+ 1)Kp1/n 
p 

(2.2) 

is the enthalpy for pressure p, density p, and polytropic index n (K is a constant). It is convenient 
to express the continuity equation in terms of Q rather than p: 

n ( aa~ +v·VQ )+QV·v=O. 

An exact equilibrium (i.e. time-independent) solution of equations (2.1) and (2.3) is 

v=(eaQy)l-(aQx/e)J, 

Q= y2y2Q2(b2-x2-e2y2-y-Zx2), 

if 

{3e 
a=---

~1-£2' 

2 3 2~3 
y=---2+--. 

1-£ [17 

Naturally, the solution applies only where Q ~0. 
This solution has some remarkable properties. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(i) The planet has an ellipsoidal figure.lts principal axes are alongx, y, andz, with semi-axes b, 
be-1, and by. Solutions exist only for 0~£~1/2. Ate=O, they-axis is infinite, and the ratio ofz- to 
x-axes is [ {3(2- 13) F/2; in the limit the planet coincides with the narrow torus for q = ~3 (Section 
3). At e=1/2, the solution is pressureless, the vertical axis vanishes, and the fluid follows free 
epicycles in the equatorial plane. 

(ii) It seems at first surprising that such solutions should exist at all without self-gravity, but the 
outward tidal and pressure forces are successfully balanced by the Coriolis force acting on the 
retrograde velocity field. In this sense, the planet is similar to the narrow tori of Paper I. 

(iii) Every fluid element circulates around the centre of the planet with the same retrograde 
angular velocity -aQ. The flow is similar to solid-body rotation but has shear since e:;e:l. The 
total vorticity (vorticity measured in an inertial frame) lies along z and has magnitude. 

(2.8) 
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(Note that the vorticity is positive for planets with £<0.3117 despite the retrograde velocity. 
Thus, if there were sufficient self-gravity to compress such planets significantly, they would in fact 
spin in a prograde sense.) 

(iv) It follows from (2.4) that V · v=O, whence the polytropic index divides out of the continuity 
equation (2.3). Consequently, v and Q are independent of the compressibility of the fluid. 

(v) The vertical velocity vanishes, and the horizontal velocities and accelerations are 
independent of z. Hence, each fluid element maintains perfect vertical hydrostatic equilibrium. It 
was shown in Paper I that a three-dimensional fluid of polytropic index n, in vertical hydrostatic 
equilibrium satisfies the equations of a two-dimensional polytrope of index 

N=n+l!z: 

(2.10) 

N ( 0~2 +vz· VzQz)+ QzVz ·vz=O, (2.11) 

where the subscript 2 marks a two-dimensional quantity. Equations (2.10)-(2.11) can be 
obtained by integrating (2.1) and (2.3) with respect to z. The enthalpy Q2 in (2.10)-(2.11) is the 
z=O section of the three-dimensional Q in equations (2.1)-(2.3), and l: is the surface density, i.e. 

Qz(x, y)=Q(x, y, 0) 

l:(x, y)= f~h !J(X, y, z) dz, 

where the height, h, is given by 

h(x, y )= y(bz-xz-Ezyz)l/2. 

However, instead of !J oc Qn, now in two dimensions we have 

l: oc Q'j. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(vi) For n =0 the planet reduces to a non-self-gravitating case of the Roche-Riemann ellipsoids 
(e.g. Chandrasekhar 1969), whose equilibria and stability have been studied by Aizenman 
(1968). Riemann discs, the two-dimensional analogue of the Roche-Riemann ellipsoids in the 
absence of the tidal potential, have been explored by Weinberg & Tremaine ( 1983) and Weinberg 
(1983). In the presence of self-gravity, however, the Roche-Riemann ellipsoids exist only for a 
constant-density fluid (n=O), and the Riemann discs only for N=1/2, whereas our solutions are 
valid for any polytrope. As we shall see later, the energy and stability of our solutions depend 
upon the compressibility. 

In view of the fact that we now have two equilibria for the fluid, namely the torus and the 
planet, it is interesting to inquire whether there are other time-dependent equilibria relevant to 
the problem. We have searched for equilibrium figures that consist of sinusoidally perturbed tori; 
but have failed to find any analytically. Results presented in Section 4 suggest that there exist 
neighbouring equilibria differing from the planet by zero-frequency modes of small amplitude. 

