Angewandte manmone

Supporting Information
 © Wiley-VCH 2013

69451 Weinheim, Germany

Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins**
 Bill Morandi, Zachary K. Wickens, and Robert H. Grubbs*

anie_201209541_sm_miscellaneous_information.pdf

Supporting Information

General procedure:

All olefin oxidation reactions were carried out under aerobic conditions. Commercial reagents were obtained from Aldrich and used without further purification.

Abstract

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian 500 Mhz spectrometer and High resolution mass spectra were provided by the California Institute of Technology Mass Spectrometry Facility using JEOL JMS-600H High Resolution Mass Spectrometer.

Gas chromatography data was obtained using an Agilent 6850 FID gas chromatography system equipped with a HP-5 (5\%-phenyl)-methylpolysiloxane capillary column (Agilent). Response factors were collected for 4-octanone, 3-octanone, 2-octanone, cyclohexanone, dodecene, 2-dodecanone and lauric aldehyde following literature procedures. ${ }^{1}$

General Procedure 1 (Table 1): The corresponding palladium complex ($0.01 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) and benzoquinone ($21.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) were charged in a resealable 4-mL vial under air. The corresponding solvent mixture was then added, followed by the addition of aqueous HBF_{4}. After the addition of trans-4-octene ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), the homogenous reaction mixture was stirred for 16 h at room temperature. The crude reaction mixture was then partitioned using a mixture of ether and water (10 mL each), tridecane was added as a standard, and an aliquot of the organic phase was submitted to GC-analysis to determine the yield of 4-octanone, 3-octanone, 2-octanone.

[^0]General Procedure 2 (Table 2 and Scheme 2): Palladium acetate ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) and benzoquinone ($108 \mathrm{mg}, 1.00 \mathrm{mmol}$) were charged in a resealable $20-\mathrm{mL}$ vial under air. A mixture of DMA (2.2 mL) , MeCN $(2.2 \mathrm{~mL})$ and water $(0.63 \mathrm{~mL})$ was added, followed by the addition of aqueous $\mathrm{HBF}_{4}(0.18 \mathrm{~mL}, 48 \%$ in water, 1.38 mmol). After the addition of the corresponding substrate $(1.00 \mathrm{mmol})$, the homogenous reaction mixture was stirred for 16 h at room temperature. The crude reaction mixture was then diluted with brine $(30 \mathrm{~mL})$ and ether $(30 \mathrm{~mL})$, the phases were separated and the aqueous phase was further extracted (2x) with ether. The combined organic phases were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. In some cases, NMR-analysis of the crude mixture was performed to determine the regioselectivity of the process. The crude product was then further purified by column chromatography on silica gel using pentane/ether as eluent.

General Procedure 3 (Scheme 3): Palladium acetate ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$), benzoquinone ($10.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{Fe}($ phtalocyanin) ($28.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) were charged in a resealable $20-\mathrm{mL}$ vial under air. A mixture of DMA (2.2 mL), $\mathrm{MeCN}(2.2 \mathrm{~mL})$ and water $(0.63 \mathrm{~mL})$ was added, followed by the addition of aqueous HBF_{4} ($0.18 \mathrm{~mL}, 48 \%$ in water, 1.38 mmol). The mixture was then purged during 2 min using an oxygen balloon, and after the addition of the corresponding substrate (1 mmol), the homogenous reaction mixture was stirred for 16 h at room temperature under an atmospheric pressure of oxygen (balloon). The crude reaction mixture was then diluted with brine (30 mL) and ether (30 mL), the phases were separated and the aqueous phase was further extracted (2x) with ether. The combined organic phases were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. In some cases, NMR-analysis of the crude mixture was performed to determine the regioselectivity of the process. The crude product was then further purified by column chromatography on silica gel using pentane/ether as eluent.

```
octan-4-one (Table 2, Entry 1)
```


Was obtained as a clear oil ($100 \mathrm{mg}, 0.78 \mathrm{mmol}, 78 \%$) following the general procedure 2. The yield obtained by GC-analysis of the crude was 87%. The difference is attributed to the high volatility of the compound.
${ }^{1} \mathrm{H}$ NMR: $\delta 2.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.62-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{td}, J=$ $7.4,3.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.5,44.7,42.5,25.9,22.3,17.3,13.8,13.7$.