3 Torus versus planet 

As noted above, the planet equilibria of Section 2 exactly solve the two-dimensional fluid 
equations as well as the three-dimensional ones. The numerical simulations of Hawley (1987), in 
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The stability of accretion tori 699 

which planet-like blobs evolved from the unstable torus, were based on the height-averaged 
equations (2.10)-(2.11). In the present section, therefore, we compare the height-averaged torus 
with the height-averaged planet (the planet disc). 

When restricted to two dimensions, Kelvin's theorem on the conservation of circulation (cf. 
Landau & Lifshitz 1959) implies that every fluid element conserves its specific vorticity: 

_!!__ (~)=o, 
dt ~ 

(3.1) 

where d/dt=a/at+v2 ·V2• [The result (equation 3.1) can be obtained by taking the curl of 
equation (2.10) and replacing ~V2 ·v2 with -d~/dt.] Therefore, the unstable torus can evolve 
only to final states having the same distribution of specific vorticity. 

The vorticity of the torus measured in an inertial frame is 

~=(2-q)Q. (3.2) 

Let us consider first the so-called 'thin ribbon' of Paper I, which is the two-dimensionally 
incompressible (N =0), constant-~ torus. This system has the same violent instabilities for q>~3 
that the three-dimensional tori have. Because~ is constant, equation (3.1) implies that in this 
case the vorticity itself is conserved. Thus, equating equations (3.2) and (2.8), we find 

$(1 +£2) 
q= 

~1-£2 . 
(3.3) 

The planets exist only for O=::::e=::::l/2, which corresponds by equation (3.3) to the range 
fj=::::q=::::5/2. Note in comparison that the principal branch ofthe torus is unstable only for q>~3. 
We thus have the significant result that the planet solution is possible only when the torus is 
unstable. This alone suggests that the planet configurations are somehow related to the PP 
instability. In fact, the &=0 planet is infinitely elongated along y and is identical in shape to the 
thin ribbon. Thus for N=O, the two sequences of planet and torus equilibria bifurcate at q=~3, 
£=0. 

The constant angular momentum ribbon, for q=2, has vanishing vorticity. The planet that is 
formed in this case has 

( 
({28-5))1/2 

e= ::::::0.3117. 
3 

(3.4) 

Because the specific vorticity vanishes, equation (3.1) would permit a q=2 torus with any N to 
evolve into a planet with this value of£. These planets have axial ratios 1:3.208:0.5682, and 
'rotate' with angular velocity -0.5682Q. 

In the case of the general q=/=2, N=I=O torus, it is not straightforward to identify the final planet 
configuration that is formed. This is because it is the specific vorticity that is conserved in going 
from the torus to the planet, and hence the constant-vorticity torus will evolve into a 
non-constant-vorticity blob. Nevertheless, the fluid will probably oscillate around a planet 
configuration with the same mass-averaged specific vorticity as the torus. (The nature of the 
oscillations around the mean configuration is discussed in Section 5.) If so, then the identification 
(equation 3.3) is valid in general. In any case, since the £=0 planet is identical in shape to the 
q=~3 torus, the specific vorticity distribution is also the same for this special case, and therefore 
the bifurcation between the two sequences of configurations at q = ~3 still holds. 

We have so far discussed only the vorticity constraint, but mass energy and angular momentum 
must also be conserved. The conservation of angular momentum can be arranged in a 
straightforward manner by locating the centre of mass of the planets at the same radius as the 
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pressure maximum of the initial slender torus. To see the consequence of mass conservation, 
consider a torus of radial width 2a and orbital radius r that goes unstable with azimuthal 
wavenumber m. Using the equations of Paper I, the mass of the torus is 

fa [ (2q-3)Q2 ]N [ (2q-'-3)Q2 ]N 
Mt=27tr dx (a 2-x2)N=27trCN a2N+I, 

-a 2(N+1)K 2(N+1)K 
(3.5) 

where 

c =Jl d 1- 2 N= f(1/2)f(N+1) 
N -1 p( p) f(N+3/2) . (3.6) 

The mass of m planets with dimensions 2b x 2b I£ in the xy-plane is similarly 

Mp=m dy -- dx y (b2-x2-£2y2)N fb/e J~b2-e2y2 [ 2g2 ]N 
-b/e -~bz-<zl 2(N+1)K 

, m7't [ y2Q2 JN b2N+2 
e(N+ 1) 2(N+ 1)K 

(3.7) 

Equating equations (3.5) and (3.7), we thus determine the dimensions of the planets that would 
be formed if the given torus were to split into m planets. 

An obvious condition we require for the PP instability to go all the way to the non-linear planet 
stage is that there must be enough space for the planets to form. Let us assume that a single row of 
planets is formed. Since~ oc QN, most of the mass of a planet withN?::-1lies inside an ellipse withy 
semi-axis of order Y=b/e~N+l. (This is an approximate size, that is clearly valid in the 
incompressible limit, N=O; in the isothermal limit, N~oo, ~drops to 1/e of its central value on 
this ellipse.) In order that there not be a significant overlap between adjacent planets, we require 
that the distance between their centres be greater than 2Y, whence we require 2mY<27tr. This 
places the following limit on m: 

ma (CN+l/2 ~N+1 )l/(2N+l)( y2 )N/(2N+l) 
j3=-<7te~N+1 -- =f3max· 

r 2 2q-3 
(3.8) 

Fig. 1 compares the shape of the curve f3 = f3max in the f3q-plane with the region of PP-instability 
obtained in Paper I. There is excellent agreement at a qualitative level, confirming once again 
that the planet has an important role to play in the instability. 

We may also require the planets to be energetically favoured over the torus. There are three 
contributions to the energy - internal energy, kinetic energy, and tidal-potential energy. The 
total energy of the torus is 

(3.9) 

In the planet, the internal energy per unit mass is constant on streamlines, and so is the sum of the 
kinetic and potential energies. Hence the energy of the planet is 

(3.10) 
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1.5 

Figure 1. The solid curves correspond tofJ=Pmax in thefJq-plane. The dashed curves mark the boundary to the left of 
which the principal branch of the PP instability operates (see Paper 1). (a) N=O, (b) N=0.5, (c) N=3. Note the 
qualitative agreement between the two sets of curves. 

The requirement that Ev<E1 translates to 

. 2Jre (2q-~)N{ 2(N+2)[N(2q-3)+(q2-3)/2] }-(N+I) = . 
/3> · f3mm· 

CN+l/2 r (2N+3)[Ny2+3e2/(1-e2)] 
(3.11) 

The existence of a lower limit on pis puzzling. We have seen in Paper I that the PP instability 
extends all the way down to P=O. Moreover, all the numerical examples studied by Hawley 
(1987) correspond to P<Pmin· The question then arises: how can a higher energy planet 
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configuration form from a lower energy torus configuration? The resolution of this paradox is 
discussed in Section 5, where we suggest that what is formed is a distorted planet with a 
finite-amplitude negative-energy neutral mode. Thus, because of the possibility of negative­
energy distortions, the condition (equation 3.11) obtained from the energy criterion need not be 
satisfied. 

4 Stability of planet discs 

In this section, we analyse the linear modes of the two-dimensional planets with a view to 
understanding their stability. Our method is similar to that used by Weinberg (1983) in his study 
of the Riemann discs, except that we ignore self-gravity, and consequently we are able to carry 
out the analysis for arbitrary N, whereas he was limited toN= 1/2. The linearization of equations 
(2.10) and (2.11) gives 

N(sQ2+v2· VzQz+Vz · VzQ2)+QzVz·v2=0, 

sv2+(v2 · Vz)vz+(vz · Vz)v2+VzQ2+2Qkx v2=0. 

(4.1) 

(4.2) 

We have indicated first-order quantities with a prime and assumed that they have the time 
dependence exp(st). Growing modes have Re(s)>O. 

The perturbation in the pressure must vanish on the perturbed boundary, since we assume that 
the planet is surrounded by vacuum. The time derivative of this condition, when expressed in 
terms of Eulerian quantities at the unperturbed boundary, is 

(4.3) 

Since Q2=0 at the edge of the planet, equation (4.3) follows directly from equation (4.1) when 
N=FO. Therefore the boundary condition does not have to be imposed explicitly. (The case that 
N=O will be considered separately.) 