Spectral data were in accordance with a commercial sample.
octan-4-one (Table 2, Entry 2)

Cis-4-octene was reacted following the general procedure 2 . The mixture of crude products was analyzed by GC using tridecane as a standard. Yields of products: 3\% 2-octanone, 3\% 3octanone, 70% 4-octanone.
octan-2-one and octan-3-one (Table 2, Entry 3)

Trans-2-octene was reacted following the general procedure 2 . The mixture of crude products was analyzed by GC using tridecane as a standard. Yields of products: 62\% 2-octanone, 25% 3-octanone, 3\% 4-octanone.

cyclohexanone (Table 2, Entry 4)

Cyclohexene was reacted following the general procedure 2. The mixture of crude products was analyzed by GC using tridecane as a standard. 75% yield was obtained. Around 9% cyclohexenone was observed by NMR spectroscopy using mesitylene as an internal standard.

1-(4-methoxyphenyl)propan-1-one (Table 2, Entry 5)

Was obtained as a solid ($137 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$) following the general procedure 2.
${ }^{1} \mathrm{H}$ NMR: $\delta 7.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 199.4,163.3,130.2,130.0,113.6,55.4,31.4$, 8.4.

Values were in accordance with a commercial sample.

Propiophenone and phenyl acetone (Table 2, Entry 6)

Were obtained from trans- β-methyl styrene following a modified general procedure 2 using $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{~mL} / 0.63 \mathrm{~mL})$ as the solvent. Crude ratio by NMR was $1: 1$. The products could be separated by column chromatography, giving two clear oils (A: $62 \mathrm{mg}, 0.46 \mathrm{mmol}$, 46% and B: $60 \mathrm{mg}, 0.45 \mathrm{mmol}, 45 \%)$.

A: ${ }^{1} \mathrm{H}$ NMR: $7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.8,136.9,132.9,128.5,128.0,31.8,8.2$.

B: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$, 2.15 (s, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 206.3,134.2,129.4,128.8,127.1,51.0,29.3$.

Values were in accordance with a commercial sample.

Propiophenone and phenyl acetone (Table 2, Entry 7)

Were obtained from cis- β-methyl styrene following a modified general procedure 2 using $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{~mL} / 0.63 \mathrm{~mL})$ as the solvent. Crude ratio by NMR was 1.4:1 (A:B). The products could be separated by column chromatography, giving two clear oils (A: 75 mg , $0.56 \mathrm{mmol}, 56 \%$ and B: $47 \mathrm{mg}, 0.35 \mathrm{mmol}, 35 \%)$.

A: ${ }^{1} \mathrm{H}$ NMR: $7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 200.8,136.9,132.9,128.5,128.0,31.8,8.2$.

B: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$, $2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 206.3,134.2,129.4,128.8,127.1,51.0,29.3$.

Values were in accordance with a commercial sample.

3-oxo-3-phenylpropyl acetate (Table 2, Entry 8)

Was obtained a as clear oil ($153 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$) following a modified general procedure 2 using $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4.4 \mathrm{~mL} / 0.63 \mathrm{~mL})$ as the solvent and $10 \mathrm{~mol} \%$ palladium acetate.
${ }^{1} \mathrm{H}$ NMR: $\delta 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 197.0,171.0,136.5,133.4,128.7$, 128.0, 59.6, 37.3, 20.9.

Values are in accordance with literature. ${ }^{2}$

4-oxohexyl 2-hydroxybenzoate (Table 2, Entry 9)

Was obtained as an oil ($176 \mathrm{mg}, 0.75 \mathrm{mmol}, 75 \%$) following the general procedure 2. Crude NMR analysis showed the formation of a $4: 1$ mixture of regioisomers. Only the major product was isolated by column chromatography.

[^1][^2]
4-oxohexyl benzoate (Table 2, Entry 10)

Was obtained a as clear oil ($200 \mathrm{mg}, 0.91 \mathrm{mmol}, 91 \%, 4: 1$ mixture) following the general procedure 2.
${ }^{1} \mathrm{H}$ NMR: $\delta 8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}$, minor), $4.31(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $2.56(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 2 \mathrm{H}$, minor), $1.04(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $0.91\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor). ${ }^{13} \mathrm{C}$ NMR: $\delta 210.3$, 207.9 (minor), 166.5, 166.4 (minor), 133.0 (minor), 132.9, 130.2 (minor), 129.5 (minor), 129.5, 128.3, 128.3 (minor), 64.2, 60.0 (minor), 45.1 (minor), 41.4 (minor), 38.6, 36.0, 22.9, 17.1 (minor), 13.7 (minor), 7.8 .

Values are in accordance with literature. ${ }^{3}$

1,4-bis(benzyloxy)butan-2-one (Table 2, Entry 11)

Was obtained a as clear oil ($150 \mathrm{mg}, 0.53 \mathrm{mmol}, 53 \%$) following a modified general procedure 2 using $10 \mathrm{~mol} \%$ palladium acetate.
${ }^{1} \mathrm{H}$ NMR: $\delta 7.38-7.28(\mathrm{~m}, 10 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=6.2 \mathrm{~Hz}$, 2H), $2.75(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 207.0,138.0,137.2,128.5,128.4,128.0,127.9$, 127.7, 127.7, 75.4, 73.3, 73.3, 65.0, 39.4 .