We write v2=(u, v) and seek a solution to equations (4.1)-(4.2) in polynomials: 

d m 

Q2(x,y)= ~ ~ Qj,mxjym-j, 
m=O j=O 

d m-l 

u(x,y)= ~ ~ Uj,mXjym-l-j, 
m=O j=O 

d m-l 

v(x, y)= ~ ~ Vj,mXjym-l-j. 
m=O j=O 

(4.4) 

Because the unperturbed velocity field and enthalpy are linear and quadratic in x andy (see 
equations 2.4, 2.5), therefore equation ( 4.4) produces terms of degree d, or less in equation (4.1) 
and terms of degree d -1 or less in equation ( 4.2). (The degree of the monomial xiyi is defined to 
be i+j.) For these equations to be satisfied, the coefficents of independent monomials must 
separately vanish, and we obtain a system of homogeneous linear equations of the form 

m=0,1, ... ,d. (4.5) 

Here wmis a column vector containing the coefficients of them+ 1 terms of degree min Q' and of 
them terms of degree m -1 in each of u and v; Am (s) is a (3m+ 1) x (3m+ 1) matrix with diagonal 
entries depending on s, and Bm is an s-independent (3m+ 1) x (3m+ 7) matrix. The latter derives 
from a term of the form Q2(x=O, y=O)V·v' in equation (4.1). 

The form (4.4) assumes that wd+z=O, and without loss of generality we can suppose that wd=FO. 
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Therefore a necessary condition for an eigenmode is that 

det[Ad(s)]=O, 

703 

(4.6) 

which defines a polynomial of degree 3d+ 1 in s. For each root s, we can find a non-zero 
eigenvector w d• and we can go on to solve for w d- 2 , w d- 4 , etc. provided that sis not also a root of 
det[Am(s)] for any m<dwith d- m even; we then have a trueeigenmode. If a root should recur at 
some m<d, however, then equation (4.5) cannot be solved for Wm unless Bm Wm+ 1 1ies within the 
range of Am(s). 

Certain roots do recur- in particular, s=O. If sis a root of equation (4.6), then so is-s. (The 
physical reason for this is the in variance of the planet equilibrium when we change the sign of time 
and simultaneously change the sign of they-coordinate.) Hence when dis even, one of the 3d+ 1 
roots of equation (4.6) iss=O. The d=O mode corresponds to a small change in the constant term 
of the unperturbed enthalpy, and hence to a change in the mass of the planet. The d=2 root 
corresponds to the difference between two planets with slightly different values of£, and hence to 
a change in the vorticity. In the latter case, V · v?_=O, so that B0=0. For higher even degrees, we 
find that the divergence does not vanish when N>O, but that Bmwm+2 nevertheless lies within the 
range ofAm(O). We have not proved this, but we have checked it numerically in several cases and 
never found an exception. Furthermore, when q=2 the roots s=±ikaQ recur at d=k+2, k+4, 
k+6, ... , and the same 'miracle' makes it possible to solve (4.5) despite the singularity ofAm(s). 
(These modes apparently represent k vortices spaced around the unperturbed streamlines.) 

Given that equation (4.5) can always be solved for the lower order terms, it follows that the 
polynomial modes equations ( 4.4) with time-dependences exp (st) are complete (this will be 
important to us in the next section). The proof of this is as follows: if one integrates the 
time-dependent forms of equations (4.1)-(4.2) (obtained by replacing s with ajat) with 
polynomial initial data, then, by arguments directly analogous to those given after equation ( 4.4), 
the fluid variables will remain polynomial in x andy for all time and of the same degree or less. 
The subspace Sd of initial data in the form of polynomials of degree :5d has a finite dimension; 
and, given the assumption above, there is a distinct eigenmode for every such polynomial. Hence 
the modes are complete in Sd. But a continuous function defined on the planet can be 
approximated arbitrarily closely by a polynomial of sufficiently high degree, hence as we take 
d~oo we 'capture' all possible continuous initial conditions. 

Using equations (4.4)-(4.6), we have solved numerically for the eigenfrequencies of 
polynomial modes having degrees 2~d~7. For each degree, we have sampled the &N plane on a 
31x30 grid. The results for the unstable modes are summarized in Fig. 2, which shows ridges of 
instability divided by stable valleys. There is a tendency for larger values of£ to be more unstable, 
but at the higher degrees, unstable modes are found even for very small£. Also at the higher 
degrees, instability extends to small N; in fact some of the largest growth rates occur there. 
However, as we now show, at N=O the planets are stable throughout the interesting range of£. 
(The growth rate does~ 0 continuously before N ~ 0, but sometimes quite reluctantly.) 

WhenN=O, equation (4.1) reduces to V2 • v?_=O. Furthermore, the surface density and vorticity 
are constant both in equilibrium and in perturbation, and it follows from equations (3.1) and (2.8) 
that V2 x v?_=O. Hence we can write 

v?..=V2¢>, 

V~¢=0. (4.7) 

Because of equation (4.7), ¢is the real part of an analytical function of x andy. It is useful to 
introduce the harmonic conjugate, ;p. which is the corresponding imaginary part, so that 

ay ax ax ay 
(4.8) -=- -=--
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Figure 2. Stability of two-dimensional planet discs for degrees 2-7. !-rom smallest to largest, the dots correspond to 
growth rates, Re(s)/0, in the ranges (0,0.05), (0.05,0,10), (0.10,0.15), and (0.15,0.20). Where more than one 
unstable mode occurs at one point, the largest growth rate is shown. 
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Using equations ( 4. 7) and ( 4.8), equation ( 4.2) can be spatially integrated to give 

Q2=-(_:!_) ¢-tQ¢, (4.9) 
dt 0 

where 

(_:!_) =~+v2·Vz 
dt o at 

(4.10) 

is the advective derivative along the unperturbed flow. The boundary condition (4.3) becomes 

(_:!_)2 ¢+tO(_:!_) ¢-V2f/J · V2Q2=0. 
dt 0 dto 

(4.11) 

We seek a solution of the form 

¢=exp (st) Re ( ~ akzk), z=(x+iy). (4.12) 

After equation ( 4.12) is substituted into equation ( 4.11), the even powers of x can be eliminated 
by using the equation for the shape of the boundary, 

xz=b2-Ezy2. (4.13) 

By requiring the coefficients of yd and of xyd-l to vanish, we then get a 2x2 homogeneous linear 
system. The determinant of this system yields a quadratic in s2. 

We have verified numerically that the roots for s2 are real and non-positive for all e between 0 
and 0.3117 ... and for all d between 0 and 100. Hence there are just two neutral, non-vortical 
modes for each degree, and theN =0 planet appears to be completely stable. [We suspect that it is 
possible to prove this result directly from equation (4.11). Any such proof must use the explicit 
form of the unperturbed solution, however, since equation (4.11) is also valid for the N=O torus, 
which was shown to be unstable in Paper I.] 

n 

3rrrrrrrrrrrrrrrrrrrr~~~.,rr~ 

d=2 

2 

E 

....• 

. . . . . 

. .. . . . 
.. . . . ...• 
• • • • . . . . . . . . . . . . ...• 
• • • • . . . . . . . . . . . . 
•••• . . . . 

Figure 3. Stability of three-dimensional planet ellipsoids for degree 2. The dots are as in Fig. 2. If vertical hydrostatic 
equilibrium were exactly valid for the modes, as it is for the equilibrium, then the results should be identical to those 
for the planet disc with degree 2, provided the identification, N=n+ 1/2, is made. The agreement is, however, not 
perfect, reflecting the breakdown of the two-dimensional approximation for the motions involved in the modes. 
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The method of analysis used for N=/=0 can be extended to three dimensions, but there are then 
many more coefficients. We have calculated only the second-degree modes that are even in z. 
Fig. 3 shows the results. As expected, the eigenfrequencies of a three-dimensional planet with 
polytropic index n are similar to those of the planet disc with N = n + 1/2 and the same £, but for 
the agreement between two and three dimensions is less precise than it was for the narrow tori of 
Paper I. 

In summary, we have found that the planet discs are generally unstable to a large number of 
modes, except for N=O. Therefore, compressibility must be essential for these instabilities. 

We suspect that the instabilities arise by a parametric resonance. We have analysed the stability 
of a planet disc with ~=0 and o== \&-1\ ~1, using equation (5.15) (see below). Of course such an 
equilibrium requires a modification of the tidal field in equation (2.11). Thus, instead ofthe tidal 
potential U(x)=-3Q2x2 /2 that leads to equation (2.10), we consider a problem where the tidal 
potential has the form 

2(1-£2)Q2x2 

U(x)=- (1+£2)2 (4.14) 

This leads to 

(4.15) 

If o = 0, then the planet is circular and the fluid is stationary in a frame rotating at angular velocity 
-Q with respect to the frame adopted in equations (2.10)-(2.11) (i.e. inertial space); in this case 
the planet is obviously stable and has a purely neutral spectrum of pressure modes. But for small, 
non-zero o, the tidal force in the fluid frame has a time-varying component proportional to o and 
with frequency 2a. If this frequency is nearly equal to twice the frequency of one of the pressure 
modes of the o=O system, the tidal force parametrically excites the mode, which acquires a 
growth rate oc o. 