[^3]Values are in accordance with literature. ${ }^{4}$

10-oxooctadecanoic acid and 9-oxooctadecanoic acid (Table 2, Entry 12)

Were obtained as white solids ($245 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%, 1: 1$) following the general procedure 2
${ }^{1} \mathrm{H}$ NMR: $\delta 2.37-2.33(\mathrm{~m}, 6 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 18 \mathrm{H}), 0.86(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.8,211.8,180.0,178.0,42.8,42.8,42.7,42.7,34.0,34.0,31.9,31.8$, 29.4, 29.4, 29.4, 29.3, 29.2, 29.2, 29.1, 29.0, 29.0, 29.0, 28.8, 24.6, 24.6, 23.9, 23.8, 23.7, 22.7, 22.6, 14.1, 14.1. HRMS (EI): calcd $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right):$298.2508; measured: 298.2499.

Values are in accordance with literature. ${ }^{5}$

methyl 10-oxooctadecanoate and methyl 9-oxooctadecanoate (Table 2, Entry 13)

Were obtained as white solids ($261 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%, 1: 1$) following the general procedure 2

[^4][^5]29.2, 29.2, 29.1, 29.0, 29.0, 28.9, 24.9, 24.8, 23.9, 23.8, 23.7, 14.1, 14.1. HRMS (EI): calcd $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 312.2664 ; measured: 312.2674.

Values are in accordance with literature. ${ }^{6}$

18-hydroxyoctadecan-9-one and 1-hydroxyoctadecan-9-one (Table 2, Entry 14)

Were obtained as white solids ($215 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%, 1: 1$) following the general procedure 2.
${ }^{1} \mathrm{H}$ NMR: $\delta 3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 7 \mathrm{H}), 1.36-$ $1.18(\mathrm{~m}, 20 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.8,211.7,63.0,62.9,42.8,42.8$, $42.8,42.7,32.7,32.7,31.8,31.8,29.4,29.4,29.4,29.4,29.3,29.3,29.3,29.2,29.2,29.1$, 29.1, 25.7, 25.6, 23.9, 23.8, 23.8, 22.6, 22.6, 14.1, 14.1. HRMS (EI): calcd $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 284.2715; measured: 284.2721.

Values are in accordance with literature. ${ }^{7}$
dodecan-2-one (Table 2, Entry 15)

Was obtained a as clear oil ($158 \mathrm{mg}, 0.86 \mathrm{mmol}, 86 \%$) following the general procedure 2. GC-analysis of the crude sample showed 97.5% selectivity for ketone formation (2.5% for the aldehyde).

[^6]${ }^{1} \mathrm{H}$ NMR: $\delta 2.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.15(\mathrm{~m}$, $14 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 209.3,43.8,31.9,29.8,29.5,29.4,29.4,29.3$, 29.2, 23.8, 22.6, 14.1.

Values were in accordance with a commercial sample

3-(1,3-dioxoisoindolin-2-yl)butanal (Table 2, Entry 16)

Was obtained as a white solid ($188 \mathrm{mg}, 0.87 \mathrm{mmol}, 87 \%$) following the general procedure 2.
${ }^{1} \mathrm{H}$ NMR: $\delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.94-$ $4.86(\mathrm{~m}, 1 \mathrm{H}), 3.29$ (ddd, $J=18.0,8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J=18.0,6.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.49$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 199.3,168.1,134.0,131.8,123.2,47.3,41.4,18.8$.

Values are in accordance with literature. ${ }^{8}$

N -(4-hydroxy-3-methoxybenzyl)-8-methyl-7-oxononanamide and N -(4-hydroxy-3-methoxybenzyl)-8-methyl-6-oxononanamide (Scheme 2)

[^7]Was obtained as a clear oil $(128 \mathrm{mg}, 0.40 \mathrm{mmol}, 80 \%, 5: 1)$ from a mixture of capsaicin and dehydrocapsaicin (TCI, 60% capsaicin) following a modified general procedure 2 on a 0.5 mmol substrate and using $10 \mathrm{~mol} \%$ palladium acetate.
${ }^{1} \mathrm{H}$ NMR: $\delta 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.96-5.89(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.55$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.24$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, minor), $2.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}$, minor), 1.67-1.58 (m, 2H), 1.57-1.50 (m, 2H), $1.33-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$, 0.88 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$, minor). ${ }^{13} \mathrm{C}$ NMR: $\delta 215.0,210.9$ (minor), $172.8,172.5$ (minor), 146.7, 145.1, 130.3, 130.2 (minor), 120.7, 114.4, 110.7, 55.9, 51.8 (minor), 43.5, 42.8 (minor), 40.8, 39.9, 36.4, 36.4 (minor), 28.7, 25.5, 25.1 (minor), 24.6 (minor), 23.2, 23.0 (minor), 22.5 (minor), 18.2. HRMS (EI): calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}$ (M+): 321.1940; found: 321.1951.

octan-4-one (Scheme 3)

Was obtained following the general procedure 3. A yield of 83% was obtained by GCanalysis of the crude.