Of course it is a big step from this small-o artificial model to the actual planets considered here. 
But parametric resonance would explain why the growing modes generally take the form of 
overstabilities. It would explain why the planet discs stabilize as N ~ 0, since the frequencies of 
the pressure modes tend to infinity as N- 112. 

5 Energy and vorticity of neutral modes 

We noted in Section 3 that Hawley's lumps could not correspond exactly to planet equilibria 
because, for the values of min his simulations, the planets have a higher energy per unit mass than 
the narro~ torus. In the first part of this section, we shall show that the energy of the planets is 
actually decreased when certain neutral modes are excited. Negative energy modes are common 
in differentially rotating fluids (cf. Narayan, Goldreich & Goodman 1987, in preparation). Thus, 
although the narrow torus cannot evolve to a stationary planet, it can (at least on energetic 
grounds) evolve to an appropriately oscillating planet. 

To obtain the energy associated with an excited mode, we start from the second order* 
Lagrangian density, 25 2 . The appropriate expression is 

(5.1) 

*It is convenient to allow the linear, i.e. first-order, perturbation variables to be complex and to vary as exp ( -iwt). 
When evaluating second-order quantities, we use the real parts of the first-order variables. 
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(5.2) 

Here~(x, t) is the first-order displacement of a fluid element that would be at position x at time tin 
the unperturbed flow;~ and the Eulerian velocity perturbation, v', are related by 

d4 
--(~· V)v=v. 
dt 

(5.3) 

In equations (5.1) and (5.2), d/dt is the time derivative following the unperturbed flow. The 
Euler-Lagrange equations that follow from equation (5.1) can be shown to be equivalent to 
equation (2.1). 

To obtain the energy density (£' 2 from 25 2. we use 

a21 2 a~ 
(£'2 ·--252. 

a(a~jat) at 
(5.4) 

Carrying out these operations yields 

<:p {J { (a~ )2 
[ ) 12 2 • 2 o2=z ar - (v·V ~ -3Q (1·~) 

+; [(f-1)(V -~)2+ V~: V~]-2(Qx~) · (v· V),;}. (5.5) 

The above expressions for 25 2 and (£' 2 apply to a three-dimensional gas of arbitrary polytropic 
index r. In the two-dimensional limit, we replace {J by the surface density 2: and p by the 
two-dimensional pressure P. In terms of the two-dimensional(£' 2, the total energy E2. associated 
with a linear mode of the planet disc is given by 

(5.6) 

where the domain of integration. is the interior of the unperturbed disc. It follows from the 
Euler-Lagrange equations that £ 2=0. 

We shall now discuss the simplest non-trivial case: the d =2 perturbations of the N =0 planet 
disc. Now, as N~o, V-~cx:r- 1~0, so that the terms proportional to (f-1)(V·~)2~0. These 
terms can thus be neglected in this limit. We saw in Section 4 that all of the modes of the N=O 
system are stable. Therefore, although we take the time-dependence of all linear perturbation 
variables to be exp (- iwt) [instead of exp (st) as in Section 4], it is both possible and convenient to 
end up with real coefficients. This is accomplished by the judicious insertion of the factor i in the 
equations below. 

For d=2, we can write equation (4.12) as 

fjg2 
¢= --[(x2-y2)+i2RxyJ, 

2 
(5.7) 

where D=D exp (- iwt) with D real. Following the procedure outlined in equations (4. 7)-( 4.13), 
we obtain the dispersion relation 

(5.8) 
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where 

2(1-s2fa 
B = -4(1 + s2) (1 + a 2)- [ 4s2+ (1 + s2)2] y2+ ---­

e 

Solving for the eigenmode, we find 

Q [2eay2Q2-4a2Q2+w2] 
R=2-- . 

w [(1 +s2)y2Q2+4a2Q2-w2] 

Writing the displacements as 

~x = ic1x + C2Y 

~y=d1x+id2y, 

· we have from equations (5.3) and (4.7) that 

~ [ (1+s2)aQR-sw J 
c1=DQ 

s(4a2Q2-w2) 

( 
2eac1-DR) 

c2=Q 
w 

( 
2ac1-sDR) 

dt=Q 
sw 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Substituting equations (5.5) and (5.11) into equations (5.6), we find for the total energy of the 
mode 

£ 2= ;: (Jd 4Q2[{[ ( ~) 2 
-a2 J [s2(ct+dy)+(d+d~)]-3(s2d+d) 

+s2y2(ct+d~+2c2d1)+4as(ctd2-c2dl} 

+{ [ ( ~) 2 
+a2 J [s2(cy-dy)-(d-d~)]+3(s2ct-d) 

-s2y2(ct+d~-2c2d1)-4as(cld2+c2dt)} cos (2wt)]. (5.13) 

We have solved equation (5.8) and evaluated equations (5.13) numerically. The coefficient of 
cos (2wt) vanishes in every case, as it should. For a given choice of e, there are two solutions for 
w2 : the larger corresponds to a 'fast', and the smaller to a 'slow' mode. Throughout the entire 
range O<s<O.S for which the planet discs exist, the energy of the fast mode is positive, but the 
energy of the slow mode is negative. Thus, it would be possible to accommodate the negative 
energy difference between the torus and the planet by exciting an appropriate amplitude of the 
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negative energy mode. At q=2 and_.6'=0.4, which corresponds to a typical simulation by Hawley 
(1987), the displacements must be (suppressing the time dependence) 

;x=( -i0.2909x+0.0841y), 

;y=( -1.4705x+i0.2909y). (5.14) 

The frequency of the corresponding slow mode is 0.6474Q. The displacements are not very small, 
but neither are they large: max (I ;x l/b, I ;Y l/(£-1b )::=,:0.458<1, so it is reasonable to suppose that 
linear theory is approximately correct. 

As discussed in Section 3, a second obstacle preventing the general narrow torus from evolving 
into a planet is that the distribution of specific vorticity differs between the two configurations, 
unless q =2 or N =0. We shall now argue, however, that small but otherwise arbitrary variations in 
the vorticity distribution of the planet can be made by combining vortical neutral modes. Of 
course, we cannot justify the use of linear modes unless the variation is small, but we can suppose 
that they have non-linear extensions that would lead some finite distance from the original planet. 

It is easy to see, by counting, that many of the modes calculated from equations (4.1)-(4.6) 
must be vortical. The simplest case is q=2 or £=0.3117, where by equation (3.2) there is no 
vorticity in the equilibrium configuration. If we restrict our attention to non-vortical modes, then 
V2xv2=0, and this implies that the modes are describable by a velocity potential, as in the first 
part of equation (4.7). If the fluid is compressible,¢ obeys 

dz¢ c2 

---V·(~V"')=O 
dt 2 ~ 'f" ' 

(5.15) 

where c2= Q2/ N is the square of the sound speed. This equation is again solvable by polynomials 
in x andy. The total number of modes of degree d governed by equation (5.15) is 2d+2, because 
there are d + 1 monomials of this degree, and the eigenfrequency enters the equation 
quadratically. The total number of modes of degree d, of the planet is, however, 3d+ 1, as 
determined by equation (4.6). (We are assuming that the modes are complete.) Therefore the 
remaining d -1 modes must be vortical, i.e. they must involve a change in the initial vorticity 
distribution. Now, consider an initial disturbance of the planet that corresponds to Q2 being 
described by an arbitrary polynomial of degree d, and u and v being described by polynomials of 
degree d-1. We need 3d+ 1 modes to describe this, and since the initial perturbed vorticity is of 
degree d-2, we need d-1 of these modes to be vortical. Thus, there are exactly as many vortical 
and non-vortical modes at each degree in a q =2 planet disc as are needed to fit an arbitrary initial 
condition. The same numbers of vortical and non-vortical modes exist in the case of a general q <2 
as well, but classifying the modes is more difficult, so we shall not discuss this case here. Note that, 
since specific vorticity must be conserved in two-dimensional flow, all the vortical modes must be 
neutral. Thus, the unstable modes are constrained to be non-vortical. 

Most vortical perturbations of the planet will lead to time-dependent solutions. But it was 
shown in Section 4 that there exists at least one zero-frequency mode for every even degree. 
These zero-frequency modes, which are vortical for all d;;:::.2, might point to neighbouring 
equilibria. We conjecture that there exists an infinite number of equilibrium sequences 
bifurcating from the planet discs! If so, then the planets are merely the simplest examples of an 
enormous class of 'lumpy' equilibria, some of which may well be more stable than the planets 
themselves. 

6 Discussion 

An interesting and obvious question raised by Hawley's (1987) work and our results is: what will 
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the fluid do next, after the formation of planets? There are several possibilities: 

(i) Perhaps the linear overstabilities of the planets will saturate at finite amplitudes, a 
somewhat unlikely possibility in view of more recent numerical work by Hawley (private 
communication), which show the instabilities growing to rather large amplitudes. 

(ii) Perhaps one of the other blob-like equilibria, for which we found evidence above, is more 
stable than the planet, and perhaps the fluid is tending towards such a configuration. 

(iii) Perhaps the overstabilities will continue to grow until shocks develop in the fluid and 
dissipation becomes important. This is likely in view of the rather steep density gradients found by 
Hawley (1987) at late times in his numerical evolutions. 

(iv) Perhaps the planet will fission into smaller blobs, and these blobs will further subdivide, 
and so on until the fluid dissolves into a spray of droplets separated by near-vacuum. 

(v) A most interesting possibility is that the fluid will evolve into fully developed turbulence. In 
two-dimensional turbulence, energy cascades to larger scales and vorticity to smaller scales (e.g. 
Hasegawa 1985). In our problem, this would mean that them blobs would merge into a single 
blob that would represent most of the ordered large-scale motion. (The macroscopic structure 
could take the form of a single non-axisymmetric planet, or could be an axisymmetric torus with 
lower shear than the initial torus, i.e. a lower effective value of q.) Superposed on the large-scale 
structure would be very fine-scale velocity fluctuations, which would represent the vorticity 
fluctuations. The merger of eddies has been seen by Marcus (1986) in numerical two-dimensional 
simulations of the Jovian atmosphere and the Red Spot, and something similar could happen in 
the torus as well, so long as the motion remains two-dimensional. Ever since the work of Shakura 
& Sunyaev (1973), turbulence has been a prime candidate for the source of viscosity in accretion 
discs. If it could be demonstrated that the PP instability leads to turbulence, it would clearly be an 
important step forward in understanding viscosity in discs, at least of the thick variety. 

A serious concern is that results obtained for the two-dimensional system may not be very 
relevant to three-dimensional tori. We make two remarks. First, we have shown in Paper I that 
the height~averaged equations very accurately reproduce the linear growth rates of the 
three-dimensional torus. Also, Hawley has found in his two-dimensional simulations that the 
linear growth continues until the blobs are well formed. Moreover, the planet equilibrium itself 
satisfies vertical hydrostatic equilibrium exactly, and is therefore essentially two-dimensional. 
Secondly, accurate three-dimensional simulations may not be available for some time, as Hawley 
has found the details of the evolution to be sensitive to the resolution of the grid, to the location of 
the boundaries, and to the choice of difference scheme. Therefore it may be wise to try to 
understand the two-dimensional case thoroughly, where we have the best 'experimental' results 
to guide us, before turning to three dimensions. 

Because of the limitation to two dimensions, the astronomical relevance of the results so far 
may be somewhat limited. For the reasons cited above, we feel that a two-dimensional theory is 
adequate to describe the behaviour of a slender torus, certainly in the linear regime, and possibly 
also in the non-linear regime. However, real astronomical tori are likely to be wide, and the case 
for two dimensions is much less clear. We would guess that the two-dimensional results provide a 
reasonable guide to the qualitative features of violent instabilities even in wide tori. If that is the 
case, then the results presented by Hawley {1987) and in this paper may alre~dy have some 
observational applications. For instance, the presence of accretion in real tori implies that each 
fluid element spends only a finite time in the torus. It could happen in certain situations that the 
fluid has just enough time to go through the first stage of planet formation before being swallowed 
up by the central mass. The presence of the planets would then be reflected in some way in the 
light curves of these systems. We thus have the interesting possibility that some of the variability 
observed in accretion tori, in particular the quasi-periodic . oscillations seen in cataclysmic 
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variables and accreting neutron stars, may be due to the presence of planet-like structures arising 
from the action of the Papaloizou-Pringle instability. 
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