1-(4-methoxyphenyl)propan-1-one (Scheme 3)

Was obtained as a solid ($1.59 \mathrm{~g}, 9.7 \mathrm{mmol}, 72 \%$) on a 2 g -scale following general procedure 3. In that case a washing of the ethereal phase with aq. LiCl was necessary to remove DMA prior to chromatography.

10-oxooctadecanoic acid and 9-oxooctadecanoic acid (Scheme 3)

Were obtained as white solids ($235 \mathrm{mg}, 0.79 \mathrm{mmol}, 79 \%$, $1: 1$) following the general procedure 3 .
dodecan-2-one (Scheme 3)

Was obtained as a clear oil ($140 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%$) following the general procedure 3 .

Reaction profile (Figure 1)

Each profile was generated in triplicate and the values were averaged and graphed using Microsoft Excel to produce the final curves.

Palladium acetate ($11.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and benzoquinone ($108 \mathrm{mg}, 1.00 \mathrm{mmol}$) were charged into $8-\mathrm{mL}$ vials with permeable septum caps under air. 5.4 mL of a stock solution consisting of all of the liquid components was added (stock solution: $9 \mathrm{~mL} \mathrm{MeCN}, 9$ mL DMA, $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 0.72 \mathrm{~mL} \mathrm{HBF}_{4}$ (48% in water), $250 \mu \mathrm{~L} \mathrm{PhNO}_{2}$ (to be used as an internal standard) and $628 \mu \mathrm{~L}$ of either trans-4-octene or cis-4-octene (for \mathbf{A} or \mathbf{B} respectively)). Time points were taken at the given times and quenched with a 3:1 mixture of EtOAc and $\mathrm{Et}_{3} \mathrm{~N}$, followed by analysis with GC.

CARBONO1
BM-193_CC

PROTONO1
BM-192_CC

CARBONO1 BM-192 CC

CARBONO1
BM-203_CC

BM-203_CC

${ }^{\text {PROTONOI }}$
BM-248B_CC

CARBONO1
CARBONO1
BM-248B_CC

PROTONO1
BM-238 CC
BM-238_CC

CARBONO1
BM-238_CC

PROTONOI

CARBONOI
BM-233B_CC

[^8]PROTONOL
BM-207A_CC

CARBON01
BM-207A_CC

CARBONOI
BM-208_CC

CARBONO1
BM-215_CC

PROTONO1
BM-200_CC

CARBONO1
BM-200_CC

PROTONO1
BM-242 CC
BM-242_CC

CARBONO1
BM-242_CC

CARBONOI
CARBONOI
BM-247 CC

[^9]
[^0]: ${ }^{1}$ Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. Organometallics 2006, 25, 5740.

[^1]: ${ }^{1} \mathrm{H}$ NMR: $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=8.6,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97 (dd, $J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (ddd, $J=8.2,7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR: $\delta 210.1,170.1,161.7,135.7,129.8,119.1,117.6,112.4,64.6,38.3,36.1$, 22.7, 7.8. HRMS (EI): calcd (M+): 236.2049; measured: 236.2046.

[^2]: ${ }^{2}$ Org. Lett 2012, 14, 2414.

[^3]: ${ }^{3}$ Org Lett 2011, 13, 4308.

[^4]: ${ }^{1} \mathrm{H}$ NMR: $\delta 3.65$ (s, 3H), 2.36 (t, $\left.J=7.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, J$ $=28.6,7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 18 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 211.6,211.6$, 174.2, 174.2, 51.4, 51.4, 42.8, 42.8, 42.7, 42.7, 34.0, 34.0, 31.8, 31.8, 29.4, 29.4, 29.4, 29.3,

[^5]: ${ }^{4}$ Bull. Chem. Soc. Jap. 1981, 54, 3100.
 ${ }^{5}$ Biosci. Biotechnol. Biochem 2007, 71, 1120. Phytochemistry 1990, 29, 2323.

[^6]: ${ }^{6}$ Biosci. Biotechnol. Biochem 2007, 71, 1120. Phytochemistry 1996, 42, 889.
 ${ }^{7}$ Tetrahedron 1995, 51, 11863.

[^7]: ${ }^{8}$ J. Am. Chem. Soc. 2009, 131, 9473.

[^8]:

[^9]:

